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Abstract: In order to investigate the relationship between Gaussian Fibonacci numbers
and quantum numbers and to develop both a deeper theoretical understanding in this study,
g-Gaussian Fibonacci, g-Gaussian Lucas gquaternions and polynomials are taken with quantum
integers by bringing a different perspective. Based on these definitions, the Binet formula of
these number sequences is found, and some algebraic properties, important theorems,
propositions and identities related to the formula are given. Thus, new perspectives are obtained
in the analysis and applications of complex systems.
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1 Introduction

Quantum integers are a generalization of classical integers that incorporate concepts from
quantum mechanics. They are used in various fields of mathematics and physics, including
quantum number theory, quantum information theory and quantum algorithms. They can
represent more information than classical integers. They can be used to solve problems that are
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difficult for classical computers. They can be used to develop new and more efficient quantum
algorithms [10, 20].

If we talk about the relationship between the quantum numbers mentioned above and
Gaussian Fibonacci numbers: Gaussian Fibonacci numbers can be used in the design of quantum
computers and the analysis of their algorithms. Furthermore, those working on the security of
guantum technologies, such as quantum cryptography, can investigate how Gaussian Fibonacci
sequences can be used in this field.

Quaternions, discovered by William Rowan Hamilton, are the number system that deals
with the generalization of complex number systems. A quaternion is defined as

p =a+bi+cj+dk,

where a,b,c,d eR and i, j,k are quaternion units.
The conjugate of the quaternion is defined as follows:

p~ =a—bi—cj—dk.

Horadam, inspired by William's work, defined Fibonacci and Lucas quaternions in 1963.
Fibonacci and Lucas numbers took the place of a,b,c,d in this study, respectively. Later, in the

following years, many authors such as [3, 4, 6, 21] worked on Pell, Jacobsthal, Pell-Lucas
quaternions in addition to Fibonacci and Lucas quaternions. Gauss Fibonacci and Lucas numbers
were defined by Jordan in [8] with the recurrence relations given below,

GF,=GF _,+GF, ,, GF, =i, GF =1
and
GL,=GL, ,+GL, ,, GL,=2-i, GL, =1+2i

afterwards their more general forms were discussed by many authors in the following years
[2, 15, 22, 23].

The general terms of these numbers can be obtained more easily by making use of their
relationship with the Fibonacci and Lucas numbers [8]. Namely:

GF,=F, +iF ,
and
GL, =L, +iL,,.

The fact that quantum calculus has many fields of use such as number theory, combinatorics,
orthogonal polynomials, fundamental hypergeometric functions, and quantum theory, which is
seen as a connection between other sciences, mechanics and relativity theory, studies in the
fields of mathematics and physics have led this field. Based on this effect, many authors have
worked in this field [1, 5, 11, 13, 14, 16, 17, 19]. Also, Kizilates et al. [12] introduced higher-
order generalized Fibonacci quaternions with g-integer components, combining g-calculus and
quaternion theory. Several special cases and properties of these quaternions are also explored.

In accordance with our purpose, quaternion sequences with component quantum integers for
a e Nis defined [9]:



If —a is also defined, it is expressed as

In particular, let K be a ring with a unit with the property of associative and g is an element of
K. If 1—q is invertible, then the definitions we discussed above can be more easily formulated.

Namely in accordance with our purpose, the g-integer of the number a is defined by

a

1-9

[a], =1 1-q
a, ifqg=1

, ifg=1

In the quantum calculus approach, we can express addition and multiplication operations as
_ a
[a+ b]q = [a]q +q [b]q ,

[ab]q = [a]q [b]qa
where a,beZ and g is invertible element in K.

(04 . . . . .
For g=—% , the Binet formula for Gaussian Fibonacci and Gaussian Lucas number can be
o

expressed in g-integer form as follows:
[2n], 1 [2n=2], :

], -1, )

where i=+/-1= al\/a and «,,a, are roots of characteristic equation for Gaussian Fibonacci

QGF, =(af™*[n], +e*[n-1],i) and QGL, =| &
and Gaussian Lucas numbers.

2 Gaussian Fibonacci quaternions
with quantum calculus approach

In this section, the previously defined quaternion is considered more generally. Throughout this
section, ne N and 1—-q will be treated as nonzero complex numbers.

Definition 2.1. The n-th g-Gaussian Fibonacci quaternion and n-th g-Gaussian Lucas quaternion
of the form are as follows, respectively.

QGF, =(af[n], +a*[n-1], i)+ (e [n+1], + & [n],i}i+(ef" [n+2], +af [n+1], i) ]
o [n+3], + o [n+2], i)k
= (al”’z [n —1]q +a' [n +l]q)i +(al” [n +1]q +ay"?[n +3]q)k

and



[2n] L [2n-2]. . [2n+2] [2n], . ).
QGL, =| & — 2+ Li |+ o™ Lo —=Li i
{ [n], [n-1], J [ [n+1], [n], J
hep [2N+ 4], wa[2n+2], ). 1.3 [2N+6], heo [2N+4],
+ o +ao ]+ o +o " ———1 |k
[n+2]q [n+1]q [n+3]eI [n+2]q

— an—l B q+an+1[2n+2]q i+ an+l[2n+2]q+an+3 [2n+6]q k
! [n-1], ! [n+1], ! [n+1], ! [n+3],

Theorem 2.2. The Binet’s formula of the g-Gaussian Fibonacci quaternion and g-Gaussian
Lucas quaternion are as follows, respectively.

