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Abstract: We find various series that involve the central binomial coefficients
(
2n
n

)
, harmonic

numbers and Fibonacci numbers. Contrary to the traditional hypergeometric function pFq

approach, our method utilizes a straightforward transformation to obtain new evaluations linked
to Fibonacci numbers and the golden ratio. We also gave a new series representation for ζ(2).
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1 Introduction

Harmonic numbers Hα are defined by the recurrence relation

Hα = Hα−1 +
1

α

for α ∈ C \ Z− ∪ {0} with H0 = 0.
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The recurrence relation imply that if α = n is a non-negative integer, then

Hn =
n∑

j=1

1

j
.

In an article published in 2016, Chen [4], gave a generating function for the sequences(
2n
n

)
Hn,

(
2n
n

)
(H2n − Hn), Cn(H2n − Hn) and few others, where Cn is the n-th Catalan number

Cn =
1

n+ 1

(
2n
n

)
. In search of interesting series associated with central binomial coefficients and

Harmonic numbers, Chen established several interesting sums as follows:
∞∑
n=1

1

4n(2n+ 1)

(
2n

n

)
(H2n −Hn) = π ln 2− 2G, (1)

∞∑
n=1

1

4nn(2n+ 1)

(
2n

n

)
(H2n−1 −Hn) = 2 + 2 ln 2 + ln2 2 + 4G− π(1 + 2 ln 2), (2)

∞∑
n=1

1

4n(2n+ 3)
CnHn = 2 + 4 ln 2− 4G− π + π ln 2, (3)

where G is the Catalan’s constant, which is defined in [1]

G :=
∞∑
k=0

(−1)k

(2k + 1)2
.

Later in this paper, we established the following results:
∞∑
n=1

n

4n(2n− 1)2(2n+ 1)(2n+ 3)

(
2n

n

)
=

3π

256
,

∞∑
n=1

n2

4n(2n− 1)2(2n+ 1)

(
2n

n

)
=

3π

32
.

From [4], we have the generating function:

M (x) :=
∞∑
n=1

(
2n

n

)
Hnx

n =
2√

1− 4x
ln

(
1 +

√
1− 4x

2
√
1− 4x

)
(4)

which converges on [−1/4, 1/4).
Now, before we continue, let Fn and Ln denote the n-th Fibonacci and Lucas numbers,

respectively, both satisfying the recurrence relation Γn = Γn−1 + Γn−2, n ≥ 2, with conditions
F0 = 0, F1 = 1 and L0 = 2, L1 = 1. Also, L−m = (−1)mLm and F−m = (−1)m−1Fm.
Throughout this paper, we denote the golden ratio α = 1+

√
5

2
and write its conjugate β = 1−

√
5

2
,

so that αβ = −1 and α + β = 1. We have the Binet formulas for the Fibonacci and Lucas
numbers to be:

Fm =
αm − βm

α− β
, Lm = αm + βm

for any integer m.
We will require the following, which are consequences of the Binet formula and well-known

identities that are valid for integers m and n.

α2m = αmFm

√
5− (−1)m+1,

α2m = αmLm − (−1)m, (5)

β2m = βmLm − (−1)m,
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F 2
n + (−1)n+m−1F 2

m = Fn−mFn+m,

Ln+m + (−1)mLn−m = LnLm.

Now setting x =
1

4(α2r + (−1)r+1)
and using the identity α2r = αrFr

√
5 − (−1)r+1 in (4)

for r ∈ N we get that:

M
(
[4(α2r + (−1)r+1)]−1

)
=

∞∑
n=1

1

4n(α2r + (−1)r+1)

(
2n

n

)
Hn =

∞∑
n=1

1

4n(αrFr

√
5)n

(
2n

n

)
Hn

=
∞∑
n=1

1

(4
√
5)nαrnF n

r

(
2n

n

)
Hn.

Notice, √
1− 1

α2r + (−1)r+1
=

√
α2r + (−1)r+1 − 1

α2r + (−1)r+1
=

√
αrFr

√
5− 1

αrFr

√
5

.

