Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2025, Volume 31, Number 1, 15–26 DOI: 10.7546/nntdm.2025.31.1.15-26

A note on Chebyshev's theorem

A. Bërdëllima ^(D)

Faculty of Engineering, German International University in Berlin Am Borsigturm 162, 13507, Berlin, Germany e-mail: berdellima@gmail.com

Received: 16 May 2024 Accepted: 26 March 2025 Revised: 18 October 2024 Online First: 28 March 2025

Abstract: We revisit a classical theorem of Chebyshev about distribution of primes on intervals $(n, 2n), n \in \mathbb{N}$, and prove a generalization of it. Extending Erdős' arithmetical-combinatorial argument, we show that for all $k \in \mathbb{N}$, there is $n_k \in \mathbb{N}$ such that the intervals (kn, (k + 1)n) contain a prime for all $n \ge n_k$. A quantitative lower bound is derived for the number of primes on such intervals. We also give numerical upper bounds for n_k for $k \le 20$, and we draw comparisons with existing results in the literature.

Keywords: Bertrand's postulate, Chebyshev's theorem, Distribution of primes. **2020 Mathematics Subject Classification:** 11A41, 11-03.

1 Introduction

In 1845, J. Bertrand [3] conjectured that between n and 2n there is always a prime number for every $n \in \mathbb{N}$. This conjecture was solved completely by Chebyshev [19] in 1852, and it is commonly known as Chebyshev's Theorem.

Chebyshev's Theorem. For every $n > 1, n \in \mathbb{N}$ there is a prime on the interval (n, 2n).

Since then, other proofs of Chebyshev's Theorem appeared in the literature, most notably the proof by Ramanujan [12], who used properties of the gamma function, and the proof by Erdős [9], employing the prime factorization of binomial coefficients. Chebyshev's Theorem

Copyright © 2025 by the Author. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

can be obtained as a direct corollary of [18, Sylvester's Theorem], which states that the product of k consecutive integers greater than k is divisible by a prime greater than k. It follows from this by taking k = n, and considering the k numbers $n + 1, n + 2, \dots, n + k = 2n$, where n > 1. It is natural to consider the question of distribution of primes on intervals of the kind (kn, (k + 1)n) for $k \in \mathbb{N}$. In [10], Hanson has shown that there is a prime between 3n and 4n, while El Bachraoui [2] has shown that there is a prime between 2n and 3n for every n > 1. In a relatively recent work, [17], Shevelev et al. demonstrate that such a strong result as Chebyshev's theorem does not, in general, hold. They prove that the list of integers k for which (kn, (k+1)n)contains a prime for all n > 1 includes k = 1, 2, 3, 5, 9, 14, and no other, at least for $k \le 10^8$.

Motivated by Erdős' approach, we prove that for every $k \in \mathbb{N}$ and for all large enough $n \in \mathbb{N}$, there is a prime number on the intervals (kn, (k+1)n) (Theorem 2.1). While such an asymptotic result is an immediate consequence of the prime number theorem, the proof of Theorem 2.1 presents perhaps an interesting extension of Erdős' arithmetical-combinatorial argument for the general case k > 1. We also get a lower estimate for the number of primes on such intervals (Theorem 2.2), that is roughly $c_k n/\log n$, with c_k being a constant depending only on k. However, from the asymptotic nature of the prime number theorem, one cannot determine an $n_k \in \mathbb{N}$ with the property that (kn, (k+1)n) contains a prime for all $n \ge n_k$. Rosser and Schoenfeld provide in [14, Theorem 1] the following non-asymptotic variant of the prime number theorem

$$\frac{x}{\log x} \left(1 + \frac{1}{2\log x} \right) < \pi(x) \quad \text{for } x \ge 59, \tag{1}$$

$$\pi(x) < \frac{x}{\log x} \left(1 + \frac{3}{2\log x} \right) \quad \text{for } x > 1, \tag{2}$$

where $\pi(x)$ denotes the number of primes $\leq x$ for a given x > 0. Inequalities (1) and (2) give impressive numerical upper bounds for n_k , at least for $k \leq 10$, as Table 1 shows. Better estimates for n_k may be obtained from more recent variants of the inequalities (1) and (2) due to Dusart; e.g. see [7, Corollary 5.2]. For other refinements, but in terms of the Chebyshev functions, we refer to [4] by Broadbent *et al.* However, as k becomes sufficiently large, these estimates become less effective. It is thus desirable to have a method for determining n_k for any $k \geq 1$, such that, as k grows, the estimates for n_k comparably retain their effectiveness. It turns out that Erdős' strategy in the proof of our theorems helps us devise the numerical method for our computations. Note that while for $k \leq 10$ our numerical results, see Table 3, are not as impressive as the ones in Table 1, they get substantially better for k > 10, see Table 4.

