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Abstract: We revisit a classical theorem of Chebyshev about distribution of primes on intervals
(n,2n), n € N, and prove a generalization of it. Extending Erd8s’ arithmetical-combinatorial
argument, we show that for all £ € N, there is n, € N such that the intervals (kn, (k + 1)n)
contain a prime for all n > ny. A quantitative lower bound is derived for the number of primes on
such intervals. We also give numerical upper bounds for ny for £ < 20, and we draw comparisons
with existing results in the literature.
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1 Introduction

In 1845, J. Bertrand [3] conjectured that between n and 2n there is always a prime number for
every n € N. This conjecture was solved completely by Chebyshev [19] in 1852, and it is
commonly known as Chebyshev’s Theorem.

Chebyshev’s Theorem. For everyn > 1,n € N there is a prime on the interval (n,2n).

Since then, other proofs of Chebyshev’s Theorem appeared in the literature, most notably
the proof by Ramanujan [12], who used properties of the gamma function, and the proof by
Erdds [9], employing the prime factorization of binomial coefficients. Chebyshev’s Theorem
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can be obtained as a direct corollary of [18, Sylvester’s Theorem], which states that the product
of k consecutive integers greater than k£ is divisible by a prime greater than k. It follows from
this by taking £ = n, and considering the k¥ numbers n + 1,n + 2,--- ,n + k = 2n, where
n > 1. It is natural to consider the question of distribution of primes on intervals of the kind
(kn, (k 4+ 1)n) for k € N. In [10], Hanson has shown that there is a prime between 3n and 4n,
while El Bachraoui [2] has shown that there is a prime between 2n and 3n foreveryn > 1. Ina
relatively recent work, [17], Shevelev et al. demonstrate that such a strong result as Chebyshev’s
theorem does not, in general, hold. They prove that the list of integers & for which (kn, (k+ 1)n)
contains a prime for all n > 1 includes k¥ = 1,2, 3, 5,9, 14, and no other, at least for k& < 108.

Motivated by Erd6s’ approach, we prove that for every k£ € N and for all large enough n € N,
there is a prime number on the intervals (kn, (k + 1)n) (Theorem 2.1). While such an asymptotic
result is an immediate consequence of the prime number theorem, the proof of Theorem 2.1
presents perhaps an interesting extension of Erdds’ arithmetical-combinatorial argument for the
general case k > 1. We also get a lower estimate for the number of primes on such intervals
(Theorem 2.2), that is roughly ¢;, n/ log n, with ¢, being a constant depending only on k. However,
from the asymptotic nature of the prime number theorem, one cannot determine an n, € N with
the property that (kn, (k + 1)n) contains a prime for all n > ny. Rosser and Schoenfeld provide
in [14, Theorem 1] the following non-asymptotic variant of the prime number theorem

xr
1 ) for z > 59 1
logx( +2loga: <mlw) forz =59 M

(z) < ) for = > 1, )

log x (1 * 2logx
where 7(x) denotes the number of primes < x for a given z > 0. Inequalities (1) and (2) give
impressive numerical upper bounds for ny, at least for £ < 10, as Table 1 shows. Better estimates
for nx, may be obtained from more recent variants of the inequalities (1) and (2) due to Dusart;
e.g. see [7, Corollary 5.2]. For other refinements, but in terms of the Chebyshev functions, we
refer to [4] by Broadbent ef al. However, as k becomes sufficiently large, these estimates become
less effective. It is thus desirable to have a method for determining n; for any £ > 1, such that,
as k grows, the estimates for n; comparably retain their effectiveness. It turns out that Erdds’
strategy in the proof of our theorems helps us devise the numerical method for our computations.
Note that while for £ < 10 our numerical results, see Table 3, are not as impressive as the ones in
Table 1, they get substantially better for £ > 10, see Table 4.

Table 1. First ten upper bound values for ny,
using the Rosser—Schoenfeld estimates (1) and (2).

k 11213 |4|5)| 6 7 8 9 10
nE < | 5959|5959 |63 137 | 311 | 726 | 1725 | 4163

To this end, we let log x denote the natural logarithm of a positive real number x, and by
d(zx) = > logp, ¥(xr) = > logp the first and second Chebyshev functions, respectively,

p<z pr<z
where p runs through the primes.

16



2 Main results

Theorem 2.1. For every k € N, there is ny, € N such that the intervals (kn, (k + 1)n) contain at

least one prime number for all n > ny,.

