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1 Introduction

Behera and Panda [1] introduced the concept of balancing numbers. In particular, a natural
number n is a balancing number if it is a solution of the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) ,

for some natural number r, called the balancer corresponding to n. If n is a balancing number,
8n2 + 1 is a perfect square and its square root is called a Lucas-balancing number.

In [7], Panda introduced the Lucas-balancing numbers Cn the form of Cn =
√
8B2

n + 1,
where Bn is called the balancing number of order n. The recurrence relation for the balancing
numbers is

Bn+2 = 6Bn+1 −Bn, (1)

with initial conditions B0 = 0 and B1 = 1. In the case of Lucas-balancing numbers {Cn}n≥0, the
recurrence relation is

Cn+2 = 6Cn+1 − Cn, (2)

with initial conditions C0 = 1 and C1 = 3.

Remark 1.1. The recurrence relation of the balancing numbers is the same as that of the Lucas-
balancing numbers, but differs in its initial conditions.

These two numerical sequences defined above are in The On-Line Encyclopedia of Integers
Sequences® (OEIS®) [11], namely, A001109 for balancing numbers and A001541 for Lucas-
balancing numbers, and the following Table 1 gives us their first few elements. Some detailed
studies on these numbers are also available at [4–6, 8–10].

Table 1. Some first element of the sequences {Bn}n≥0 and {Cn}n≥0

n 0 1 2 3 4 5 6 7 8 9

Bn 0 1 6 35 204 1189 6930 40391 235416 1372105

Cn 1 3 17 99 577 3363 19601 114243 665857 3880899

In this paper, our purpose is to introduce and study tridimensional Lucas-balancing numbers,
as well as some of their properties and sum identities.

2 Tridimensional Lucas-balancing numbers

In this section, we introduce the tridimensional version of these numbers, based on the studies
in [3]. Consider following definition:
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Definition 2.1. For n, m and p any non-negative integers, the numbers C(n,m,p) represent the
tridimensional Lucas-balancing numbers that satisfy the following recurrence relations:

C(n+1,m,p) = 6C(n,m,p) − C(n−1,m,p),

C(n,m+1,p) = 6C(n,m,p) − C(n,m−1,p),

C(n,m,p+1) = 6C(n,m,p) − C(n,m,p−1),

with the initial conditions C(0,0,0) = 1, C(1,0,0) = 3, C(0,1,0) = C(0,0,1) = 1+i, C(1,1,0) = C(1,0,1) =

3 + i, C(0,1,1) = 1 + 2i, C(1,1,1) = 3 + 2i and i2 = −1.

In the following, we will present some properties related with tridimensional Lucas-balancing
numbers.

2.1 Some properties of tridimensional Lucas-balancing numbers

In this subsection, we state some properties of tridimensional Lucas-balancing numbers involving
balancing and Lucas-balancing numbers in unidimensional version.

Lemma 2.1. Let Bj and Cj be the balancing and Lucas-balancing numbers of order j, respectively.
Then the following properties are valid for tridimensional Lucas-balancing numbers:

1. C(n,0,0) = Cn;

2. C(0,m,0) = C(0,0,m) = (Bm −Bm−1) +Bmi;

3. C(n,1,0) = C(n,0,1) = Cn + (Bn −Bn−1) i;

4. C(n,1,1) = Cn + 2 (Bn −Bn−1) i;

5. C(1,m,0) = C(1,0,m) = 3 (Bm −Bm−1) +Bmi;

6. C(0,m,1) = C(0,1,m) = (Bm −Bm−1) + (2Bm −Bm−1) i;

7. C(1,m,1) = C(1,1,m) = 3 (Bm −Bm−1) + (2Bm −Bm−1) i;

8. C(n,m,0) = C(n,0,m) = Cn (Bm −Bm−1) + (Bn −Bn−1)Bmi;

9. C(0,m,p) = (Bm −Bm−1) (Bp −Bp−1) +
(
Bm (Bp −Bp−1) + (Bm −Bm−1)Bp

)
i;

10. C(n,m,1) = C(n,1,m) = Cn (Bm −Bm−1) + (Bn −Bn−1) (2Bm −Bm−1) i;

11. C(1,m,p) = 3 (Bm −Bm−1) (Bp −Bp−1) +
(
Bm (Bp −Bp−1) + (Bm −Bm−1)Bp

)
i.

