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1 Introduction

Let Z≥0 and N represent the sets of non-negative integers and natural numbers, respectively.
The classic game of Nim is played using stone piles. Players can remove any number of

stones from any pile during their turn, and the player who removes the last stone is considered
the winner [2].

Several variants of the classical Nim game exist. For the Maximum Nim, we place an upper
bound f(n) on the number of stones that can be removed in terms of the number n of stones in
the pile (see [4]). For other articles on Maximum Nim, see [5] and [6].

In this study, we investigated a variant of the Maximum Nim, with stones of weights a and
−2a. Simple relationships exist between the Grundy numbers in this game and the Josephus
problem. This is remarkable because the games for Nim and Josephus’ problems are entirely
different. This game was proposed by Takahashi, one of the authors of this article.

2 A game of nim with two kinds of stones

Definition 2.1. Suppose there are two piles of stones and two players take turns removing the
stones from one pile. In the first pile, there are stones with a weight of a, and in the second pile,
there are stones with a weight of −2a. When there are x stones with a weight of a and y stones
with a weight of −2a, the total weight of the stones is ax− 2ay ∈ Z≥0. Then, a player is allowed
to remove stones from one of the piles whose total weight is less than or equal to ⌊ ax− 2ay

2
⌋,

where ⌊ ⌋ denotes the floor function. The player who removes the last stone is the winner of the
game.

Definition 2.2. We denote a position of the game of Definition 2.1 by (x, y), where x and y denote
the numbers of stones with weights a and 2a, respectively.

Definition 2.3. (i) For any position (x, y) in this game, the set of positions can be reached by
precisely one move, denoted as move(x, y).

(ii) The minimum excluded value (mex) of a set S of non-negative integers is the smallest
non-negative integer that is not in S.

(iii) Let (x, y) be a position in the game. The associated Grundy number is denoted by G(x, y)
and is recursively defined as follows: G(x, y) = mex({G(u, v) : (u, v) ∈ move(x, y)}).

Definition 2.4. (a) A position is referred to as a P-position if it is a winning position for the
previous player (the player who has just moved) as long as the player plays correctly at
every stage.

(b) A position is referred to as an N -position as long as the player plays correctly at every
stage.

The next result demonstrates the usefulness of the Sprague–Grundy theory in impartial games.

Theorem 2.1. For any position (x, y), G(x, y) = 0 if and only if (x, y) is the P-position.

See [1] for the proof of this theorem.
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Lemma 2.1. For the game in Definition 2.1,

move(x, y) = {(x− t, y) : t ∈ N and at ≤ ⌊ax− 2ay

2
⌋}

(1)
∪ {(x, y − u) : u ∈ N and − 2au ≤ ⌊ax− 2ay

2
⌋}.

Proof. When we have position (x, y), we can remove the stones whose total weight is ⌊ax− 2ay

2
⌋.

Then, we can remove t stones from the first pile when at ≤ ⌊ ax− 2ay

2
⌋, and remove u stones

from the second pile when −2au ≤ ⌊ ax− 2ay

2
⌋. Therefore, we have (1).

Lemma 2.2. Let a ∈ N. Then, we have (i) and (ii).

(i) For any integers t, w,
t ≤ ⌊w

2
⌋ if and only if at ≤ ⌊aw

2
⌋.

(ii) For any integers t, w,

−2u ≤ ⌊w
2
⌋ if and only if − 2au ≤ ⌊aw

2
⌋.

Proof. When a is a natural number,

at ≤ ⌊aw
2
⌋ if and only if at ≤ aw

2
.

Because
t ≤ ⌊w

2
⌋ if and only if t ≤ w

2
,

we obtain (i). We prove (ii) using a method similar to that used in (i).

Lemma 2.3. For the game in Definition 2.1,

move(x, y) = {(x− t, y) : t ∈ N and t ≤ ⌊x− 2y

2
⌋}

∪ {(x, y − u) : u ∈ N and − 2u ≤ ⌊x− 2y

2
⌋}.

Proof. This is directly from Lemmas 2.1 and 2.2.

From Lemma 2.3, move of the game in Definition 2.1 for any natural number a is the same as
that in Definition 2.1 for a natural number a = 1.