Table 1. First ten upper bound values for n_k , using the Rosser–Schoenfeld estimates (1) and (2).

\boldsymbol{k}	1	2	3	4	5	6	7	8	9	10
$n_k \leq$	59	59	59	59	63	137	311	726	1725	4163

To this end, we let $\log x$ denote the natural logarithm of a positive real number x, and by $\vartheta(x) = \sum_{p \le x} \log p$, $\psi(x) = \sum_{p^{\alpha} \le x} \log p$ the first and second Chebyshev functions, respectively, where p runs through the primes.

2 Main results

Theorem 2.1. For every $k \in \mathbb{N}$, there is $n_k \in \mathbb{N}$ such that the intervals (kn, (k+1)n) contain at least one prime number for all $n \ge n_k$.

Proof. For any $n \in \mathbb{N}$, we have that

$$\frac{2^{(k+1)n}}{(k+1)n} \le \binom{(k+1)n}{\lfloor \frac{1}{2}(k+1)n \rfloor},\tag{3}$$

because

$$2^{(k+1)n} = \sum_{j=0}^{(k+1)n} \binom{(k+1)n}{j} \le 2 + \sum_{j=1}^{(k+1)n-1} \binom{(k+1)n}{\lfloor \frac{1}{2}(k+1)n \rfloor} \le (k+1)n \binom{(k+1)n}{\lfloor \frac{1}{2}(k+1)n \rfloor}.$$

Denote by

$$a(k,n) := \binom{(k+1)n}{\lfloor \frac{1}{2}(k+1)n \rfloor}$$

For a given prime p and a natural number n, let $R(p, n) := \max\{r \in \mathbb{N} : p^r | n\}$. In view of Legendre's identity,

$$R(p, n!) = \sum_{j=1}^{\infty} \left\lfloor \frac{n}{p^j} \right\rfloor \quad n \in \mathbb{N},$$

it follows that

$$R(p, a(k, n)) = \sum_{j=1}^{\infty} \left\lfloor \frac{(k+1)n}{p^j} \right\rfloor - \sum_{j=1}^{\infty} \left\lfloor \frac{\lfloor \frac{1}{2}(k+1)n \rfloor}{p^j} \right\rfloor - \sum_{j=1}^{\infty} \left\lfloor \frac{(k+1)n - \lfloor \frac{1}{2}(k+1)n \rfloor}{p^j} \right\rfloor.$$

We can simplify this as:

$$R(p, a(k, n)) \leq \sum_{j=1}^{\infty} \left\lfloor \frac{(k+1)n}{p^j} \right\rfloor - 2 \sum_{j=1}^{\infty} \left\lfloor \frac{\lfloor \frac{1}{2}(k+1)n \rfloor}{p^j} \right\rfloor$$
$$= \sum_{j=1}^{\infty} \left(\left\lfloor \frac{(k+1)n}{p^j} \right\rfloor - 2 \left\lfloor \frac{(k+1)n}{2p^j} \right\rfloor \right).$$

From the identity that $\lfloor 2x \rfloor - 2\lfloor x \rfloor$ vanishes if $\{x\} < 1/2$ and it is 1 if $\{x\} \ge 1/2$, it follows that the last sum is finite since all terms with $j > \log_p((k+1)n)$ vanish. Thus, it is bounded above by $R(p, a(k, n)) \le \log_p((k+1)n)$, implying that

$$p^{R(p,a(k,n))} \le (k+1)n.$$
 (4)

Now, consider the intervals

$$\left(n, \frac{k+1}{k}n\right], \left(\frac{k+1}{k}n, \frac{k+1}{k-1}n\right], \dots, \left(\frac{k+1}{3}n, \frac{k+1}{2}n\right], \left(\frac{k+1}{2}n, (k+1)n\right].$$

Any prime p > n which divides ((k+1)n)! falls in one of the above intervals. If $p \in \left(\frac{k+1}{2}n, (k+1)n\right]$, then 2p does not divide ((k+1)n)! as 2p > (k+1)n. Similarly, if $p \in \left(\frac{k+1}{3}n, \frac{k+1}{2}n\right]$, then 3p does