Proof.

• 1. The proof is performed by induction on n.

For n = 0 and given the value of C0 in Table 1 and given one of the initial conditions of the
sequence {C(n,m,p)}n,m,p≥0 we have that C(0,0,0) = 1 = C0 and the Lemma is true.

For n = 1 and considering that C1 = 3 in Table 1 and taking into account one of the initial
conditions of sequence {C(n,m,p)}n,m,p≥0 we have that C(1,0,0) = 3 = C1 and the Lemma is
also true.

Suppose that the proposition is true for all integer k ≤ n. Let us show that it remains true
for n+ 1.
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Then, by the first recurrence relation of Definition 2.1, the induction hypothesis and by (2),
we get

C(n+1,0,0) = 6C(n,0,0) − C(n−1,0,0)

= 6Cn − Cn−1

= Cn+1,

which completes the proof of item 1.

• 2. The proof is done once more by induction, now on m.

Let us first prove that C(0,m,0) = C(0,0,m).

For m = 0 and taking into account the first initial conditional of the sequence {C(n,m,p)}n,m,p≥0

we have that C(0,0,0) = 1 and the equality is true.

For m = 1 and taking into account the third initial conditional of the sequence {C(n,m,p)}n,m,p≥0

we have that C(0,1,0) = 1 + i = C(0,0,1) and the equality is also true.

Suppose that C(0,k,0) = C(0,0,k) for any integer k ≤ n. We want to show that this is still true
for m+ 1.

Then, by second and third recurrence relation of Definition 2.1, we get
C(0,m+1,0) = 6C(0,m,0) − C(0,m−1,0)

= 6C(0,0,m) − C(0,0,m−1)

= C(0,0,m+1),

which shows that C(0,m,0) = C(0,0,m).

We will now prove that C(0,0,m) = (Bm −Bm−1) +Bmi.

For m = 0 and taking into account the values of B0 and B−1 = −B1 in [3] and Table 1
and considering one of the initial conditions of the sequence {C(n,m,p)}n,m,p≥0 we have that
C(0,0,0) = 1 = (B0 −B−1) +B0i and the Lemma is valid.

For m = 1 and, once again, considering the values of B0 and B1 in Table 1 and also taking
into account one of the initial conditions of the sequence {C(n,m,p)}n,m,p≥0 we have that
C(0,0,1) = 1 + i = (B1 −B0) +B1i and the Lemma is also valid.

Suppose that C(0,0,m) = (Bm −Bm−1) + Bm is valid for any integer less than or equal to
m and let us prove that it remains true for m+ 1.

Then, using the third recurrence relation of Definition 2.1, the induction hypothesis, and by
(1),

C(0,0,m+1) = 6C(0,0,m) − C(0,0,m−1)

= 6
(
(Bm −Bm−1) +Bmi

)
−
(
(Bm−1 −Bm−2) +Bm−1i

)
= 6 (Bm −Bm−1) + 6Bmi− (Bm−1 −Bm−2)−Bm−1i

=
(
(6Bm −Bm−1)− (6Bm−1 −Bm−2)

)
+(6Bm −Bm−1) i

= (Bm+1 −Bm) +Bm+1i,

which is true.

By the transitivity of the equality relation, item 2 is proven.
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• 3. The proof is performed by induction on n.

Let us start by proving that C(n,1,0) = C(n,0,1).

For n = 0 and given the third initial conditional of the sequence {C(n,m,p)}n,m,p≥0 we have
that C(0,1,0) = 1 + i = C(0,0,1) and the equality holds.

For n = 1 and considering the fourth initial conditional of the sequence {C(n,m,p)}n,m,p≥0

we have that C(1,1,0) = 3 + i = C(1,0,1) and equality also holds.