The aim of the present section is to determine the formulas for the set of positions whose
Grundy number is s for the game of Definition 2.1, which is sufficient to study this game under
condition a = 1.

Remark 2.1. When a is not a natural number, the result of Lemma 2.2 is invalid. For instance,

t ≤ ⌊2
2
⌋

is not the same as
1.5t ≤ ⌊1.5× 2

2
⌋.
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Definition 2.5. For s, n ∈ Z≥0, let

Gs,n = {((2s+ 1)× 2n − 1 +m,m) : m ∈ Z≥0 and 0 ≤ m ≤ (2s+ 1)× 2n − 1},
G0,a = G0,b = ∅.

For s ∈ N, let

Gs,a = {(2k, j) : k, j ∈ Z≥0, 0 ≤ k ≤ s− 1 and 2s−k−1 + k ≤ j ≤ 2s−k + k − 1},
Gs,b = {(2k + 1, j) : k, j ∈ Z≥0, 0 ≤ k ≤ s− 1 and 2s−k−1 + k ≤ j ≤ 2s−k + k − 1},

and

Gs = (
∞⋃
n=0

Gs,n) ∪ Gs,a ∪ Gs,b.

Lemma 2.4. (i) For s, n, h ∈ Z≥0 such that h ≤ s− 2, we have the following (2) and (3).

{(2h, j) : h+ 1 ≤ j ≤ 2s−h−1 + h− 1} ⊂ ∪s−1
i=h+1Gi,a (2)

and
{(2h+ 1, j) : h+ 1 ≤ j ≤ 2s−h−1 + h− 1} ⊂ ∪s−1

i=h+1Gi,b. (3)

(ii) We have that (4) and (5).

{(2h, x) : 0 ≤ x ≤ h} ⊂ ∪h
i=0 ∪∞

n=0 Gi,n (4)

and
{(2h+ 1, x) : 0 ≤ x ≤ h} ⊂ ∪h

i=0 ∪∞
n=0 Gi,n. (5)

(iii) For any (x, y) ∈ Gs,a ∪ Gs,b, x ≤ 2s− 1 and y >
x

2
.

Proof. (i) First, we prove (2). Let s, n, h ∈ Z≥0 such that h ≤ s− 2. Then,

{(2h, j) : h+ 1 ≤ j ≤ 2s−h−1 + h− 1}
= ∪s−1

i=h+1{(2h, j) : 2
i−h−1 + h ≤ j ≤ 2i−h + h− 1}

= ∪s−1
i=h+1{(2h, j) : h ≤ i− 1, 2i−h−1 + h ≤ j ≤ 2i−h + h− 1}

⊂ ∪s−1
i=h+1Gi,a.

Similarly, we obtain (3).

(ii) Let x, h ∈ Z≥0 such that 0 ≤ x ≤ h. For 2h+ 1− x ∈ N, there exist n, t ∈ Z≥0 such that
t ≤ h and 2h+ 1− x = (2t+ 1)2n. Since x ≤ h,

(2t+ 1)2n = 2h+ 1− x ≥ 2x+ 1− x = x+ 1,

and hence, (2h, x) = ((2t + 1)2n − 1 + x, x) ∈ Gt,n. Therefore, we obtain (4). Similarly,
we prove (5).

(iii) For (x, y) = (2k, j) or (2k + 1, j) such that 2s−k−1 + k ≤ j, we have y = j ≥ k + 1 >
x

2
.

Since k ≤ s− 1, x ≤ 2s− 1.

Lemma 2.5. Suppose that we start with a position, (x, y) ∈ Gs. Then,

move(x, y) ∩ Gs = ∅. (6)
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Proof. Suppose we start with a position (x, y) ∈ Gs.

(i) Suppose (x, y) = ((2s+ 1)× 2n − 1 +m,m) ∈ Gs,n, where

m ≤ (2s+ 1)× 2n − 1. (7)

(i-1) We assume that n = 0. From (7), we have

m ≤ 2s (8)

and (x, y) = (2s+m,m), and from (7), the total weight of the stones is 2s+m− 2m

= 2s−m ≥ 0. From Definition 2.1, the total weight of stones that can be removed is

⌊2s−m

2
⌋ = s− ⌈m

2
⌉. (9)

We prove (6) by contradiction.