not divide ((k+1)n)! as 3p > (k+1)n. Note, however, that $2p \in \left(\frac{k+1}{2}n, (k+1)n\right]$, and so this prime p would contribute an equal amount of times in the numerator and denominator of a(k, n). Therefore, R(p, a(k, n)) = 0. If $p \in \left(\frac{k+1}{4}n, \frac{k+1}{3}n\right]$, then again 4p cannot divide ((k+1)n)!, and $2p, 3p \in \left(\frac{k+1}{2}n, (k+1)n\right]$. Consequently, p would contribute one more time in the numerator than in the denominator of a(k, n), hence R(p, a(k, n)) = 1. We observe that if $p \in \left(\frac{k+1}{j+1}n, \frac{k+1}{j}n\right]$ for $j = 1, 2, 3, \ldots, k$, then R(p, a(k, n)) = 0 if j is even, and R(p, a(k, n)) = 1 if j is odd. Assume that there exists some $k \in \mathbb{N}, k \ge 2$, such that for any $m \in \mathbb{N}$, there is $n_m > m$ with the property that the interval $(kn_m, (k+1)n_m)$ contains no prime number. In view of (4), if $p > \sqrt{(k+1)n_m}$, then $R(p, a(k, n_m)) \le 1$. By virtue of the fundamental theorem of arithmetic, we have:

$$a(k, n_m) = \prod_{p \le a(k, n_m)} p^{R(p, a(k, n_m))}.$$

This can be broken down as:

$$a(k, n_m) = \prod_{p \le \sqrt{(k+1)n_m}} p^{R(p, a(k, n_m))} \cdot \prod_{\sqrt{(k+1)n_m}$$

We then decompose the second product into smaller products over disjoint sets of primes

$$\prod_{\sqrt{(k+1)n_m}$$

Using the above observations for R(p, a(k, n)), the inequalities (3), (4), and the well-known identity $\log(\prod_{p \le n} p) = \vartheta(n)$, we obtain:

$$\frac{2^{(k+1)n_m}}{(k+1)n_m} < ((k+1)n_m)\sqrt{(k+1)n_m} \cdot e^{\vartheta(n_m) - \vartheta(\sqrt{(k+1)n_m})}$$
$$\cdot e^{\sum_{\substack{2 \le j \le k \\ j \text{ odd}}} \vartheta(\frac{k+1}{j}n_m) - \vartheta(\frac{k+1}{j+1}n_m)} \cdot e^{\vartheta(kn_m) - \vartheta(\frac{k+1}{2}n_m)}.$$

Rearranging terms and taking logarithm both sides yields:

$$(k+1)n_m \log 2 < (\sqrt{(k+1)n_m} + 1) \log((k+1)n_m) + \vartheta(n_m) - \vartheta(\sqrt{(k+1)n_m})$$

$$+ \sum_{\substack{2 \le j \le k \\ j \text{ odd}}} \left(\vartheta(\frac{k+1}{j}n_m) - \vartheta(\frac{k+1}{j+1}n_m) \right) + \vartheta(kn_m) - \vartheta(\frac{k+1}{2}n_m).$$
(5)

Dividing both sides by $(k+1)n_m$ and taking limit as $m \to \infty$ and so $n_m \to \infty$, we get

$$\log 2 \le \sum_{\substack{1 \le j \le k \\ j \text{ odd}}} \left(\frac{1}{j} - \frac{1}{j+1}\right),$$

which is impossible as

$$\sum_{\substack{1 \le j \le k \\ j - \text{ odd}}} \left(\frac{1}{j} - \frac{1}{j+1}\right) < \sum_{j=1}^{\infty} \left(\frac{1}{2j-1} - \frac{1}{2j}\right) = \log 2.$$

Remark 2.1. It follows from Theorem 2.1 that for any $k, \ell \in \mathbb{N}$ with $\ell < k$, the interval $(\ell n, kn)$ contains at least a prime number for all sufficiently large $n \in \mathbb{N}$. This results from the fact that the interval ((k-1)n, kn) is entirely included in the interval $(\ell n, kn)$ for all $\ell < k$.

Theorem 2.2. For any $k \in \mathbb{N}$, there is $n_k \in \mathbb{N}$ such that for all $n \ge n_k$, it holds

$$\pi((k+1)n) - \pi(kn) > c_k \frac{n}{\log n} \quad \text{where } c_k = \log 2 - \sum_{\substack{1 \le j \le k \\ j \text{ odd}}} \left(\frac{1}{j} - \frac{1}{j+1}\right). \tag{6}$$

