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Abstract: This paper explores additional properties of the arithmetic functions fα(n) and gα(n),
defined respectively by fα(n) =

∏r
i=1 p

(ei,α)
i and gα(n) =

∏r
i=1 p

[ei,α]
i , where n =

∏r
i=1 p

ei
i is the

prime factorization of a positive integer n > 1, (a, b) and [a, b] denote, respectively the greatest
common divisor and the least common multiple of any two integers a and b. These functions and
some of their properties have been introduced and investigated in previous works. In this paper,
we establish several new theorems that reveal deeper insights into the relationships between these
functions.
Keywords: Arithmetic function, Greatest common divisor, Least common multiple.
2020 Mathematics Subject Classification: 11A25.

1 Introduction

Throughout this paper, we let N∗ denote the set N \ {0} of positive integers, and we denote by
(a, b) the greatest common divisor and by [a, b] the least common multiple of any two integers a
and b. Let

n =
r∏

i=1

peii
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be the prime factorization of a positive integer n > 1, where r, e1, e2, . . . , er are positive integers,
and p1, p2, . . . , pr are distinct primes.

The author together with Derbel [4] introduced and studied some properties of the following
arithmetic function for a positive integer α:

fα(n) =
r∏

i=1

p
(ei,α)
i , fα(1) = 1,

which can be viewed as a generalization of the core function (see [5]):

γ(n) =
r∏

i=1

pi, γ(1) = 1,

since f1(n) = γ(n) for all n. Additionally, the author [2] explored further properties of these
functions and defined new integer sequences associated with them. Next, the author [3], using
similar to the approaches in [2, 4], studied a new arithmetic function related to the least common
multiple, defined by:

gα(n) =
r∏

i=1

p
[ei,α]
i , gα(1) = 1.

In the present paper, we will discuss additional interesting properties that provide deeper
insights into the relationships between the functions fα and gα, including inequalities and
identities involving their compositions. We also define and study equivalence relations on the
set of positive integers induced by these functions, leading to a classification of integers based on
these relations. Finally, we discuss an associated algebraic structure, showing that the set of these
functions forms a commutative monoid under composition, and examine the connection between
the orbits of integers under this action and the set of exponential divisors.

2 Main results

Theorem 2.1. Let α be a positive integer. Then, for any positive integer n, we have

(fα · gα)(n) ≤ nα · γ(n),

where the equality holds only if (ei, α) = 1 for all 1 ≤ i ≤ r.

Proof. First, we observe that the inequality is true for n = 1. Next, for n > 1, we use the
following well-known property

∀a, b ∈ N∗ a+ b ≤ ab+ 1

by taking a = (ei, α) and b = [ei, α], to obtain

(ei, α) + [ei, α] ≤ (ei, α)[ei, α] + 1 = αei + 1 (1 ≤ i ≤ r).
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This yields the inequality:

(fα · gα)(n) =
r∏

i=1

p
(ei,α)+[ei,α]
i

≤
r∏

i=1

pαei+1
i

= nα · γ(n).

If α = 1, then we have (ei, 1) = 1 (1 ≤ i ≤ r) and the equality holds, since both sides are
equal to n · γ(n).

Now, let us suppose that α > 1. Then

(fα · gα)(n) = nα · γ(n) ⇔
r∏

i=1

p
(ei,α)+[ei,α]
i =

r∏
i=1

pαei+1
i

⇔ (ei, α) + [ei, α] = αei + 1 (1 ≤ i ≤ r)

⇔ (ei, α) + [ei, α] = (ei, α)[ei, α] + 1 (1 ≤ i ≤ r)

⇔
(
(ei, α)− 1

)(
[ei, α]− 1

)
= 0 (1 ≤ i ≤ r)

⇔ (ei, α) = 1 or [ei, α] = 1 (1 ≤ i ≤ r).

However, we have [ei, α] > 1 for all 1 ≤ i ≤ r, because α > 1. Therefore, (ei, α) = 1 for all
1 ≤ i ≤ r is the only possibility for the equality to hold, and this completes the proof.

Clearly, if β = 1, then fα(gβ(n)) = gβ(fα(n)) for all α and for all n. Also, this is the case
when α = β as the following theorem states.