Suppose that C(k,1,0) = C(k,0,1) for all integers k ≤ n. Then we want to show that this
remains true for n+ 1.

Then, applying first recurrence relation of Definition 2.1 and by the induction hypothesis,
we get

C(n+1,1,0) = 6C(n,1,0) − C(n−1,1,0)

= 6C(n,0,1) − C(n−1,0,1)

= C(n+1,0,1),

and the equality C(n,1,0) = C(n,0,1) is verified.

Let us now prove that C(n,0,1) = Cn + (Bn −Bn−1) i.

For n = 0 and given that B0 = 0 and B−1 = −B1 in Table 1 and given one of the
initial conditions of the sequence {C(n,m,p)}n,m,p≥0 we have that C(0,0,1) = 1 + i = C0 +

(B0 −B−1) i, which is verified.

For n = 1 and, once again, considering the values of C1, B0 and B1 and also one of the
initial conditions of sequence {C(n,m,p)}n,m,p≥0 we have that C(1,0,1) = 3 + i = C1 +

(B1 −B0) i which is also verified.

Suppose that the statement is true for all values less than or equal to n. Let us show that it
is still true for n+ 1:

Then, by the first recurrence relation of Definition 2.1, the induction hypothesis, and by (1),
we obtain

C(n+1,0,1) = 6C(n,0,1) − C(n−1,0,1)

= 6
(
Cn + (Bn −Bn−1) i

)
−
(
Cn−1 + (Bn−1 −Bn−2) i

)
= 6Cn + 6 (Bn −Bn−1) i− Cn−1 − (Bn−1 −Bn−2) i

= (6Cn − Cn−1) + (6Bn −Bn−1) i− (6Bn−1 −Bn−2) i

= Cn+1 + (Bn+1 −Bn) i,

which is valid.

Since the equality relation is transitive, the item 3 is proven.

• 4. The proof is carried out by induction on n.

For n = 0 and given that C0 = 1, B0 = 0 and B−1 = −B1 in [3] or Table 1 and one
of the initial conditions of sequence {C(n,m,p)}n,m,p≥0 we have that C(0,1,1) = 1 + 2i =

C0 + 2 (B0 −B−1) i and the proposition is verified.
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For n = 1 and given the values of C1 and B1 in Table 1 and also one of the initial conditions
of sequence {C(n,m,p)}n,m,p≥0 we have that C(1,1,1) = 3 + 2i = C1 + 2 (B1 −B0) i and the
proposition also is verified.

Suppose that the proposition is true for any integer k ≤ n and let us prove that it remains
true for n+ 1.

Then, by the first recurrence relation of Definition 2.1, by the induction hypothesis and by
the recurrence relation (1), we get

C(n+1,1,1) = 6C(n,1,1) − C(n−1,1,1)

= 6
(
Cn + 2 (Bn −Bn−1) i

)
−
(
Cn−1 + 2 (Bn−1 −Bn−2) i

)
= 6Cn + 12 (Bn −Bn−1) i− Cn−1 − 2 (Bn−1 −Bn−2) i

= (6Cn − Cn−1) + 2
(
(6Bn −Bn−1) i− (6Bn−1 −Bn−2)

)
i

= Cn+1 + 2 (Bn+1 −Bn) i,

so the property 4 is verified.

• As the results of items 5, 6 and 7 are similar to the previous ones (items 2 and 3), we have
omitted the respective proofs.

• 8. The proof is first done by induction on m and n is fixed.

First of all, let us prove that C(n,m,0) = C(n,0,m).

For m = 0 and considering item 1 of Lemma 2.1 we have that C(n,0,0) = Cn = C(n,0,0),

which is true.

For m = 1 and taking into account Lemma 2.1, item 3, we have that C(n,1,0) = Cn +

(Bn −Bn−1) i = C(n,0,1), which is also true.

Suppose that C(n,k,0) = C(n,0,k) for all integers k ≤ m and we want to show that this
remains true for m+ 1.

