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1 Introduction

Let s ≥ 1 be an integer. Jordan’s totient function, denoted by φs, or Js, is introduced, for integer
n ≥ 1, as the number of s-tuples of integers aj, with 1 ≤ aj ≤ n, j = 1, 2, . . . , s, such that
gcd(a1, . . . , as, n) = 1 (see [1, pp. 147–155]).

When s = 1, φs coincides with Euler’s totient function φ.
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The generalized Dedekind psi-function, denoted by ψs, could be introduced by:

ψs(n) =
φ2s(n)

φs(n)

for an integer n ≥ 1.

When s = 1, ψs coincides with the well-known Dedekind psi-function.
Below, we introduce extensions of these functions on the complex plane setting:

φs(1) = ψs(1)

φs(n) = ns
∏
p

(
1− 1

ps

)
p runs over the prime divisors of n, (1)

ψs(n) = ns
∏
p

(
1 +

1

ps

)
p runs over the prime divisors of n, (2)

for integer n > 1 and s being a complex number.
It is obvious that φs and ψs are entire functions with respect to s and are multiplicative

functions with respect to n. φs is an extension of Jordan’s totient function φs, since for integer
s ≥ 1 both functions coincide. The same is true for the extension ψs and the generalized Dedekind
psi-function ψs.

2 Properties for real numbers s

It is clear that

φ0(n) =

1, n = 1;

0, n > 1.

and thus
φ0(n) =

∑
d|n

µ(d),

where µ is the Möbius function.
Also, we have

ψ0(n) = 2ω(n),

where, for n > 1, ω(n) denotes the number of distinct prime divisors of n and ω(1) = 0. It is
clear that for prime n we have:

φs(n) = ns − 1;

ψs(n) = ns + 1.

For composite n the following assertion is true.

Lemma 1. If n ≥ 4 is a composite number and s > 0 is a real number, then the inequalities:

φs(n) ≤ ns −
√
ns (3)

ψs(n) ≥ ns +
√
ns (4)

are valid, where equalities hold only for n = p2, p is a prime number.
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Proof. Let p be the greatest prime divisor of n. Then (1) yields:

φs(n) ≤ ns

(
1− 1

ps

)
= ns − ns

ps
≤ ns −

√
ns,

since p ≤
√
n.

Thus (3) is proved.
In the same manner we have

ψs(n) ≥ ns

(
1 +

1

ps

)
≥ ns +

ns

ps
≥ ns +

√
ns,

since p ≤
√
n. Thus (4) is proved.

Since φ1(n) = φ(n), (3) is a generalization of the well-known inequality of Sierpiński for φ,
see [2, p. 231, Theorem 5]:

φ(n) ≤ n−
√
n

which is valid for any composite number n ≥ 4, and the equality holds only for n2, n is a prime
number.

Let s > 0 be an arbitrary real number. Then for n > 1, we have:

φs(n)φ−s(n) = ns
∏
p

(
1− 1

ps

)
(−1)ω(n)n−s

∏
p

(ps − 1)

= (−1)ω(n)

(∏
p

p

)s(∏
p

(
1− 1

ps

))2

=
(−1)ω(n)

n2s

(∏
p

p

)s(
ns
∏
p

(
1− 1

ps

))2

=
(−1)ω(n)

n2s
(φs(n))

2

(∏
p

p

)s

.

Hence, the relation

φ−s(n) =
(−1)ω(n)

n2s
φs(n)

(∏
p

p

)s

(5)

holds.
Equality (5) shows us how does the extension of φs look for the negative real numbers. When

n is a squarefree number, (5) yields

φ−s(n) = (−1)ω(n)n−sφs(n). (6)

In the same way one may obtain

ψ−s(n) =
1

n2s
ψs(n)

(∏
p

p

)s

. (7)

For the squarefree number n > 1, (7) yields

ψ−s(n) = n−sψs(n). (8)

Equalities (5)–(8) are valid for arbitrary comlex numbers, too.
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3 Properties for complex numbers s

From the definitions of φs and ψs (see (1) and (2)), it is obvious that for any complex number s,
the relation:

φ2s(n) = φs(n)ψs(n) (9)

or, which is the same,
ψs(n) =

φ2s(n)

φs(n)
, (10)

holds.
This means that the extension of the generalized Dedekind psi-function is expressed only by

the extension of the Jordan’s totient function. As an analogue of the famous Gauss’s equality:

n =
∑
d|n

φ(d) (11)

(see [3, p. 141, Theorem 7.6.]), we have the equality

ns =
∑
d|n

φs(d), (12)

which is valid for an arbitrary complex number s.
The proof of (12) follows from the multiplicativity of the function φs and from the

multiplicativity of the function
Fs(n) =

∑
d|n

φs(d)

(see [3, p. 109, Theorem 6.4.]).
Using the Möbius inversion formula, from (12), we obtain

φs(n) =
∑
d|n

µ
(n
d

)
ds =

∑
d|n

µ(d)
(n
d

)s
= ns

∑
d|n

µ(d)

ds
. (13)

Comparing (1) and (13), we obtain∏
p

(
1− 1

ps

)
=
∑
d|n

µ(d)

ds
. (14)

4 Main results

Below, we will deduce an important connection between functions φs, ψs and the Riemann’s
function ζ.

Considering the sequence of all primes:

2, 3, 5, 7, 11, 13, . . . ,

we denote it by:
p1, p2, p3, p4, p5, p6, . . . ,
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and observe that all prime divisors of n! are

p1, p2, p3, . . . , pπ(n),

where π(n) is the number of primes p, satisfying p ≤ n. Hence, see (1):

(n!)s

φs (n!)
=

π(n)∏
k=1

1

1− 1
psk

. (15)

Let n tend to +∞. Then π(n) tends to +∞ and in the right-hand side of (15) all primes take
part. If s is an arbitrary complex number with Re(s) > 1, then from the Euler’s identity

ζ(s) =
∏
p∈P

1

1− 1
ps

(P is the set of all primes.) (16)

and from (15), we obtain the following theorem.

Theorem 1. The relation
lim
n→∞

(n!)s

φs (n!)
= ζ(s) (17)

holds for all complex numbers s, such that Re(s) > 1.

Corollary 1. For all complex numbers s, such that Re(s) > 1
2
,

lim
n→∞

(n!)2s

φ2s (n!)
= ζ(2s) (18)

holds.

From Corollary 1, (18) and from (10) we obtain one more corollary.

Corollary 2. For any complex numbers s, with Re(s) > 1,

lim
n→∞

(n!)s

ψs (n!)
=
ζ(2s)

ζ(s)
(19)

holds.

In the particular case when s is a natural number, using Euler’s relation:

ζ(2s) = (−1)s−122s−1 π
2s

(2s)!
B2s,

where B2s are the Bernoulli numbers (see [4] and (18)), we obtain

lim
n→∞

(n!)2s

φ2s (n!)
= (−1)s−122s−1 π

2s

(2s)!
B2s.

As a final illustration, we remark that if we substitute s = 2 in (19), we obtain:

lim
n→∞

(n!)2

ψ2 (n!)
=
π2

15
.
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5 Conclusion

The proposed extensions for the Jordan’s totient function and the generalized Dedekind psi-function
provide many new opportunities for further research, thus making them particularly meaningful.
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