(i-1-1) We assume that we remove the stones from the first pile and move to the position

(2s+m− i,m) = ((2s+ 1)× 2k − 1 +m,m) ∈ Gs,k,

where k ∈ Z≥0 and
0 < i ≤ s− ⌈m

2
⌉. (10)

Then, i = 2s− (2s+ 1)× 2k + 1 ≤ 0, which contradicts (10).

(i-1-2) We assume that we remove the stones from the second pile and move to the
position

(2s+m,m− i) = ((2s+ 1)× 2k − 1 +m− i,m− i) ∈ Gs,k, (11)

where k ∈ Z≥0 and
i ≤ m. (12)

From (11) and k ≥ 1, we have that i ≥ 2(2s+1)−2s−1 = 2s+1, contradicting
(12) and (8).

(i-1-3) We assume that the stones are removed from the first pile and we moved to

(u,m) = (2s+m− i,m) ∈ Gs,a ∪ Gs,b.

From (8) and (9), we obtain:

u = 2s+m− i ≥ 2s+m− (s− ⌈m
2
⌉) = s+m+ ⌈m

2
⌉ ≥ 2m.

This result contradicts (iii) in Lemma 2.4.

(i-1-4) We assumed that we removed the stones from the second pile and moved to the
position

(u, v) = (2s+m,m− i) ∈ Gs,a ∪ Gs,a.

Then, from (8), we have

u = 2s+m ≥ 2m > 2(m− i) = 2v.

This result contradicts (iii) in Lemma 2.4.
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(i-2) Suppose that n ≥ 1. Then, the total weight of the stones is

(2s+ 1)× 2n − 1 +m− 2m = (2s+ 1)× 2n − 1−m.

Hence, by Definition 2.1, the total weight of the stones that can be removed is

⌊(2s+ 1)× 2n − 1−m

2
⌋ ≤ (2s+ 1)× 2n−1 − 1. (13)

(i-2-1) Suppose that we remove stones from the first pile, that is, reduce the first
coordinate x. Then, by (13), we move to the position

(u,m) = ((2s+ 1)× 2n − 1 +m− i,m) (14)

for i ∈ N such that
i ≤ (2s+ 1)× 2n−1 − 1. (15)

We prove (6) through contradiction.

(i-2-1-1) We assume that

((2s+ 1)× 2n − 1 +m− i,m) ∈ Gs,n′

for n′ ∈ Z≥0 such that n′ < n and

((2s+ 1)× 2n − 1 +m− i,m) = ((2s+ 1)× 2n
′ − 1 +m,m).

Then,
i = (2s+ 1)× (2n − 2n

′
) ≥ (2s+ 1)× 2n−1,

which contradicts (15). Therefore, we have (6).

(i-2-1-2) We assume that

((2s+ 1)× 2n − 1 +m− i,m) ∈ Gs,a ∪ Gs,b, (16)

where
i ≤ (2s+ 1)× 2n−1 − 1. (17)

Then, from (14), and (17),we obtain:

u = (2s+ 1)× 2n − 1 +m− i ≥ (2s+ 1)× 2n−1 +m.

Because n ≥ 1, (2s+ 1)× 2n − 1 +m− i ≥ 2s. Therefore, this contradicts
(iii) of Lemma 2.4.

(i-2-2) Suppose we remove stones from the second pile, that is, reduce the second
coordinate y. Because each stone in the second pile weighs −2, from (13), we
can remove i stones using

i ≤ m ≤ (2s+ 1)× 2n − 1. (18)
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(i-2-2-1) Suppose that we move to the position

((2s+ 1)× 2n − 1 +m,m− i)

= ((2s+ 1)× 2n
′ − 1 + (m− i),m− i) ∈ Gs,n′ (19)

such that n′ ≥ n+ 1 and

i = (2s+ 1)(2n
′ − 2n) ≥ (2s+ 1)2n,

and this contradicts (18). Therefore, we have (6).