Hence, using the second recurrence relation from Definition 2.1 and the induction
hypothesis, we get

C(n,m+1,0) = 6C(n,m,0) − C(n,m−1,0)

= 6C(n,0,m) − C(n,0,m−1)

= C(n,0,m+1),

and the equality C(n,m+1,0) = C(n,0,m+1) is valid.

For the second equality, we are going to proceed again by induction on m with fixed n.

For m = 0, we get Cn(B0 −B−1) + (Bn −Bn−1)B0i = Cn = C(n,0,0), which is true.

For m = 1, we obtain Cn(B1−B0)+ (Bn−Bn−1)B1i = Cn+(Bn−Bn−1)i = C(n,1,0) =

C(n,0,1), which is also true.

Suppose that C(n,0,k) = Cn(Bk − Bk−1) + (Bn − Bn−1)Bki for all integers k ≤ m and we
are going to show that the second identity is still true for m+ 1.
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Hence, applying the third recurrence relation from Definition 2.1 together with the induction
hypothesis, we obtain

C(n,0,m+1) = 6C(n,0,m) − C(n,0,m−1)

= 6
(
Cn(Bm −Bm−1) + (Bn −Bn−1)Bmi

)
−
(
Cn(Bm−1 −Bm−2) + (Bn −Bn−1)Bm−1i

)
= Cn

(
6(Bm −Bm−1) + (Bm−1 −Bm−2)

)
+ (Bn −Bn−1)(6Bm −Bm−1)i

= Cn(6Bm − 6Bm−1 −Bm−1 +Bm−2) + (Bn −Bn−1)Bm+1i

= Cn

(
(6Bm −Bm−1)− (6Bm−1 −Bm−2)

)
+ (Bn −Bn−1)Bm+1i

= Cn(Bm+1 −Bm) + (Bn −Bn−1)Bm+1i,

which holds true.

Now let us perform induction on n.

Let us prove that C(n,0,m) = Cn(Bm −Bm−1) + (Bn −Bn−1)Bmi, for m fixed.

For n = 0, we have C(0,0,m) = C0(Bm − Bm−1) + (B0 − B−1)Bmi = 1(Bm − Bm−1) +

(0− (−1))Bmi = (Bm −Bm−1) +Bmi = C(0,m,0), and this is true.

For n = 1, we obtain C(1,0,m) = C1(Bm − Bm−1) + (B1 − B0)Bmi = 3(Bm − Bm−1) +

(1− 0)Bmi = 3(Bm −Bm−1) +Bmi = C(1,m,0), and this is also true.

Suppose that C(k,0,m) = Ck(Bm−Bm−1)+ (Bk −Bk−1)Bmi is true for any integers k ≤ n

and we will show that it will be valid for n+ 1.

Therefore, by Definition 2.1, the first recurrence, and by the induction hypothesis, we get

C(n+1,0,m) = 6C(n,0,m) − C(n−1,0,m)

= 6
(
Cn(Bm −Bm−1) + (Bn −Bn−1)Bmi

)
−
(
Cn−1(Bm −Bm−1) + (Bn−1 −Bn−2)Bmi

)
= (Bm −Bm−1)(6Cn − Cn−1) +

(
(6Bn −Bn−1)− (Bn−1 −Bn−2)

)
Bmi

= (Bm −Bm−1)Cn+1 +
(
(6Bn −Bn−1)− (6Bn−1 −Bn−2)

)
Bmi

= Cn+1(Bm −Bm−1) + (Bn+1 −Bn)Bmi,

which is true. Now, by the law of transitivity, item 8 is also proven.

• As the proof of items 9, 10 and 11 is also done like the proof of the previous result, we
omitted the respective proofs.

The following theorem allows us to determine the element C(n,m,p), for any non-negative
integers n, m and p, in terms of Lucas-balancing numbers.
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Theorem 2.1. For the non-negative integers m, n and p, the tridimensional Lucas-balancing
numbers are defined in the form:

C(n,m,p) = Cn (Bm−Bm−1) (Bp−Bp−1)+ (Bn−Bn−1)
(
Bm (Bp−Bp−1)+ (Bm −Bm−1)Bp

)
i.