Proof. By Theorem 2.1, there is at least one prime in the interval (kn, (k+1)n) for every $k \in \mathbb{N}$ and for all sufficiently large $n \ge n_k$, for some $n_k \in \mathbb{N}$. Therefore, on the right side of (5), we should add the product of prime factors in the interval (kn, (k+1)n). Moreover, note that for any such prime p, we have that $R(p, a(k, n)) \le 1$, since $p^2 > k^2n^2 \ge (k+1)n$ for any $n \ge 2$ and $k \ge 1$. Using $\log(\prod_{p \le n} p) = \vartheta(n)$, we can write the new inequality as follows

$$\begin{split} (k+1)n\log 2 &< (\sqrt{(k+1)n}+1)\,\log((k+1)n) + \vartheta(n) - \vartheta(\sqrt{(k+1)n}) \\ &+ \sum_{\substack{2 \leq j \leq k \\ j \text{ odd}}} \Bigl(\vartheta(\frac{k+1}{j}n) - \vartheta(\frac{k+1}{j+1}n)\Bigr) + \vartheta(kn) - \vartheta(\frac{k+1}{2}n) + \vartheta((k+1)n) - \vartheta(kn) \end{split}$$

or, equivalently,

$$\begin{split} \vartheta((k+1)n) - \vartheta(kn) > (k+1)n \log 2 - (\sqrt{(k+1)n} + 1) \log((k+1)n) \\ &- (\vartheta(n) - \vartheta(\sqrt{(k+1)n}) - \Big(\sum_{\substack{2 \le j \le k \\ j \text{ odd}}} \vartheta(\frac{k+1}{j}n) - \vartheta(\frac{k+1}{j+1}n)\Big) \\ &- (\vartheta(kn) - \vartheta(\frac{k+1}{2}n)). \end{split}$$

We employ the following estimate, e.g. see [7, Theorem 4.2], for all $n \ge 2$:

$$|\vartheta(n) - n| < \frac{5}{4} \cdot \frac{n}{\log n}.$$
(7)

Using (7), we obtain the following lower estimate for all $k, n \ge 2$:

$$\begin{split} \vartheta((k+1)n) &- \vartheta(kn) > (k+1)n \log 2 - (\sqrt{(k+1)n} + 1) \log((k+1)n) \\ &- \left((1 + \frac{5}{4\log n})n - (1 - \frac{5}{2\log((k+1)n)})\sqrt{(k+1)n} \right) \\ &- \left(\sum_{\substack{2 \le j \le k \\ j \text{ odd}}} (1 + \frac{5}{4\log(\frac{(k+1)n}{j})})\frac{(k+1)n}{j} - (1 - \frac{5}{4\log(\frac{(k+1)n}{j+1})})\frac{(k+1)n}{j+1} \right) \\ &- \left((1 + \frac{5}{4\log(kn)})kn - (1 - \frac{5}{4\log(\frac{(k+1)n}{2})})\frac{(k+1)n}{2} \right) \\ &> \frac{(k+1)n}{2} \left(\log 4 - A(n,k) \right), \end{split}$$

where

$$\begin{split} A(n,k) &= \frac{2}{(k+1)n} \left[(\sqrt{(k+1)n} + 1) \, \log((k+1)n) \right. \\ &+ \left((1 + \frac{5}{4\log n})n - (1 - \frac{5}{2\log((k+1)n)}) \sqrt{(k+1)n} \right) \\ &\left(\sum_{\substack{2 \le j \le k \\ j \text{ odd}}} (1 + \frac{5}{4\log(\frac{(k+1)n}{j})}) \frac{(k+1)n}{j} - (1 - \frac{5}{4\log(\frac{(k+1)n}{j+1})}) \frac{(k+1)n}{j+1} \right) \\ &+ \left((1 + \frac{5}{4\log(kn)})kn - (1 - \frac{5}{4\log(\frac{(k+1)n}{2})}) \frac{(k+1)n}{2} \right) \right]. \end{split}$$

Notice that for each $k \in \mathbb{N}$, A(n, k) approaches the value

$$1+2\sum_{\substack{2\leq j\leq k\\ j \text{ odd}}} \left(\frac{1}{j}-\frac{1}{j+1}\right) \text{ as } n \to \infty.$$

On the other hand, the estimate

$$1 + 2\sum_{\substack{2 \le j \le k \\ j \text{ odd}}} \left(\frac{1}{j} - \frac{1}{j+1}\right) = 2\sum_{\substack{1 \le j \le k \\ j \text{ odd}}} \left(\frac{1}{j} - \frac{1}{j+1}\right) < 2\sum_{j=1}^{\infty} \left(\frac{1}{2j-1} - \frac{1}{2j}\right) = 2\log 2$$

implies that for every $k\in\mathbb{N},\,k\geq2,$ there exists $\widetilde{n}_k\in\mathbb{N}$ with

$$A(k,n) < \frac{1}{2} \left(2\log 2 - 2\sum_{\substack{1 \le j \le k \\ j \text{ odd}}} \left(\frac{1}{j} - \frac{1}{j+1}\right) \right) + 2\sum_{\substack{1 \le j \le k \\ j \text{ odd}}} \left(\frac{1}{j} - \frac{1}{j+1}\right) := \tilde{c}_k$$

for all $n \geq \tilde{n}_k$. In particular, we obtain that

$$\log 4 - A(k,n) = 2\log 2 - A(k,n) > \log 2 - \sum_{\substack{1 \le j \le k \\ j \text{ odd}}} \left(\frac{1}{j} - \frac{1}{j+1}\right) = \sum_{\substack{j > k \\ j \text{ odd}}} \left(\frac{1}{j} - \frac{1}{j+1}\right) > 0.$$