Thus, upon substitution we have
∞∑
n=1

1

(4
√
5)nαrnF n

r

(
2n

n

)
Hn =

2
√

αrFr

√
5√

αrFr

√
5− 1

ln

(√
αrFr

√
5 +

√
αrFr

√
5− 1

2
√
αrFr

√
5− 1

)
(6)

Evaluation at r = 1, 2, 3 in (6) gives:
∞∑
n=1

1

(22
√
5)nαn

(
2n

n

)
Hn =

2
√
α
√
5√

α
√
5− 1

ln

(√
α
√
5 +

√
α
√
5− 1

2
√
α
√
5− 1

)
(7)

∞∑
n=1

1

(22
√
5)nα2n

(
2n

n

)
Hn =

2α 4
√
5√

α2
√
5− 1

ln

(
α 4
√
5 +

√
α2

√
5− 1

2
√

α2
√
5− 1

)
(8)

∞∑
n=1

1

(23
√
5)nα3n

(
2n

n

)
Hn =

2
√
2
√

α3
√
5√

2α3
√
5− 1

ln

(√
2α3

√
5 +

√
2α3

√
5− 1

2
√

2α3
√
5− 1

)
(9)

Also from (6), by replacing r with 2r we get,
∞∑
n=1

1

(4
√
5)nα2rnF n

2r

(
2n

n

)
Hn =

2αr
√

F2r

√
5√

α2rF2r

√
5− 1

ln

(
αr
√

F2r

√
5 +

√
α2rF2r

√
5− 1

2
√
α2rF2r

√
5− 1

)
(10)

In this paper, by exploiting M (x) in (4), we shall produce more interesting results. To ensure
accuracy, all formulas appearing in this paper were numerically verified by Mathematica 13.3.

2 Main theorems

Theorem 2.1. If r is a natural number, then
∞∑
n=1

1

4nαrnLn
r

(
2n

n

)
Hn =

2
√
αrLr√

αrLr − 1
ln

(√
αrLr +

√
αrLr − 1

2
√
αrLr − 1

)
(11)

Proof. Setting x =
1

4(α2r + (−1)r)
in (4) and using (5) (the second identity from the list of

consequences from Binet’s formula in the Introduction), the result follows immediately.
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Example 2.1. Evaluation at r = 1, 2, 3 in (11), gives:
∞∑
n=1

1

4nαn

(
2n

n

)
Hn =

2
√
α√

α− 1
ln

(√
α +

√
α− 1

2
√
α− 1

)
, (12)

∞∑
n=1

1

12nα2n

(
2n

n

)
Hn =

2α
√
3√

3α2 − 1
ln

(
α
√
3 +

√
3α2 − 1

2
√
3α2 − 1

)
, (13)

∞∑
n=1

1

16nα3n

(
2n

n

)
Hn =

4
√
α3

√
4α3 − 1

ln

(
2
√
α3 +

√
4α3 − 1

2
√
4α3 − 1

)
. (14)

Corollary 2.1. If r is a natural number, then
∞∑
n=1

1

4nα2rnLn
2r

(
2n

n

)
Hn =

2αr
√
L2r√

α2rL2r − 1
ln

(
αr

√
L2r +

√
α2rL2r − 1

2
√
α2rL2r − 1

)
. (15)

Proof. Replace r with 2r in (11), and the proof follows.