(i-2-2-2) Suppose that we move to the position

(u, v) = ((2s+ 1)× 2n − 1 +m,m− i) ∈ Gs,a ∪ Gs,b.

Since m ≥ 1,
u ≥ (2s+ 1)− 1 +m ≥ 2s+ 1

and this contradicts (18).

(ii) Suppose that (x, y) = (2k, j) or (2k + 1, j) ∈ Gs,a ∪ Gs,a such that 0 ≤ k ≤ s− 1 and

2s−k−1 + k ≤ j ≤ 2s−k + k − 1. (20)

(ii-1) We prove that
move(x, y) ∩ Gs,n = ∅ (21)

for any n ∈ Z≥0. From Lemma 2.4, x ≤ 2s− 1 and u ≥ 2s for any (u, v) ∈ Gs,n, we
have (21).

(ii-2) The total weight of the stones is 2k− 2j or 2k+1− 2j, and hence the total weight of
the stones that can be removed is

⌊2k − 2j

2
⌋ = ⌊2k + 1− 2j

2
⌋ = k − j. (22)

By (20),
2k − 2j ≤ 0,

and hence, we cannot remove stones from the first pile.

Next, we remove the stones from the second pile and move to the position (2k, i) or
(2k+1, i). We prove that (2k, i), (2k+1, i) /∈ Gs,a∪Gs,b by contradiction. We suppose
that

2s−k−1 + k ≤ i < j ≤ 2s−k + k − 1. (23)

Then, we remove j − i stones from the second pile and the total weight of stones that
were removed is

−2(j − i). (24)

From (22) and (24), we have that

k − j ≥ −2j + 2i,

and hence by (23),
k + j ≥ 2i ≥ 2s−k + 2k.
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Then, we have
j ≥ 2s−k + k,

which contradicts (23). Therefore, we have (6).

Lemma 2.6. We suppose that we start with the position (x, y) /∈ Gs, such that x ≥ 2s. Then,
there exists n ∈ Z≥0, for which

move(x, y) ∩ Gs,n ̸= ∅.

Proof. Suppose that we start with a position (x, y) /∈ Gs such that x ≥ 2s. Then, there exists
n ∈ Z≥0 such that

(2s+ 1)× 2n ≤ x+ 1 < (2s+ 1)× 2n+1. (25)

Let
m = x− ((2s+ 1)× 2n − 1). (26)

Then, by (25), it follows that

0 ≤ m

= x− ((2s+ 1)× 2n−1 − 1)
(27)

≤ (2s+ 1)× 2n+1 − 2− ((2s+ 1)× 2n − 1)

= (2s+ 1)× 2n − 1.

Therefore, from (26) and (27), we have that

x ≥ 2m. (28)

The total weight of the stones is x− 2y, and we can remove stones whose total weight is

x− 2y

2
. (29)

If y = m, (x, y) = ((2s+ 1)× 2n − 1 +m,m) ∈ Gs,n. Therefore, two cases exist: (i) and (ii).

(i) Suppose that
y > m. (30)

From (28) and (30), we have that
x+ 2y > 4m,

and hence
x− 2y

2
> −2(y −m)

Therefore, from (29), we can remove y − m stones from the second pile and move to the
position ((2s+ 1)× 2n − 1 +m,m) ∈ Gs,n.
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(ii) Suppose that y < m. From (28), we have that

x− 2y

2
− (m− y) =

x− 2y − 2(m− y)

2

=
x− 2m

2

≥ 0. (31)

From (31), we obtain that
x− 2y

2
≥ m− y,

and hence we can remove m − y stones from the first pile and move to the position
(x,m) = ((2s+ 1)× 2n − 1 + y, y) ∈ Gs,n.

Lemma 2.7. If
(x, y) /∈ ∪s

i=0Gi

and x ≤ 2s− 1, then
move(x, y) ∩ Gs ̸= ∅.

Proof. Let
(x, y) /∈ ∪s

i=0Gi (32)

and x ≤ 2s − 1. Then, there exists k such that: 0 ≤ k ≤ s − 1 and x = 2k or x = 2k + 1. We
have two cases.