Proof. For any n € N, we have that

2(k+1n k+1)n

- = ( 1( ) >7 3)

(k+1)n |5(k+1)n]
because

(k+1)n (k+1)n—1
kE+1)n (k+1)n (k+1)n
olkt+D)n (( , )§2+ < < (k+1n -
2\ 2o 2+ 0n)) =D e+ 1)
Denote by
(k+1)n
k,n):= .

)= (4
For a given prime p and a natural number n, let R(p,n) := max{r € N : p"|n}. In view of
Legendre’s identity,

|n
R(p,n!) = Z L;J n €N,
j=1
it follows that
S (k+Dn) kD) Sy (k+Dn = [5(k+ 1n]
R(p,a<k,n)):Z{—J —Z{—.J —ZL 4 J
=1 P’ j=1 P’ j=1 P’

We can simplify this as:

j=1 P j=1 P
(e g

From the identity that |2z | — 2|z | vanishes if {z} < 1/2 and itis 1 if {z} > 1/2, it follows that
the last sum is finite since all terms with j > log,((k + 1)n) vanish. Thus, it is bounded above by
R(p,a(k,n)) <log,((k + 1)n), implying that

plReaknm) < (k4 1)n. 4)
Now, consider the intervals
( k+1] (k—l—l k?+1:| (k:+1 /{:—l—l] </<:—|—1 (k—i—l)}
n,——n —n,——n n n n nl.
) k ) k ) k _ 1 ) ) 3 b 2 b 2 )

Any prime p > n which divides ((k+1)n)! falls in one of the above intervals. If p € (%n, (k;+1)n],

o . . . . k k
then 2p does not divide ((k+1)n)!as 2p > (k+1)n. Similarly, if p € (%n, %n} , then 3p does
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not divide ((k + 1)n)! as 3p > (k + 1)n. Note, however, that 2p € (k“ , (k+ 1)n] , and so this
prime p would contribute an equal amount of times in the numerator and denominator of a(k,n).

Therefore, R(p,a(k,n)) = 0. If p € <’“+1n, %n] then again 4p cannot divide ((k + 1)n)!, and

2p, 3p € (k i, (k+ 1)n} . Consequently, p would contribute one more time in the numerator than

in the denominator of a(k, n), hence R(p, a(k,n)) = 1. We observe that if p € (kH kjln] for
Jj=1,2,3,... k, then R(p,a(k,n)) = 0if jis even, and R(p,a(k,n)) = 1if j is odd. Assume
that there exists some k£ € N, k£ > 2, such that for any m € N, there is n,,, > m with the property
that the interval (kn,,, (k+ 1)n,,) contains no prime number. In view of (4), if p > /(k + 1)ny,
then R(p, a(k,n.,)) < 1. By virtue of the fundamental theorem of arithmetic, we have:

a(k” ’[’Lm) = H pR(pﬂa(lem))‘
p<a(k,nm)

This can be broken down as:

a(k,ny,) = H pRwalknm)) H pFBatknm)
(k+1)nm v/ (kD) nm <p<knm

We then decompose the second product into smaller products over disjoint sets of primes

k
H pR@atknm) ( H pR<p,a(k,nm>>> , (H( H pR(p,aw,nm))))
v/ (k+1)nm<p<knm v/ (k+1)nm,m<p<nm J=2 %ﬂm<P<m"

( I1 pRma(k?nm)))‘

k'“ N <Pp<knm

Using the above observations for R(p,a(k,n)), the inequalities (3), (4), and the well-known
identity log([[,<,, p) = ¥(n), we obtain:

2(k+1)nm
ZE (b VT T
Mm
[ ES TN 10 = D
R .
. e Jodd .e (knm)fﬁ(Tnm)

Rearranging terms and taking logarithm both sides yields:

(k+ 1)nplog2 < (v (k+ 1)ng, + 1) log((k + 1)ny,) + d(ny) — W/ (E+ Dny)  (5)

k—i—l k+1 k+1
30 () = Cgm)) + D) — (=)
2<]§ik
J o

Dividing both sides by (k + 1)n,, and taking limit as m — oo and so n,, — oo, we get

log2 < Z <——]+—1>

1<]<k
7 odd

which is impossible as

1 1 ) - 1 1
E (‘.——. < E ( : —_.) = log 2. =
o J  Jg+1 = 27—1 2
j—odd
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Remark 2.1. It follows from Theorem 2.1 that for any k,{ € N with { < k, the interval ({n, kn)
contains at least a prime number for all sufficiently large n € N. This results from the fact that
the interval ((k — 1)n, kn) is entirely included in the interval ({n, kn) for all { < k.