Theorem 2.2. If r > 0 is a non-negative integer, then
∞∑
n=1

1

4nαrnLn
r

(
2n

n

)
(H2n−Hn)=−

√
αrLr√

αrLr−1
ln

(√
αrLr +

√
αrLr−1

2
√
αrLr

)
, (16)

∞∑
n=1

1

(4
√
5)nαrnF n

r

(
2n

n

)
(H2n−Hn)=−

√
αrFr

√
5√

αrFr

√
5−1

ln

(√
αrFr

√
5 +

√
αrFr

√
5−1

2
√
αrFr

√
5

)
. (17)

Proof. Before we establish the identities above, we shall establish a generating function for the
sequence

(
2n
n

)
(H2n −Hn) in the manner of [4]. Observe that:

∞∑
n=1

(
2n

n

)
(H2n −Hn)x

n =
∞∑
n=1

n∑
k=1

1

k

(
2n− k

n

)
xn =

∞∑
k=1

1

k

{
∞∑
n=k

(
2n− k

n

)
xn

}

By setting (n = m+ k), we have that:
∞∑
k=1

1

k

{
∞∑
n=k

(
2n− k

n

)
xn

}
=

∞∑
k=1

∞∑
m=0

(
2m+ k

m+ k

)
xm+k

=
∞∑
k=1

xk

k

{
∞∑

m=0

(
2m+ k

m

)
xm

}
Since, (from [ [6], p.203])

∞∑
m=0

(
2m+ k

m

)
ϑm =

1√
1− 4ϑ

(
1−

√
1− 4ϑ

2ϑ

)k

, |ϑ| < 1/4

Thus, we have that
∞∑
n=1

(
2n

n

)
(H2n−Hn)x

n =
1√

1−4x

∞∑
k=1

1

k

(
1−

√
1−4x

2

)k

= − 1√
1−4x

ln

(
1−

√
1−4x

2

)
. (18)

Now set x =
1

4(α2r + (−1)r+1)
and x =

1

4(α2r + (−1)r)
in (18), then (17) and (16) follows

directly.
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Example 2.2. Evaluation at r = 1, 2, 3 in (16) and (17), respectively, gives
∞∑
n=1

1

4nαn

(
2n

n

)
(H2n −Hn) = −

√
α√

α− 1
ln

(√
α +

√
α− 1

2
√
α

)
(19)

∞∑
n=1

1

12nα2n

(
2n

n

)
(H2n −Hn) = − α

√
3√

3α2 − 1
ln

(
α
√
3 +

√
3α2 − 1

2α
√
3

)
(20)

∞∑
n=1

1

16nα3n

(
2n

n

)
(H2n −Hn) = − 2

√
α3

√
4α3 − 1

ln

(
2
√
α3 +

√
4α3 − 1

4
√
α3

)
(21)

∞∑
n=1

1

(4
√
5)nαn

(
2n

n

)
(H2n −Hn) = −

√
α
√
5√

α
√
5− 1

ln

(√
α
√
5 +

√
α
√
5− 1

2
√

α
√
5

)
(22)

∞∑
n=1

1

(4
√
5)nα2n

(
2n

n

)
(H2n −Hn) = − α 4

√
5√

α2
√
5− 1

ln

(
α 4
√
5 +

√
α2

√
5− 1

2α 4
√
5

)
(23)

∞∑
n=1

1

(8
√
5)nα3n

(
2n

n

)
(H2n −Hn) = −

√
2
√

α3
√
5√

α32
√
5− 1

ln

(√
2
√
α3

√
5 +

√
α32

√
5− 1

2
√
2
√
α3

√
5

)
(24)

The following identity connects Catalan numbers, harmonic numbers, to Apery’s constant.

Theorem 2.3. Let Cn be the n-th Catalan’s number, ζ(s) =
∞∑
n=1

1

ns
, provided ℜ(s) > 1 and

n!! :=

⌈n
2
⌉−1∏

k=0

(n− 2k) :=



n
2∏

k=1

(2k), if n is even,

n+1
2∏

k=1

(2k − 1), if n is odd.

Then,
∞∑
n=1

Cn(H2n − 1
2
Hn)

4n(2n+ 1)

(
π

2
− (2n)!!

(2n+ 1)!!

)
= 2 ln(2) +

7

8
ζ(3) +

π

12
(−12 + π(−1 + ln(8))).