Therefore, for every $k \ge 2$, it holds that

$$\vartheta((k+1)n) - \vartheta(kn) > \frac{(k+1)n}{2} (\log 4 - A(n,k)) > 0 \quad \text{for all } n \ge \widetilde{n}_k.$$
(8)

The following relation holds, e.g. see [1, Theorem 4.3, p. 78]:

$$\pi(x) = \frac{\vartheta(x)}{\log x} + \int_2^x \frac{\vartheta(y)}{y \log^2 y} \, dy.$$
(9)

Thus, we obtain the inequality

$$\pi((k+1)n) - \pi(kn) > (\log 4 - A(n,k)) \frac{(k+1)n}{2\log((k+1)n)} > \underbrace{(\log 4 - \widetilde{c}_k)}_{:=c_k} \frac{n}{\log n}$$

for every $k \in \mathbb{N}$ and $n \ge \max\{n_k, \widetilde{n}_k\}$. This completes the proof.

3 Numerical computations

The proof of Theorem 2.1 offers a possibility to obtain numerical results for an upper bound for the numbers n_k for every $k \in \mathbb{N}$. The inequality (5) is the tool which we will use. While (5) holds for $k \ge 2$, a version of it is valid also for the simple case k = 1, where the term $\vartheta(n) - \vartheta(\sqrt{2n})$ is replaced by $\vartheta(2n/3) - \vartheta(\sqrt{2n})$, since no primes in the interval (2n/3, n) appear in a(1, n). In this case, (5) reduces to the inequality

$$2n\log 2 < (\sqrt{2n}+1)\,\log(2n) + \vartheta(2n/3) - \vartheta(\sqrt{2n}).$$

Therefore, getting a good upper bound for n_1 reduces to obtaining, or using, already good bounds on the Chebyshev function $\vartheta(n)$. For example, the following estimates are known:

$$|\vartheta(n) - n| < 3.965 \frac{n}{\log^2 n}$$
 [7, p. 2] (10)

$$\vartheta(n) < n + \frac{n}{36260} \quad [8, \text{ Theorem 4.2}] \tag{11}$$

$$|\psi(n) - n| < 1.66 \frac{n}{\log^2 n}$$
 for all $n \ge 2$ [7, Theorem 3.3]. (12)

In view of the estimates (10) and (11), we get the inequality

$$2n\log 2 < (\sqrt{2n}+1)\log(2n) + \left(\frac{2}{3} + \frac{2}{3\cdot 36260}\right)n - \sqrt{2n} + 3.965 \cdot \frac{\sqrt{2n}}{\log^2(\sqrt{2n})}$$

that holds true for $1 \le n \le 108$. Therefore, $n_1 \le 109$. Using the estimates (10), (11), and the inequality (5), one can, in principle, find upper bounds for n_k for any value of $k \in \mathbb{N}$, though for large k, the bounds become increasingly larger. Moreover, to improve our numerical results, note that for every $k \in \mathbb{N}$, we can always take some odd number $j_k \in \mathbb{N}$ with $j_k > k$ and

$$\frac{(k+1)n}{j_k+2} \ge \sqrt{(k+1)n}.$$
 (13)

In this way, the sum in (5) over j extends up to j_k . Using the estimates (10), (11), (12), and the estimate $|\psi(x) - \vartheta(x)| < 1.42620 x^{1/2}$ for x > 0 from [14, Theorem 13], we obtain the following immediate result.

Lemma 3.1. The following inequalities hold true

$$|\vartheta(x) - x| < \eta \frac{x}{\log^2 x} \quad \text{for all } x > x_{\eta}.$$
 (14)

Here, we use the following values:

Table 2. η and respective x_{η} .