Theorem 2.2. For any k € N, there is ny, € N such that for all n > ny, it holds

1 1
7((k+ 1)n) — w(kn) > ¢ logn where ¢, = log2 — E (; - m) (6)
1<k
jo

Proof. By Theorem 2.1, there is at least one prime in the interval (kn, (k + 1)n) for every k € N
and for all sufficiently large n > ny, for some n;, € N. Therefore, on the right side of (5), we
should add the product of prime factors in the interval (kn, (k + 1)n). Moreover, note that for
any such prime p, we have that R(p, a(k,n)) < 1, since p* > k*n? > (k+ 1)n for any n > 2 and
k > 1. Using log([[,<,, p) = ¥(n), we can write the new inequality as follows

(k+ 1nlog2 < (\/(k+1)n+1) log((k + 1)n) + d(n) — I(/(k + 1)n)
kH k+1 k+1

or, equivalently,

Y((k+ 1)n) — 9 (kn) > (k+ 1)nlog2 — (\/(k+ 1)n+ 1) log((k + 1)n)
~ 0 oG o) - (3 19(%77,) —o(5 )

2<j<k J+1
7 odd
kE+1
— (k) — ().
We employ the following estimate, e.g. see [7, Theorem 4.2], for all n > 2:
5 n
() —nl < 3+ oo ™)
Using (7), we obtain the following lower estimate for all k,n > 2:
Y((k+1)n) —I(kn) > (k+1)nlog2 — (\/(k+ 1)n+ 1) log((k + 1)n)
5 bt
—((1 —(1- k+1
(1 Togn" ™ Soger ymy) VY ")
5 (k+1)n 5 (k+1)n
_< Z(1+ (k+1)n ) ; - (1= (k+1)n ) 1 )
o 410g(T) J 41og( ] ) 7
7 odd
bt bt (k+1)n
—((1+——F——=)kn—(1—-
<( * 4log(lm)) n—( 410g( k+1)n)) 2 )
1
S DR g A, k),

2
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where

A(n, k) =

[\/k—i- 1+ 1) log((k + 1)n)

(k:+1
)
i ((1 - 4logn)n - (= 2log((k + 1)n)) (k+ 1)n>
(k+Dn 5 (k+1)n
e B WU ES

7 odd

5 5 (k+1)n
n ((1 + m)kn —(1- 4log(&E0n )) 2 )]

Notice that for each k € N, A(n, k) approaches the value

On the other hand, the estimate

1 1 > 1 1
142 (———)—2 (-,—.—> 2 ( : >_21 2
* Z J+1 Z Jj J+1 = jzl 2j—1 2§ ©8

2<j<k 1<5<k
i odd 7 odd

implies that for every k € N, k > 2, there exists n; € N with

Ak, n) < <2log2—2 3 (——m))+2 3 (%—j%) =G

1<5<k 1<5<k
7 odd 7 odd

for all n > ny. In particular, we obtain that
logd — A(k,n) = 2log2 — A(k,n) > lo 2—Z<E—L>—Z<1—L>>Q
g ) g ) g pa | ' - . .
<j<k >k
jodd jodd

Therefore, for every k > 2, it holds that

(k+1)n

Y((k+ 1)n) — d(kn) > (log4 — A(n,k)) >0 forall n > ny. (8)

The following relation holds, e.g. see [1, Theorem 4.3, p. 78]:

() / ()
= + dy. 9
W(x) logm ) ylong Y )
Thus, we obtain the inequality
(k+1)n n
kE+1)n)—m(k log4d — A(n, k log4 —
(= 1) = k) > (logd = Al ) s > (logd — )

=cg

for every k € N and n > max{ny, n; }. This completes the proof. O
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3 Numerical computations

The proof of Theorem 2.1 offers a possibility to obtain numerical results for an upper bound for
the numbers ny, for every £ € N. The inequality (5) is the tool which we will use. While (5) holds
for k > 2, a version of it is valid also for the simple case k = 1, where the term ¥(n) — 9¥(v/2n)
is replaced by 9(2n/3) — 9(+/2n), since no primes in the interval (2n/3, n) appear in a(1,7n). In
this case, (5) reduces to the inequality

2nlog2 < (vV2n + 1) log(2n) 4+ 9(2n/3) — 9(v/2n).