Proof. From [4] we have that:
∞∑
n=1

(
2n

n

)
(H2n −

1

2
Hn)x

n = − 1√
1− 4x

ln
√
1− 4x

Immediately we see that:
∞∑
n=1

Cn(H2n −
1

2
Hn)x

n =
1

2x
(1−

√
1− 4x+

√
1− 4x ln

√
1− 4x), |x| < 1/4

For the interesting part, set x =
1

4
sin2 t for t ∈ (−π/2, π/2). Then we have that:

∞∑
n=1

Cn(H2n − 1
2
Hn)

4n
sin2n t =

2

sin2 t
(1− cos t+ cos t ln cos t). (25)
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Now multiply (25) by t cos t and integrating both sides from 0 to π/2. We have:
∞∑
n=1

Cn(H2n − 1
2
Hn)

4n

∫ π
2

0

t cos t sin2n t dt = 2

∫ π
2

0

t cos t

sin2 t
(1− cos t+ cos t ln cos t) dx

Thus, we evaluated the integral on the right hand side to ln 2+
π

24
(−12 + π(−1 + ln 8))+

7

16
ζ(3)

and using integration by part for the integral on the left we have that:∫ π
2

0

t cos t

sin2 t
(1− cos t+ cos t ln cos t) dt = ln 2 +

π

24
(−12 + π(−1 + ln 8)) +

7

16
ζ(3),∫ π

2

0

t cos t sin2n t dt =
1

2n+ 1

(
π

2
− (2n)!!

(2n+ 1)!!

)
.

So the result follows immediately.

In the next theorem, we present two new Ramanujan-like series involving harmonic numbers.

Theorem 2.4. For the Catalan’s constant G,
∞∑
n=1

Cn(H2n −Hn)

42n

(
2n+ 2

n+ 1

)
=

16

π
(2G+ π − 2− ln 2− π ln 2) ,

∞∑
n=1

CnH2n

16n

(
2n

n

)
=

2

π
(2 + π − 2 ln 8) .

Proof. Integrating both sides of (18) with respect to x, we obtain the generating function for the
sequence Cn(H2n −Hn) as follows:

∞∑
n=1

Cn(H2n −Hn)x
n =

1

2x

[
(1−

√
1− 4x) + (1 +

√
1− 4x) ln

(
1 +

√
1− 4x

2

)]
(26)

Likewise, from [1] we have that:
∞∑
n=1

(
2n

n

)
H2nx

n =
1√

1− 4x

[
ln

(
1 +

√
1− 4x

2

)
− 2 ln

√
1− 4x

]
(27)

For this reason, integrating both sides of (27) we have that,
∞∑
n=1

CnH2nx
n =

1

2x
[(1−

√
1− 4x)−(1+

√
1− 4x) ln(1+

√
1− 4x)+ln 2+

√
1− 4x ln(2−8x)]

(28)

Now set x =
sin2 t

4
in (26) and (28) and integrating both sides with respect to x from 0 to π/2,

while using the following results:∫ π
2

0

{
(1− cos t) + (1 + cos t) ln

(
1 + cos t

2

)}
dt = 2G+ π − 2− ln 2− π ln 2,∫ π

2

0

2

sin2 t

[
(1− cos t)− (1 + cos t) ln(1 + cos t) + ln 2 + cos t ln(2 cos2 t)

]
dt = 2+π−2 ln 8,

and ∫ π
2

0

sin2n t dt =
π

2

(2n)!

4n(n!)2
.

Then the series follows directly.
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The next result provides a new series representation for the Basel sum, whose value was first
determined by Leonhard Euler in 1734.

Theorem 2.5. For ζ(s) =
∞∑
n=1

1

ns
, provided ℜ(s) > 1, we have that,

ζ(2) =
∞∑
n=1

1024n

3(2n− 1)2(2n+ 1)(2n+ 3)2

(
2n
n

)(
2n+2
n+1

) .
Proof. From [3], we have that:

∞∑
n=1

nx2n

4n(2n− 1)2(2n+ 1)

(
2n

n

)
=

1

8

(√
1− x2 + 2x sin−1 x− sin−1 x

x

)
. (29)

Next we multiply (29) by x2 and integrate both sides with respect to x to get:

∞∑
n=1

nx2n+3

4n(2n− 1)2(2n+ 1)(2n+ 3)

(
2n

n

)
=

(8x4 − 8x2 + 3) sin−1 x+
√
1− x2(6x3 − 3x)

128

(30)
which converges for x ∈ [−1, 1]. Now, we set x = sin t in (30) and integrate over the interval 0
to π/2. The result follows.