η	3.66	3.06	3.00	2.96	2.86	2.76
x_η	1402	5897	6929	7735	10293	13939
η	2.66	2.56	2.46	2.36	2.26	2.00
x_η	19278	27363	40118	61298	98878	531531

Proof. For any x > 0, we have

$$|\vartheta(x) - x| \le |\vartheta(x) - \psi(x)| + |\psi(x) - x|.$$

Employing inequality (12) and $|\psi(x) - \vartheta(x)| < 1.42620 x^{1/2}$ for x > 0, we obtain:

$$|\vartheta(x) - x| < 1.66 \frac{x}{\log^2 x} + 1.42620 \, x^{1/2}.$$

On the other hand, we have the inequalities

$$1.42620 x^{1/2} < \widetilde{\eta} \, \frac{x}{\log^2 x} \quad \text{for all } x \ge x_\eta,$$

where $\tilde{\eta} := \eta - 1.66$ and x_{η} are derived using a basic version of WolframAlpha.

We now use Lemma 3.1 to get our numerical results. For this, we solve the inequalities

$$2n\log 2 < (\sqrt{2n}+1)\log(2n) + \left(\frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{j_1} - \frac{1}{j_1+1} + \frac{1}{j_1+2}\right)2n \tag{15}$$

$$+\left(\frac{1}{3}+\frac{1}{5}+\dots+\frac{1}{j_1}+\frac{1}{j_1+2}\right)\frac{2n}{36260}+\eta\sum_{i=1}^{\frac{j_k+2}{2}}\frac{n}{i\log^2(n/i)}-\sqrt{2n}+\eta\frac{\sqrt{2n}}{\log^2\sqrt{2n}}$$

and for $k\geq 2$

$$(k+1)n\log 2 < (\sqrt{(k+1)n}+1)\log((k+1)n)$$

$$+ \left(\frac{k}{k+1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{j_k} - \frac{1}{j_k+1} + \frac{1}{j_k+2}\right)(k+1)n$$

$$+ \left(\frac{k}{k+1} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{j_k} + \frac{1}{j_k+2}\right)\frac{(k+1)n}{36260}$$

$$+ \eta \sum_{i=1}^{\frac{j_k+1}{2}} \frac{(k+1)n}{2i\log^2((k+1)n/2i)} - \sqrt{(k+1)n} + \eta \frac{\sqrt{(k+1)n}}{\log^2(\sqrt{(k+1)n})}.$$

$$(16)$$

In Table 3, we present some values for an upper bound of n_k for $k \le 10$, for certain $j_k \ge 1$, chosen so that (13) is not violated by the obtained upper bound for n_k . Appropriate values for η are chosen according to Lemma 3.1.

Table 3. The first ten upper bound values for n_k .

$m{k}$	1	2	3	4	5	6	7	8	9	10
j_k	1	5	5	9	9	9	9	11	11	11
η_k	3.965	3.965	3.965	3.66	3.66	3.66	3.06	2.96	2.86	2.76
$n_k \leq$	109	520	1135	1855	3213	4582	6763	8960	13031	18852

In Table 4, we compare our results with the ones from the estimates (1) and (2) for $11 \le k \le 20$. Here, we choose $j_k = 21$ for all k. Note that inequalities (15) and (16) are solved using R version 4.2.2.

k	11	12	13	14	15
η_k	2.76	2.66	2.56	2.56	2.46
Rosser–Schoenfeld $n_k \leq$	10172	25105	62479	156585	394795
Current $n_k \leq$	18082	22807	28428	38580	47413
k	16	17	18	19	20
η_k	2.46	2.36	2.36	2.26	2.26
Rosser–Schoenfeld $n_k \leq$	1000560	2547270	6510820	16700500	42972300
Current $n_k \leq$	64394	78378	107141	129632	179351

Table 4. Comparison with Rosser–Schoenfeld estimates for $11 \le k \le 20$.

Remark 3.1. Note that inequality (16) is effective up to some $k_0 \in \mathbb{N}$, because for $k \geq k_0$, the sums in the error terms of $\vartheta(n)$ grow arbitrarily large. However, if a bound of the type $|\vartheta(n) - n| \leq A n^{\theta}$ for some $\theta < 1$ and an absolute constant A > 0 is known, then we could obtain an inequality analogue to (16) that would work, in principle, for all $k \in \mathbb{N}$.