(i) First, we suppose that x = 2s− 1 or 2s− 2. From Definition 2.5

(2s− 1, s), (2s− 2, s) ∈ Gs,a ∪ Gs,b. (33)

From (ii) of Lemma 2.4,

{(2s− 1, j) : 0 ≤ j ≤ s− 1} ⊂ ∪s−1
i=0 ∪∞

n=0 Gi,n (34)

and
{(2s− 2, j) : 0 ≤ j ≤ s− 1} ⊂ ∪s−1

i=0 ∪∞
n=0 Gi,n. (35)

From (32), (33), (34), and (35),
y ≥ s+ 1. (36)

At positions (2s − 1, y) or (2s − 2, y), the total weight of the stones is 2s − 1 − 2y or
2s− 2− 2y, and we can remove the total weight of s− y− 1 stones. From (36), we obtain:

s− y − 1 ≥ −2y + 2s = −2(y − s). (37)

Therefore, we remove y − s stones from the second pile to the positions (2s − 1, s) or
(2s− 2, s) ∈ Gs,a ∪ Gs,b.
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(ii) Next, we suppose that x = 2k or x = 2k + 1 with k ≤ s− 2. From (i) and (ii) of Lemma
2.4,

{(2k, j) : 0 ≤ j ≤ 2s−k−1 + k − 1} ⊂ ∪s−1
i=0Gi (38)

and
{(2k + 1, j) : 0 ≤ j ≤ 2s−k−1 + k − 1} ⊂ ∪s−1

i=0Gi. (39)

From Definition 2.5,

{(2k, j) : 2s−k−1 + k ≤ j ≤ 2s−k + k − 1} ⊂ Gs (40)

and
{(2k + 1, j) : 2s−k−1 + k ≤ j ≤ 2s−k + k − 1} ⊂ Gs. (41)

From (32), (38), (39), (40), and (41), we obtain:

y ≥ 2s−k + k. (42)

At position (x, y), the total weight of the stones is x−2y = 2k−2y or x−2y = 2k+1−2y,
and and that of the stones that can be removed is

⌊2k + 1− 2y

2
⌋ = ⌊2k − 2y

2
⌋ = k − y. (43)

We prove that we can move to position (2k, 2s−k−1+k) or (2k+1, 2s−k−1+k) ∈ Gs,a∪Gs,b.
From (42), we obtain that:

k − y − (−2)(y − (2s−k−1 + k)) = k − y − 2s−k − 2k + 2y

= y − k − 2s−k ≥ 0.

Hence, we can move to (2k, 2s−k−1 + k) or (2k+1, 2s−k−1 + k) ∈ Gs,a ∪Gs,b by removing
y − (2s−k−1 + k) stones from the second pile.

Theorem 2.2. Gs is the set of positions with Grundy number s.

Proof. This is directly derived from Definition 2.3, and Lemmas 2.5, 2.6, and 2.7.

3 Non-negative total weight of stones

Let X = {(x, y) : x− 2y ≥ 0}. We define a game on X . In this game, the total weight of stones
should not be negative, and the set of positions a player can go from the position (x, y) ∈ X is
given by moveX defined in the following definition.

Definition 3.1. For (x, y) ∈ X

moveX(x, y) = {(x− t, y) : t ∈ N, (x− t)− 2y ≥ 0 and t ≤ ⌊x− 2y

2
⌋}

(44)
∪ {(x, y − u) : u ∈ N and − 2u ≤ ⌊x− 2y

2
⌋}.
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Lemma 3.1. For (x, y) ∈ X , moveX(x, y) = move(x, y) ∩X .

Proof. Let (x, y) ∈ X . Then, for any u ∈ N,

x− 2(y − u) ≥ x− 2y ≥ 0. (45)

By (45),

move(x, y) ∩X = ({(x− t, y) : t ∈ N and t ≤ ⌊x− 2y

2
⌋} ∩X)

∪ ({(x, y − u) : u ∈ N and − 2u ≤ ⌊x− 2y

2
⌋} ∩X)

= {(x− t, y) : t ∈ N, (x− t)− 2y ≥ 0 and t ≤ ⌊x− 2y

2
⌋}

∪ {(x, y − u) : u ∈ N, (x− t)− 2y ≥ 0 and − 2u ≤ ⌊x− 2y

2
⌋}

= {(x− t, y) : t ∈ N, (x− t)− 2y ≥ 0 and t ≤ ⌊x− 2y

2
⌋}

∪ {(x, y − u) : u ∈ N and − 2u ≤ ⌊x− 2y

2
⌋}

= moveX(x, y).