Proof. Let us start doing the induction on p, fixing n and m.
For p = 0 and, given the values of B0 and B−1 = −B1 in Table 1 and in [3], and by item 8 of

Lemma 2.1, we have that

C(n,m,0) = Cn (Bm −Bm−1) + (Bn −Bn−1)Bmi

= Cn (Bm −Bm−1) (B0 −B−1) + (Bn −Bn−1)
(
Bm (B0 −B−1) + (Bm −Bm−1)B0

)
i,

and the equality holds.
For p = 1 and again, given the values of B0 = 0 and B1 = 1 in Table 1 and by Lemma 2.1,

item 10, we have that

C(n,m,1) = Cn (Bm −Bm−1) + (Bn −Bn−1) (2Bm −Bm−1) i

= Cn (Bm −Bm−1) (B1 −B0) + (Bn −Bn−1)
(
Bm (B1 −B0) + (Bm −Bm−1)B1

)
i,

which is true.
Suppose that the theorem is true for any non-negative integer k ≤ p and let us show that it is

still true for p + 1. Then, applying the third recurrence relation of Definition 2.1, the induction
hypothesis and by (1), we obtain

C(n,m,p+1) = 6C(n,m,p) − C(n,m,p−1)

= 6
(
Cn (Bm −Bm−1) (Bp −Bp−1)

+ (Bn −Bn−1)
(
Bm (Bp −Bp−1) + (Bm −Bm−1)Bp

)
i
)

−
(
Cn (Bm −Bm−1) (Bp−1 −Bp−2)

+ (Bn −Bn−1)
(
Bm (Bp−1 −Bp−2) + (Bm −Bm−1)Bp−1

)
i
)

= 6Cn (Bm −Bm−1) (Bp −Bp−1)

+ (Bn −Bn−1)
(
Bm (Bp−1 −Bp−2) + (Bm −Bm−1)Bp−1

)
i
)

= 6Cn (Bm −Bm−1) (Bp −Bp−1)

+ 6 (Bn −Bn−1)
(
Bm (Bp −Bp−1) + (Bm −Bm−1)Bp

)
i

− Cn (Bm −Bm−1) (Bp−1 −Bp−2)

− (Bn −Bn−1)
(
Bm (Bp−1 −Bp−2) + (Bm −Bm−1)Bp−1

)
i

= Cn (Bm −Bm−1)
(
(6Bp −Bp−1)− (6Bp−1 −Bp−2)

)
+ (Bn −Bn−1)

(
Bm

(
(6Bp −Bp−1)− (6Bp−1 −Bp−2)

)
+ (Bm −Bm−1) (6Bp −Bp−1)

)
i

= Cn (Bm −Bm−1) (Bp+1 −Bp)

+ (Bn −Bn−1)
(
Bm (Bp+1 −Bp) + (Bm −Bm−1)Bp+1

)
i,

as we wanted to prove.
Following the same reasoning used for induction on p, the result also holds for induction on

m and n, when n and p are fixed, and m and p are fixed, respectively. Therefore, the theorem is
true.
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2.2 Some sum identities of tridimensional Lucas-balancing numbers

In this subsection, we will study some identities of this tridimensional Lucas-balancing numbers,
using certain properties that are inherent to it.

Identity 2.2.1. The sum of the first p numbers C(n,m,s) of an odd index s is given by:

p∑
q=1

C(n,m,2q−1) =
(
Cn (Bm −Bm−1) + (Bn −Bn−1)Bmi

) (
B2

p −BpBp+1 +B2p

)
+ (Bn −Bn−1) (Bm −Bm−1)B

2
pi.

Proof. Using Theorem 2.1, we have

p∑
q=1

C(n,m,2q−1) =

p∑
q=1

(
Cn (Bm −Bm−1) (B2q−1 −B2q−2)

+ (Bn −Bn−1) (Bm (B2q−1 −B2q−2) + (Bm −Bm−1)B2q−1) i
)
.