Therefore, getting a good upper bound for n; reduces to obtaining, or using, already good bounds
on the Chebyshev function ¥¥(n). For example, the following estimates are known:

n

0(n) — n| < 3.965—=— [7.p.2] (10)
log®n
9(n) < n+ 36nT60 [8, Theorem 4.2] 11
|th(n) —n| < 1.66 1 n2 foralln > 2 [7, Theorem 3.3]. (12)
og n

In view of the estimates (10) and (11), we get the inequality

2 2 \/2n
mlog?2 < (vV2n + 1) log(2 S V- V2n+3965 —
nlog2 < (v2n+1) log(2n) + (3 + 3~36260>n " log*(v/2n)

that holds true for 1 < n < 108. Therefore, n; < 109. Using the estimates (10), (11), and the
inequality (5), one can, in principle, find upper bounds for n;, for any value of k£ € N, though for
large k, the bounds become increasingly larger. Moreover, to improve our numerical results, note
that for every k£ € N, we can always take some odd number j;, € N with j, > k and

(k+ Dn > /(k+ Dn. (13)

Jr+2
In this way, the sum in (5) over j extends up to j;. Using the estimates (10), (11), (12), and the

estimate |¢(z) — ()| < 1.42620 2'/2 for z > 0 from [14, Theorem 13], we obtain the following
immediate result.

Lemma 3.1. The following inequalities hold true
|W(z) — x| <n logLQx forall x > . (14)
Here, we use the following values:

Table 2. n and respective z,,.

n 3.66 | 3.06 | 3.00 | 296 | 2.86 2.76
T, | 1402 | 5897 | 6929 | 7735 | 10293 | 13939
n 2.66 | 256 | 246 | 2.36 | 2.26 2.00
T, | 19278 | 27363 | 40118 | 61298 | 98878 | 531531

21



Proof. For any x > 0, we have
[9(2) — 2| < [0(z) = ()] + [¢(z) — =,

Employing inequality (12) and [¢(z) — ¥(z)| < 1.42620 2'/2 for > 0, we obtain:

9(z) — 2| < 1.66—— + 1.42620 2'/2,
log” x

On the other hand, we have the inequalities

1.42620 2'/% < 7y for all z > z,),
1

og’x
where 77 := 1 — 1.66 and z,, are derived using a basic version of WolframAlpha. [

We now use Lemma 3.1 to get our numerical results. For this, we solve the inequalities

11 1 1 1
2nlog?2 < (v2n + 1) log(2 (——— o )2 15
nlog2 < (vV2n+ 1)log(2n) + 3 i +j1 j1+1+j1—|—2 n (15)
Jk+1
11 11 V2n
+(—+—+~~+.—+. ) —V2n +
375 T2/ 3620 " Zzlog (n/4) " og? Von
and for £ > 2
(k+1)nlog2 < (v/(k+1)n+1)log((k+ 1)n) (16)
ko1 1 1 1 1 1
4 >k+1
<k;+1 273 1 P ) AU
+<L+1+1+ PR )UHM
k+1 3 5 Je | jr+2/ 36260
Jpt1
2 (k+1)n (k+1)n
+ —V(k+1)n+ )
nz2zlog2((k+l)n/2i) (k+1) o2 (VE+ D)

In Table 3, we present some values for an upper bound of ny, for £ < 10, for certain j, > 1,
chosen so that (13) is not violated by the obtained upper bound for n;. Appropriate values for n

are chosen according to Lemma 3.1.

Table 3. The first ten upper bound values for 7.

k 1 2 3 4 5 6 7 8 9 10

Ik 1 ) ) 9 9 9 9 11 11 11

Mk 3.965 | 3.965 | 3.965 | 3.66 | 3.66 | 3.66 | 3.06 | 2.96 | 2.86 | 2.76
n, < | 109 520 | 1135 | 1855 | 3213 | 4582 | 6763 | 8960 | 13031 | 18852

In Table 4, we compare our results with the ones from the estimates (1) and (2) for 11 <k < 20.
Here, we choose j, = 21 for all k. Note that inequalities (15) and (16) are solved using R version

4.2.2.
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Table 4. Comparison with Rosser—Schoenfeld estimates for 11 < k£ < 20.

k 11 12 13 14 15
Mk 2.76 2.66 2.56 2.56 2.46
Rosser-Schoenfeld n;, < | 10172 25105 62479 156585 394795
Current n; < 18082 22807 28428 38580 47413
k 16 17 18 19 20
Nk 2.46 2.36 2.36 2.26 2.26
Rosser-Schoenfeld n;, < || 1000560 | 2547270 | 6510820 | 16700500 | 42972300
Current n; < 64394 78378 | 107141 | 129632 179351

Remark 3.1. Note that inequality (16) is effective up to some ky € N, because for k > ko,
the sums in the error terms of 9(n) grow arbitrarily large. However, if a bound of the type
[9(n) —n| < Anf for some 0 < 1 and an absolute constant A > 0 is known, then we could

obtain an inequality analogue to (16) that would work, in principle, for all k € N.