Lemma 3.2. Let s, n ∈ Z≥0. Then, we have (i) and (ii).

(i) Gs,n ⊂ X .

(ii) (Gs,a ∪ Gs,b) ∩X = ∅.

Proof. (i) and (ii) are direct from Definition 2.5.

Definition 3.2. For s ∈ Z≥0, let

GX,s = (
∞⋃
n=0

Gs,n).

Lemma 3.3. Suppose that we start with a position,

(x, y) ∈ GX,s.

Then,
moveX(x, y) ∩ GX,s = ∅. (46)

Proof. By Lemma 2.5,
move(x, y) ∩ Gs = ∅. (47)

By Lemma 3.1, moveX(x, y) = move(x, y) ∩X . Since GX,s ⊂ Gs, we have (46).

Lemma 3.4. For any (x, y) ∈ X − ∪s
i=0GX,i,

moveX(x, y) ∩ GX,s ̸= ∅. (48)
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Proof. Suppose that
(x, y) ∈ X − ∪s

i=0GX,i. (49)

If x ≤ 2s− 1, then there exists k such that 0 ≤ k ≤ s− 1 and x = 2k or x = 2k + 1.
Since (x, y) ∈ X , by (ii) of Lemma 2.4,

(x, y) ∈ {(2k, t) : 0 ≤ t ≤ k} ⊂ ∪k
i=0 ∪∞

n=0 Gi,n ⊂ ∪s−1
i=0GX,i (50)

and
(x, y) ∈ {(2k + 1, t) : 0 ≤ t ≤ k} ⊂ ∪k

i=0 ∪∞
n=0 Gi,n ⊂ ∪s−1

i=0GX,i. (51)

Relations (50) and (51) contradict (49). Therefore, x ≥ 2s. Then, by Lemma 2.6, there exists
n ∈ Z≥0 such that

move(x, y) ∩ Gs,n ̸= ∅. (52)

By Lemma 3.1, Lemma 3.2 and (52), we obtain (48).

Theorem 3.1. GX,s is the set of positions with Grundy number s in the game of this section.

Proof. This is directly derived from Definition 3.2, and Lemmas 3.3 and 3.4.

4 Josephus problem

In this section, we study the Josephus problem and its relation to the games in the previous
sections.

Definition 4.1. We have a finite sequence 1, 2, 3, 4, . . . , v arranged in a circle, and we start with
2 to remove every second number until only one remains. This is a well-known Josephus problem,
and we denote the number removed in this order by e1 = 2, e2 = 4, . . . , ev−1, and we denote
the number that remains in the elimination process by ev. For any v, let Fs(v) = ev−s for
s = 0, 1, 2, . . . , v − 1. Note that F0(v) = ev is the final number that remains.

For the details of the Josephus problem, see [3].

Lemma 4.1. The following equations are obtained:

Fs(s+ k) = 2k (53)

for any 1 ≤ k ≤ s and
Fs(2s+ 1) = 1. (54)

Proof. Because 1 ≤ k ≤ s, we have numbers 1, 2, . . . , 2k, . . . , s+ k. We remove numbers

2, 4, . . . , 2k, . . . . (55)

We denote the numbers removed in this order as e1 = 2, e2 = 4, . . . , es+k−1, where es+k is the
last number that remains. Fs(s+ k) = es+k−s = ek is the k-th number to be removed. Therefore,
from (55), we have Fs(s+ k) = es+k−s = ek = 2k.

When we have 1, 2, . . . , 2s + 1, we remove numbers 2, 4, . . . , 2s for the first time around the
circle and the s-th removed number is es = 2s. In the second time around the circle, 1 is removed,
and es+1 = 1. Fs(2s+ 1) = e2s+1−s = es+1 = 1.