4 Further results

4.1 An analytic upper estimate for n_k

Let $k \ge 2$; the special case k = 1 is dealt with accordingly. In inequality (16), denote

$$C_{k} = \frac{k}{k+1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{j_{k}} - \frac{1}{j_{k}+1} + \frac{1}{j_{k}+2},$$

$$D_{k} = \frac{1}{36260} \left(\frac{k}{k+1} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{j_{k}} + \frac{1}{j_{k}+2}\right),$$

$$E_{k} = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{j_{k}-1} + \frac{1}{j_{k}+1}.$$

Dividing both sides of (16) by (k+1)n and using the fact that

$$\log((k+1)n/2i) \le \log((k+1)n/(j_k+1))$$

for all $i = 1, 2, \ldots, (j_k + 1)/2$, we get the inequality

$$\log 2 < C_k + D_k + (\sqrt{(k+1)n} + 1) \frac{\log((k+1)n)}{(k+1)n} + \eta E_k \frac{1}{\log^2((k+1)n/(j_k+1))} - \frac{1}{\sqrt{(k+1)n}} + 4\eta \frac{1}{\sqrt{(k+1)n} \log^2((k+1)n)}.$$

Consider the function $\Psi_k(x)$ of the real variable x > 0 given by

$$\Psi_k(x) = C_k + D_k + (\sqrt{x_k} + 1)\frac{\log x_k}{x_k} + \eta E_k \frac{1}{\log^2(\gamma_k x_k)} - \frac{1}{\sqrt{x_k}} + 4\eta \frac{1}{\sqrt{x_k}\log^2(x_k)} - \log 2,$$

where $\gamma_k = 1/(j_k + 1)$ and $x_k = (k + 1)x$. It can be shown that

$$\Psi_k'(x) = (k+1) \left[\frac{3 - \log x_k}{2x_k^{3/2}} + \frac{1 - \log x_k}{x_k^2} - 2\eta E_k \frac{1}{x_k \log^3(\gamma_k x_k)} - 2\eta \frac{1}{x^{3/2} \log^2 x_k} - 8\eta \frac{1}{x^{3/2} \log^3 x_k} \right]$$

and, consequently, $\Psi'_k(x) < 0$ for all $x > e^3/(k+1)$. It can be shown that $\lim_{x\to\infty} \Psi_k(x) = C_k + D_k - \log 2 < 0$ for all $k \leq 3000$. This range could become larger if in D_k we divide by a value greater than 36260, but at the expense of inequality (11), which would hold for $n \geq n_0$ for some $n_0 \gg 2$. Moreover, $\Psi_k(e^3/(k+1)) > 0$, and then, by the intermediate value theorem, there is $\bar{x} > e^3/(k+1)$ such that $\Psi_k(\bar{x}) = 0$. Strict monotonicity of $\Psi_k(x)$ ensures that the equation $\Psi_k(\bar{x}) = 0$ is uniquely solved for \bar{x} , so we could formally write $\bar{x} = \Psi_k^{-1}(0)$. Consequently, $n_k \leq \lfloor \Psi_k^{-1}(0) \rfloor$ could be regarded as an (implicit) analytic upper estimate for n_k .

4.2 Some corollaries

Corollary 4.1. For every $k \in \mathbb{N}$, there is \overline{n}_k such that the intervals $(n, (1 + \frac{1}{k})n)$ contain a prime number whenever $n \ge \overline{n}_k$. Note that $\overline{n}_k = kn_k$.

In [11], Nagura proved that for all $n \ge 25$, there is a prime in the intervals $(n, (1 + \frac{1}{5})n)$. From Table 1, we obtain $\overline{n}_5 \le 5 \cdot 3213 = 16065$, which is not as good as Nagura's upper bound $\overline{n}_5 \le 2103$, but his approach is applicable only for values of $k \le 5$.

Corollary 4.2. Let $\varphi : \mathbb{N} \to \mathbb{R}$ be a function such that $\liminf_{n \to \infty} \varphi(n)/n > 0$, then the intervals $(n, n + \varphi(n))$ contain a prime for all large enough n.

Proof. Let $\liminf_{n\to\infty} \varphi(n)/n = \alpha$ for some $\alpha > 0$. Then, for every $\varepsilon > 0$, there is $n(\varepsilon) \in \mathbb{N}$ such that $\varphi(n)/n > \alpha - \varepsilon$ for all $n \ge n(\varepsilon)$. In particular, for $\varepsilon = \alpha/2$, we have $\varphi(n)/n > \alpha/2$ for all sufficiently large $n \in \mathbb{N}$. Since $\alpha > 0$, there is $k \in \mathbb{N}$ such that $\alpha/2 > 1/k$. Then, for all sufficiently large $n \in \mathbb{N}$, it holds that $(n, (1 + \frac{1}{k})n) \subset (n, (1 + \frac{\alpha}{2})n) \subset (n, n + \varphi(n))$. It follows by Corollary 4.1 that there is a prime in $(n, n + \varphi(n))$ for all large enough $n \in \mathbb{N}$.

Another equivalent formulation of Corollary 4.1 is as follows:

Corollary 4.3. For every $k \in \mathbb{N}$, $k \ge 2$, there is an $\overline{n}_k \in \mathbb{N}$ such that the intervals $((1 - \frac{1}{k})n, n)$ contain a prime number whenever $n \ge \overline{n}_k$.