Thus,

p∑
q=1

B(n,m,2q−1) = Cn (Bm −Bm−1)

p∑
q=1

(B2q−1 −B2q−2)

+ (Bn −Bn−1)

(
Bm

p∑
q=1

(B2q−1 −B2q−2) + (Bm −Bm−1)

p∑
q=1

B2q−1

)
i

= Cn (Bm −Bm−1)

(
p∑

q=1

B2q−1 −
p∑

q=1

B2q−2

)

+ (Bn −Bn−1)

(
Bm

(
p∑

q=1

B2q−1 −
p∑

q=1

B2q−2

)
+ (Bm −Bm−1)

p∑
q=1

B2q−1

)
i

= Cn (Bm −Bm−1)

(
p∑

q=1

B2q−1 −

(
B0 +

p−1∑
q=1

B2q

))

+ (Bn −Bn−1)

(
Bm

(
p∑

q=1

B2q−1 −

(
B0 +

p−1∑
q=1

B2q

))

+ (Bm −Bm−1)

p∑
q=1

B2q−1

)
i

=
(
Cn (Bm −Bm−1) + (Bn −Bn−1)Bmi

)( p∑
q=1

B2q−1 −

(
B0 +

p−1∑
q=1

B2q

))

+ (Bn −Bn−1) (Bm −Bm−1)

p∑
q=1

B2q−1i.

Using items (a) and (b) of Corollary 2.3.6 from [10] and taking into account the value of B0 in
Table 1, the result follows.
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Identity 2.2.2. The sum of the first p numbers C(n,m,s) of an even index s can be described as
follows:

p∑
q=1

C(n,m,2q) =
(
Cn (Bm −Bm−1) + (Bn −Bn−1)Bmi

) (
BpBp+1 −B2

p

)
+ (Bn −Bn−1) (Bm −Bm−1)BpBp+1i.

Proof. Applying Theorem 2.1, we have

p∑
q=1

C(n,m,2q) =

p∑
q=1

(
Cn (Bm −Bm−1) (B2q −B2q−1)

+ (Bn −Bn−1) (Bm (B2q −B2q−1) + (Bm −Bm−1)B2q) i
)
.

Thus,

p∑
q=1

C(n,m,2q) = Cn (Bm −Bm−1)

p∑
q=1

(B2q −B2q−1)

+ (Bn −Bn−1)

(
Bm

p∑
q=1

(B2q −B2q−1) + (Bm −Bm−1)

p∑
q=1

B2q

)
i

= Cn (Bm −Bm−1)

(
p∑

q=1

B2q −
p∑

q=1

B2q−1

)

+ (Bn −Bn−1)

(
Bm

(
p∑

q=1

B2q −
p∑

q=1

B2q−1

)
+ (Bm −Bm−1)

p∑
q=1

B2q

)
i.

The result follows, by Corollary 2.3.6, items (b) and (a) in [10].

Identity 2.2.3. The sum of the first p numbers B(n,m,s), with index s being a non-negative integer,
can be described as follows:

p∑
q=1

C(n,m,q) = Cn (Bm −Bm−1)Bp

+
1

4
(Bn −Bn−1)

(
4BmBp + (Bm −Bm−1) (Bp+1 −Bp − 1)

)
i.

Proof. By Theorem 2.1, we have

p∑
q=1

C(n,m,q) =

p∑
q=1

(
Cn (Bm −Bm−1) (Bq −Bq−1)

+ (Bn −Bn−1) (Bm (Bq −Bq−1) + (Bm −Bm−1)Bq) i
)
.
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Thus,
p∑

q=1

C(n,m,q) = Cn (Bm −Bm−1)

p∑
q=1

(Bq −Bq−1)

+ (Bn −Bn−1)

(
Bm

p∑
q=1

(Bq −Bq−1) + (Bm −Bm−1)

p∑
q=1

Bq

)
i

= Cn (Bm −Bm−1)