We present a Ramanujan-like series involving the ratio of the Catalan’s constant G and π.

Theorem 2.6. For the Catalan’s constant G and π, we have that,

∞∑
n=1

n2

16n(2n− 1)2(2n+ 1)

(
2n

n

)2

=
G

4π
+

1

8π

Proof. We begin by differentiating (29) with respect to x to get,

∞∑
n=1

2n2x2n−1

4n(2n− 1)2(2n+ 1)

(
2n

n

)
=

1

8x2

(
(2x2 + 1) sin−1 x− x

√
1− x2

)
. (31)

Now we multiply (31) by x and set x = sin t, then we integrate both sides over the interval 0
to π/2. Finally, using the result:∫ π

2

0

t(2 sin2 t+ 1)− sin t cos t

sin t
dt =

∫ π
2

0

(2t sin t− cos t) dt+

∫ π
2

0

t

sin t
dt = 1 + 2G,

the series follows immediately.
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3 Some interesting series

Observe that the series in (26) converges on [−1/4, 1/4). Setting x = −1/8, 1/16 and −1/16,
respectively, we obtain the following series:

∞∑
n=1

(−1)nCn

8n
(H2n −Hn) = − 4√

2

[
(
√
2−

√
3) + (

√
2 +

√
3) ln

(√
2 +

√
3

2
√
2

)]
, (32)

∞∑
n=1

Cn

16n
(H2n −Hn) = 4

[
(2−

√
3) + (2 +

√
3) ln

(
2 +

√
3

4

)]
, (33)

∞∑
n=1

(−1)nCn

16n
(H2n −Hn) = −4

[
(2−

√
5) + (2 +

√
5) ln

(
2 +

√
5

4

)]
. (34)

In a similar manner, recall from (30) that it converges on [−1, 1]. By setting x = 1 and x = −1,
respectively, we obtain two interesting series:

∞∑
n=1

n

4n(2n− 1)2(2n+ 1)(2n+ 3)

(
2n

n

)
=

3π

256
, (35)

∞∑
n=1

(−1)2n+3n

4n(2n− 1)2(2n+ 1)(2n+ 3)

(
2n

n

)
=

−3π

256
. (36)

From (31) we have:
∞∑
n=1

n2

4n(2n− 1)2(2n+ 1)

(
2n

n

)
=

3π

32
. (37)

Also, from (18) we get that:
∞∑
n=1

H2n −Hn

8n

(
2n

n

)
= −

√
2 ln

(√
2− 1

2
√
2

)
, (38)

∞∑
n=1

H2n −Hn

16n

(
2n

n

)
= − 2√

3
ln

(
2−

√
3

2
√
2

)
, (39)

∞∑
n=1

Cn

8n

(
H2n −

1

2
Hn

)
= 4

(
1− 1√

2
− ln 2

2
√
2

)
, (40)

∞∑
n=1

Cn

16n

(
H2n −

1

2
Hn

)
= 8

(
1−

√
3

2
+

√
3

2
ln

√
3

2

)
. (41)

4 Conclusion

In this paper we presented new closed forms for some types of series involving the central
binomial coefficients

(
2n
n

)
. To prove our results, we used some generating functions, combined

with basic differentiation and integration. Using similar techniques, we established series
evaluations involving Harmonic numbers with Fibonacci and Lucas sequences. In addition,
readers can exploit (29), (30) and (31) to generate more exotic series. To assure accuracy of
the results, we verified all the series via Mathematica 13.3.
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