Theorem 2.2. Let α be a positive integer. Then for every n:

fα(gα(n)) = gα(fα(n)) = γ(n)α.

Proof. For n = 1, the statement is obviously true. If n > 1, then one can use the following well
known property:

∀a, b ∈ N∗ [a, (a, b)] = (a, [a, b]) = a

to get

fα(gα(n)) =
r∏

i=1

p
([ei,α],α)
i

=
r∏

i=1

p
[(ei,α),α]
i = gα(fα(n))

=
r∏

i=1

pαi = γ(n)α.

The proof is finished.

This theorem is, in fact, a special case of the following more general result:

Theorem 2.3. Let α and β be positive integers such that α | β. Then for every n:

fα(gβ(n)) = γ(n)α and gβ(fα(n)) = γ(n)β.
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Proof. The equalities are true for n = 1. If n > 1, then we have

fα(gβ(n)) =
r∏

i=1

p
([ei,β],α)
i

=
r∏

i=1

pαi

(
α | β ⇒ α | [ei, β] for all i

)
= γ(n)α.

Similarly,

gβ(fα(n)) =
r∏

i=1

p
[(ei,α),β]
i

=
r∏

i=1

pβi

(
α | β ⇒ (ei, α) | β for all i

)
= γ(n)β.

This proves the theorem.

Theorem 2.4. Let α and β be positive integers. Then for every n:

1. If ei | α (1 ≤ i ≤ r), then fα(gβ(n)) = g(α,β)(n).

2. If β | ei (1 ≤ i ≤ r), then gβ(fα(n)) = f[α,β](n).

In particular, if β | ei | α (1 ≤ i ≤ r), then (α, β) = β and [α, β] = α. Hence,

fα(gβ(n)) = gβ(n) and gβ(fα(n)) = fα(n).

Proof. Both statements are true for n = 1. If n > 1, we use the following identities to prove the
statements:

∀a, b, c ∈ N∗ (a, [b, c]) = [(a, b), (a, c)], (1)

∀a, b, c ∈ N∗ [a, (b, c)] = ([a, b], [a, c]), (2)

(see e.g., [1, p. 22]).

1. If we suppose that ei | α (1 ≤ i ≤ r), then it follows by using (1) that:

fα(gβ(n)) =
r∏

i=1

p
([ei,β],α)
i

=
r∏

i=1

p
[(ei,α),(β,α)]
i =

r∏
i=1

p
[ei,(β,α)]
i

= g(α,β)(n),

as claimed.
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2. If we suppose that β | ei (1 ≤ i ≤ r), then it follows by using (2) that:

gβ(fα(n)) =
r∏

i=1

p
[(ei,α),β]
i

=
r∏

i=1

p
([ei,β],[α,β])
i =

r∏
i=1

p
(ei,[α,β])
i

= f[α,β](n),

as required. The proof is achieved.

Now, let us consider the following relation on N∗ defined by:

n ∼ m ⇔ ∃α ∈ N∗; fα(n) = fα(m).

Note that if p ̸= q are distinct prime numbers, then fα(p) ̸= fα(q) for any α ∈ N∗, which implies
that p ̸∼ q.

Theorem 2.5. The relation ∼ is an equivalence relation.

Proof. It is easy to show that ∼ is a reflexive and symmetric relation. We now proceed to prove
that ∼ is also a transitive relation. Let n, m, and l be positive integers such that n ∼ m and
m ∼ l. We wish to prove that n ∼ l.

Let m =
∏s

i=1 q
mi
i and l =

∏t
i=1 p

li
i be the unique prime factorizations of m and l, respectively.

Then we have:{
n ∼ m

m ∼ l
⇒

{
∃α ∈ N∗; fα(n) = fα(m),

∃β ∈ N∗; fβ(m) = fβ(l).

⇒

{
∃α ∈ N∗;

∏r
i=1 p

(ei,α)
i =

∏s
i=1 q

(mi,α)
i ,

∃β ∈ N∗;
∏s

i=1 q
(mi,β)
i =

∏t
i=1 p

(li,β)
i .

⇒


r = s = t,

pi = qi = pi for any 1 ≤ i ≤ r,

(ei, α) = (mi, α) and (mi, β) = (li, β) for any 1 ≤ i ≤ r.