(
p∑

q=1

Bq −
p∑

q=1

Bq−1

)

+ (Bn −Bn−1)

(
Bm

(
p∑

q=1

Bq −
p∑

q=1

Bq−1

)
+ (Bm −Bm−1)

p∑
q=1

Bq

)
i

= Cn (Bm −Bm−1)

(
p∑

q=1

Bq −

(
B0 +

p−1∑
q=1

Bq

))

+ (Bn −Bn−1)

(
Bm

(
p∑

q=1

Bq −

(
B0 +

p−1∑
q=1

Bq

))
+ (Bm −Bm−1)

p∑
q=1

Bq

)
i.

The result follows by Proposition 2.6, item 6 in [2] and given the values of B0 in Table 1.

The following results in Identities 2.2.4 to 2.2.9 refer to the tridimensional versions of the
Lucas-balancing numbers. Identities 2.2.4, 2.2.5, and 2.2.6 are done by induction on m, while
identities 2.2.7 to 2.2.9 are done by induction on n. For the proofs of the next three identities, we
can apply Proposition 2.3, items 5 and 4 from [3] and use the fact that B2

n = STn, where STn are
triangular numbers, and also Proposition 2.6, item 7 from [2].

As the proofs are similar to those in the previous case, so we omitted them here.

Identity 2.2.4. The sum of the first m numbers C(n,s,p) of an odd index s can be described by:

m∑
l=1

C(n,2l−1,p) =
(
Cn (Bp −Bp−1) + (Bn −Bn−1)Bpi

) (
B2

m −BmBm+1 −B2m

)
+ (Bn −Bn−1)B

2
m (Bp −Bp−1) i.

Identity 2.2.5. The sum of the first m numbers C(n,s,p) of an even index s is defined by:

m∑
l=1

C(n,2l,p) =
(
Cn (Bp −Bp−1) + (Bn −Bn−1)Bpi

) (
BmBm+1 −B2

m

)
+ (Bn −Bn−1)BmBm+1 (Bp −Bp−1) i.

Identity 2.2.6. The sum of the first m numbers C(n,s,p), with index s being a non-negative integer,
is given as follows:

m∑
l=1

C(n,2l,p) = BnBm (Bp −Bp−1)

+
1

4
(Bn −Bn−1)

(
(Bm+1 −Bm − 1) (Bp −Bp−1) + 4BmBp

)
i.
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Identity 2.2.7. The sum of the first n numbers B(s,m,p) of an odd index s is defined by:

n∑
k=1

C(2k−1,m,p) =
1

4

(
Cn+1 − Cn − 2B2

n+1 + 2B2
n + 4

)
(Bm −Bm−1) (Bp −Bp−1)

+
(
B2

n −BnBn+1 −B2n

)(
Bm (Bp −Bp−1) + (Bm −Bm−1)Bp

)
i.

Identity 2.2.8. The sum of the first n numbers C(s,m,p) of an even index s can be described by:

n∑
k=1

C(2k,m,p) =
1

2

(
B2

n+1 −B2
n − 1

)
(Bm −Bm−1) (Bp −Bp−1)

+
(
BnBn+1 −B2

n

)(
Bm (Bp −Bp−1) + (Bm −Bm−1)Bp

)
i.

Identity 2.2.9. The sum of the first n numbers C(s,m,p), with s being a non-negative integer, is
described as follows:

n∑
k=1

C(k,m,p) =
1

2
(Cn+1 − Cn + 2) (Bm −Bm−1) (Bp −Bp−1)

+Bn

(
Bm (Bp −Bp−1) + (Bm −Bm−1)Bp

)
i.

3 Conclusion

This paper is a continuation of the work on bidimensional versions of Lucas-balancing numbers.
We introduce the tridimensional recurrence relations of Lucas-balancing number and study some
of their properties, as well as some of their sum identities. The results presented in this manuscript
are considered as a contribution to the field of mathematics and offer an opportunity for researchers
interested in this topic of number sequences.
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