In [14, 15], Rosser and Schoenfeld introduced a technique using smoothing functions and information on the zeros of Riemann's zeta function $\zeta(s)$ to estimate an x_0 such that $\vartheta(x) - \vartheta(x(1 - \Delta^{-1})) > 0$ for all $x \ge x_0$, given a certain $\Delta > 0$. For instance, in [16] Schoenfeld gave a sharp result for the case $\Delta = 16597$. Their method was refined in [13] by Ramaré and Saouter, where it was proved that the interval $((1 - \Delta^{-1})n, n)$, with $\Delta = 28314000$, always contains a prime if n > 10726905041.

More recently, in the same spirit, Cully-Hugill and Lee [5, 6] provided numerical results for such intervals for certain very large constants Δ and respective x_0 .

5 Conclusion

We extended Erdős' arithmetical-combinatorial argument in his proof of Chebyshev's theorem, to obtain a generalization of this result. Moreover, this approach offered us a quantitative lower bound on the number of primes on intervals $(kn, (k+1)n), k \in \mathbb{N}$, as well as a numerical method for computations. Several comparisons were made with existing results in the literature.

Acknowledgements

We are grateful to the anonymous referees for reviewing the manuscript and providing valuable suggestions, which ultimately led to an improved presentation of the work.

References

- [1] Apostol, T. M. (1976). *Introduction to Analytic Number Theory*. New York: Springer-Verlag.
- [2] El Bachraoui, M. (2006). Primes in the interval [2n, 3n]. International Journal of Contemporary Mathematical Sciences, 1(13–16), 617–621.
- [3] Bertrand, J. (1845). Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu'elle renferme. *Journal de l'Ecole Royale Polytechnique*, 30(18), 123–140 (in French).
- [4] Broadbent, S., & Kadiri, H., & Lumley, A., & Ng, N., & Wilk, K. (2021). Sharper bounds for the Chebyshev function $\theta(x)$. *Mathematics of Computation*, 90(331), 2281–2315.
- [5] Cully-Hugill, M., & Lee, E. S. (2022). Explicit interval estimates for prime numbers. *Mathematics of Computation*, 91(336), 1955–1970.
- [6] Cully-Hugill, M., & Lee, E. S. (2024). Corrigendum to 'Explicit interval estimates for prime numbers'. *Mathematics of Computation*, 93(346), 1019–1025.
- [7] Dusart, P. (2018). Explicit estimates of some functions over primes. *Ramanujan Journal*, 45, 227–251.
- [8] Dusart, P. (2010). *Estimates of some functions over primes without R.H.* Preprint. https: //arxiv.org/abs/1002.0442.
- [9] Erdős, P. (1932). Beweis eines Satzes von Tschebyschef. Acta Scientiarum Mathematicarum, 5(3–4), 194–198 (in German).
- [10] Hanson, D. (1973). On a theorem of Sylvester and Schur. *Canadian Mathematical Bulletin*, 16(2), 195–199.

- [11] Nagura, J. (1952). On the interval containing at least one prime number. *Proceedings of the Japan Academy, Ser. A, Mathematical Sciences*, 28(4), 177–181.
- [12] Ramanujan, S. (1919). A proof of Bertrand's postulate. *Journal of the Indian Mathematical Society*, 11, 181–182.
- [13] Ramaré, O., & Saouter, Y. (2003). Short effective intervals containing primes. *Journal of Number Theory*, 98, 10–33.
- [14] Rosser, J. B., & Schoenfeld, L. (1962). Approximate formulas for some functions of prime numbers. *Illinois Journal of Mathematics*, 6(1), 64–94.
- [15] Rosser, J. B., & Schoenfeld, L. (1975). Sharper Bounds for the Chebyshev Functions $\theta(x)$ and $\psi(x)$. *Mathematics of Computation*, 29(129), 243–269.
- [16] Schoenfeld, L. (1976). Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$, II. *Mathematics of Computation*, 30(134), 337–360.
- [17] Shevelev, V., Greathouse, C. R., IV, & Moses, P. J. C. (2013). On intervals (kn, (k + 1)n) containing a prime for all n > 1. *Journal of Integer Sequences*, 16, Article 13.7.3.
- [18] Sylvester, J. J. (1892). On arithmetical series. Messenger of Mathematics, 21, 1–19.
- [19] Tchebichef, P. (1852). Mémoire sur les nombres premiers. *Journal de Mathématiques Pures et Appliquées, Série 1*, 17, 366–390 (in French).