On the other hand, for any 1 ≤ i ≤ r, we have

(mi, (α, β)) = ((mi, α), β) = ((ei, α), β) = (ei, (α, β))

= ((mi, β), α) = ((li, β), α) = (li, (α, β)),

from which it follows that f(α,β)(n) = f(α,β)(l), i.e., n ∼ l.

If p is prime, then
[p] = {pr; r ∈ N∗} (take α = r + 1).

If p and q are primes, then

[pq] = {prqs; r, s ∈ N∗} (take α = rs+ 1).

95



For any square-free integer n ∈ N∗, we have

[n] =

{
m =

s∏
i=1

qmi
i ∈ N∗; γ(m) = n

} (
take α = 1 +

s∏
i=1

mi

)
.

Thus, we have
N∗

∼
= {[n]; n is a square-free positive integer}.

Remark 2.1. If we define R to be the relation on N∗ such that:

nRm ⇔ ∃α ∈ N∗; gα(n) = gα(m),

then the same reasoning as above allows us to prove that R is an equivalence relation and
N∗

R
=

N∗

∼
.

We conclude this paper with the following discussion about an algebraic structure related
to fα. Since fα ◦ fβ = f(α,β) for all α, β ∈ N, it follows that the set M = {fα | α ∈ N} forms a
commutative monoid with the identity element f0 under the composition of functions.

The mapping
∗ : M× N∗ → N∗

(fα, n) 7→ fα ∗ n = fα(n)

is a monoid action of M on N∗. Indeed, f0(n) = n for all n ∈ N∗, and

fα ∗ (fβ ∗ n) = fα ∗ (fβ(n)) = fα(fβ(n)) = (fα ◦ fβ) ∗ n for all n ∈ N∗ and α, β ∈ N.

Let On denote the orbit of n ∈ N∗ under the action of M, i.e., On = {fα(n) | fα ∈ M}.
On the other hand, a positive divisor d of n is said to be an exponential divisor if d =

∏r
i=1 p

di
i ,

where di | ei for all 1 ≤ i ≤ r. The definition, basic properties, and more details about
exponential divisors can be found in [6]. If we denote the set of all exponential divisors of n
by En, then On ⊆ En and |En| =

∏r
i=1 τ(ei), where τ(a) is the usual divisor function. For

example,
E72 = O72 = {6 = f1(72), 18 = f2(72), 24 = f3(72), 72 = f0(72)},

E36 = {6, 12, 18, 36} while O36 = {6 = f1(36), 36 = f0(36)}.

Note that 12 cannot be in O36. If this were the case, there would exist some α ∈ N such that
(α, 2) = 2 and (α, 2) = 1, which is impossible. The following theorem provides a classification
of n ∈ N∗ such that On = En.

Theorem 2.6. Let n be a positive integer such that On = En. Then exactly one of the following
possibilities holds:

1. n = pk for some prime p and k ∈ N∗.

2. n =
∏r

i=1 p
ei
i with (ei, ej) = 1 for all 1 ≤ i ̸= j ≤ r.

Proof.

1. Suppose that n = pk for some prime p and k ∈ N∗, and let d ∈ En. Then d = pl for some l

such that l | k. If we take α = l, then fl(n) = pl = d, which means d ∈ On, thus proving
the first item.
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2. For the second item, assume that n =
∏r

i=1 p
ei
i with (ei, ej) = 1 for all 1 ≤ i ̸= j ≤ r, and

let d ∈ En. Then d =
∏r

i=1 p
di
i where di | ei. By taking α =

∏r
i=1 di, we obtain

fα(n) =
r∏

i=1

p
(ei,

∏r
i=1 di)

i =
r∏

i=1

pdii = d,

which implies d ∈ On.

Finally, suppose that there exist ei and ej such that (ei, ej) = a > 1, and consider

d = pip
a
j

r∏
k=1
k ̸=i,j

pk ∈ En.

By contradiction, assume that d ∈ On. Then there exists α ∈ N such that (ei, α) = 1 and
(ej, α) = a. However, since a | α and a | ei, it follows that (ei, α) ≥ a > 1, which is a
contradiction.

The proof is complete.
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