109



Lemma 4.2. For s ∈ Z≥0 and v ∈ N such that 0 ≤ s ≤ v−1, we obtain the following recursions:

Fs(2v) = 2Fs(v)− 1 (56)

and
Fs(2v + 1) = 2Fs(v) + 1. (57)

Proof. First, we prove the recursions for F0. We assume that

F0(v) = x. (58)

Then, x is the last remaining number when we start with the numbers 1, 2, . . . , v. Suppose that
we start with the numbers 1, 2, 3, . . . , 2v. When all even numbers around the circle are removed
for the first time, v numbers 1, 3, . . . , 2v − 1 remain. From (58), the x-th number among these
1, 3, . . . , 2v − 1 is the last remaining number in this Josephus problem, and the x-th number is
2x− 1. Therefore, we have

F0(2v) = 2F0(v)− 1.

Suppose that we start with the numbers 1, 2, 3, . . . , 2v + 1. When all even numbers are removed
for the first time around the circle and the number 1 is removed at the beginning of the second
time around the circle, v numbers 3, 5, . . . , 2n + 1 remain. From (58), the x-th number among
these 3, 5, . . . , 2n+ 1 will survive, and the x-th number is 2x+ 1. Therefore, we have

F0(2v + 1) = 2F0(v) + 1.

Using a method similar to that used for F0, we prove (56) and (57).

Theorem 4.1. If v = (2s+1)2n +m such that s, n,m ∈ Z≥0 and 0 ≤ m ≤ (2s+1)2n − 1, then

Fs(v) = 2m+ 1. (59)

Proof. We proved this through mathematical induction. Suppose that m = 2k such that
m ≤ (2s + 1) − 1 = 2s and k ∈ N. Then, k ≤ s and s < s + k. Hence, by Lemmas 4.1
and 4.2,

Fs((2s+ 1) +m) = Fs(2s+ 2k + 1)

= 2Fs(s+ k) + 1 (60)

= 2(2k) + 1 = 2m+ 1.

By Lemma 4.1, (60) is valid for m = 0. Next, we suppose that m = 2k + 1 such that
m ≤ (2s + 1) − 1 = 2s and k ∈ Z≥0. Then, k < s and s < s + k + 1. Hence, by Lemmas 4.1
and 4.2,

Fs((2s+ 1) +m) = Fs(2s+ 2k + 2)

= 2Fs(s+ k + 1)− 1

= 2(2(k + 1))− 1

= 2(2k + 1) + 1 = 2m+ 1.
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We assume that there exist n0 and m0 such that (59) is valid for any n ≤ n0 or m ≤ m0. If
m0 + 1 = 2m+ 1 for m ≤ m0, from Lemma 4.2 and the assumption of mathematical induction,

Fs((2s+ 1)2n0+1 +m0 + 1) = Fs((2s+ 1)2n0+1 + 2m+ 1)

= 2Fs((2s+ 1)2n0 +m) + 1

= 2(2m+ 1) + 1

= 2(m0 + 1) + 1.

If m0 + 1 = 2m for m ≤ m0, from Lemma 4.2 and the assumption of mathematical induction,

Fs((2s+ 1)2n0+1 +m0 + 1) = Fs((2s+ 1)2n0+1 + 2m)

= 2Fs((2s+ 1)2n0 +m)− 1

= 2(2m+ 1)− 1

= 2(2m) + 1

= 2(m0 + 1) + 1.

Theorem 4.2. For (x, y) ∈ Gs,n,
Fs(x+ 1) = 2y + 1.

Proof. From Definition 2.5, for (x, y) ∈ Gs,n, there exists m ∈ Z≥0 such that

0 ≤ m ≤ (2s+ 1)× 2n − 1

and
(x, y) = ((2s+ 1)2n − 1 +m,m).

By Theorem 4.1,

Fs(x+ 1) = Fs((2s+ 1)2n +m) = 2m+ 1 = 2y + 1.

By Theorems 2.2, 4.1, and 4.2, simple relations exist between positions whose Grundy number
is s and the numbers that will be the (v − s)-th removed number in the Josephus problem with v

numbers.
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