4 Further results

4.1 An analytic upper estimate for 7y

Let k > 2; the special case k = 1 is dealt with accordingly. In inequality (16), denote

Ck:L—l-i-l———F" _ 1 + 1
k+1 2 3 gk e+l et 2

Dk:; L+1+l+...+l+ )
36260 \k+1 3 5 gk e +2/7
246 Je—1 " jr+1

Dividing both sides of (16) by (k + 1)n and using the fact that

log((k + 1)n/2i) <log((k + 1)n/(jk + 1))

forall: =1,2,..

1
log2 < Ci + Dy, + (v/(k + Dn + 1)—

., (Jk + 1)/2, we get the inequality

g((k+1)n)
(k+1)n

1

Ey

1
T n s D o (h + 1)

Consider the function Wy (x) of the real variable = > 0 given by

Ui(z) = Cr + Di + (Ve + 1)

log
Lk

+ 1 Ey

1

1
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where 7, = 1/(jx + 1) and 2, = (k + 1)z. It can be shown that
3—logzr 1—loguxy
52 3

2, T, zx log” (Vexk)

1 1

232log? vy = log® z;,

Wi (2) = (k + 1)

and, consequently, W, (z) < 0 for all z > ¢*/(k + 1). It can be shown that hm Uy (x) =
Ck + Dy, —log?2 < 0 for all £ < 3000. This range could become larger if in Dy, we d1V1de by a
value greater than 36260, but at the expense of inequality (11), which would hold for n > n, for
some ng > 2. Moreover, ¥, (e3/(k+1)) > 0, and then, by the intermediate value theorem, there
is 7 > e3/(k + 1) such that ¥;,(Z) = 0. Strict monotonicity of ¥, (z) ensures that the equation
U (Z) = 0 is uniquely solved for Z, so we could formally write 7 = W, '(0). Consequently,
ng < | ¥, '(0)] could be regarded as an (implicit) analytic upper estimate for 7.

4.2 Some corollaries

Corollary 4.1. For every k € N, there is Ty, such that the intervals (n, (1 + %)n) contain a prime
number whenever n > ny. Note that vy, = kny,.

In [11], Nagura proved that for all n > 25, there is a prime in the intervals (n, (1 4+ 1)n).
From Table 1, we obtain n5 < 5 - 3213 = 16065, which is not as good as Nagura’s upper bound

ns < 2103, but his approach is applicable only for values of £ < 5.

Corollary 4.2. Let ¢ : N — R be a function such that liminf p(n)/n > 0, then the intervals

(n,n + p(n)) contain a prime for all large enough n. THOO

Proof. Let lirg inf p(n)/n = « for some o > 0. Then, for every € > 0, there is n(¢) € N such
that p(n)/n n> o e for all n > n(e). In particular, for ¢ = a/2, we have ¢(n)/n > «a/2 for
all sufficiently large n € N. Since o > 0, there is £ € N such that /2 > 1/k. Then, for all
sufficiently large n € N, it holds that (n, (1 + +)n) C (n, (1 + $)n) C (n,n + ¢(n)). It follows
by Corollary 4.1 that there is a prime in (n,n 4 ¢(n)) for all large enough n € N. O

Another equivalent formulation of Corollary 4.1 is as follows:

Corollary 4.3. For every k € N,k > 2, there is an Ty, € N such that the intervals ((1 — +)n,n)

contain a prime number whenever n > ny.

In [14, 15], Rosser and Schoenfeld introduced a technique using smoothing functions
and information on the zeros of Riemann’s zeta function ((s) to estimate an z, such that
P z) — I x(l — A7) > 0 for all z > =z, given a certain A > 0. For instance, in [16]
Schoenfeld gave a sharp result for the case A = 16597. Their method was refined in [13] by
Ramaré and Saouter, where it was proved that the interval ((1 — A™!)n, n), with A = 28314000,
always contains a prime if n > 10726905041.

More recently, in the same spirit, Cully-Hugill and Lee [5, 6] provided numerical results for
such intervals for certain very large constants A and respective z.
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5 Conclusion

We extended Erd6s’ arithmetical-combinatorial argument in his proof of Chebyshev’s theorem,
to obtain a generalization of this result. Moreover, this approach offered us a quantitative lower
bound on the number of primes on intervals (kn, (k+1)n), k € N, as well as a numerical method
for computations. Several comparisons were made with existing results in the literature.
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