. . (eq)" .
QGF, =a? [n], & +( 01{2) A
1
and
QGLn = aln_laI + (alq)n_lal*ﬂ’
where

o, =i+ali+a’k+ak,
a; =[-1] i+eofi+atk+ay [3] Kk,
o, =i+alq’i+a 9’k + o, q'K.
Proof. By Definition 2.1, we get
QGF, = (/™ [n-1], +af [n+1], )i+(af [n+1], +af*[n+3], }k

=al”‘2([n]q +q" [—1]q)i+a1”([n]q +q”)i +af ([n]q +q")k+al”+2([n]q +[3), q")k
=a’ [n]q (i +ali+alk +al4k)+al“_2q” ([—1]q i+oi+a’k+a; [3]q k).

That is,

(aa) -

Q.

QGF, =af *[n], i +

By Definition 2.1, the Binet’s formula of QGL, is
Llen-2), 12042, J [ w242l [20+6], Jk

QGL“{“l oy, % eg, ) \* Ten, T eal

2n-2 2n+2 2n+2 2n+6
:alnl{ll (;nl ]i_’_alnﬂ[ll (l]rwl Ji'f'alml[ll qqn+1 jk+a1n+3(l C(]:]n+3 jk
n-1

1_
= (1+q" )i+ (149" )i+ o (140" )k + g (149" )k

= al”’l (i + alzi + alzk + afk) + al”’lqn’l (i + afqzi + alzqzk + afq“k).
That is,
QGL, = aln_laf +(a1q)”_1alm .
This completes the proof. [



Remark 2.3. Binet’s formula of the g-quaternions QGF, is written in another forms.

QGF, =(af* [n-1], + & [n+1], )i+ (af [n+1], +a** [n+3], )k

n-1 n+l n+l n+3
] o MYl PP [k PP [ W
1-q 1-q 1-q 1-q

na.n-1 n+2 n+2 o n+1 n+2 n+2 o n+1 n+4 n+4 . n+3
al -~ @4 - 9 ;0 - 4, & —o Q
i+ 7 7 I+ 7 7 +

al _alq o —oq o —aq al _alq

k

nn-1

2 q

an
:2—12(I+all+0(lk+a14k) ﬁ
o - o - q

(i+afd’i+afq’k +a;'q’k)

n~n-1
alal -a,q al

o (1-q)

Theorem 2.4. The exponential generating function for the g-Gaussian Fibonacci quaternions and
g-Gaussian Lucas quaternions are as follows, respectively,

X * -1.(4Qq)x ***
e“a, —q eV

GF, =
QCF, o (1-q)

and

ea1x+al q 1e(a1q)x

QGL, =4
a

Proof. By using Binet formula of QGF, and QGL, , we have

_y 0 X
—nzz(;a) "t

So, the desired result is obtained. So that,

0 Xn 0 ana anqn la XI’]
GF 2= 1% 1 1
2065, 25( J

~ A (1—q) n!
i q al > Olqu
al 1 q HZ::; al l q nz
_ A X qle 0
al(1-q) af (1-q)
e*a; —q ey
of (1-q)

Similarly,



ZQG % = Z (aln_laf + (alq)"_lalﬁ*)n—
n=0 - n=0

This completes the proof.

Remark 2.5. Let «, =

1

Similarly, for o, =1+ J2,q=

1++/5
2

2 1

o,

X"
]

_o 5 (a;X')” o 5 (2,0x)"

ay n— aq 5o

— ﬂealx + a ea1qx
al alq
o e +a, e
_a 1 9

(24

-1

a

Jacobsthal quaternions are obtained.

Remark 2.6. Let a’q=-1. From the Binet formula of QGF, and QGL,, n>1neZ,

QGF, —(,q)QGF,, =

n!

alo, —a)q" o, a o, —a! " ey
g e

o, —alnq”’l(i +a!q%i +alq’k +a14q4k)
) o (1-q)

. —(en0) o ey +a1”q”’1(i +a!q%i +alq’k +al4q4k)

o (1-q)
_ ay'oy —o'goy
o (1-q)

=a) %0,

and

2

nan-1_ ***

"(i+ali+ ok + k) —
QGFn—(al)QGFnlzal( aglraK+o ) o q o

o (1-q)
a (i +afi+olk+ afk)+al“q”_2af*
) o (1-0)
_ o'y 9" (1-q)
o (1-q)

= (alq)n72 a:**

O

q=—; then Gaussian Fibonacci quaternions are obtained.

Gaussian Pell quaternions and for ¢, =2,q = _?l Gaussian

1)

)

multiplying equation (1) and (2) by o, and «,q, respectively, the linearization of QGF, are

obtained, so that

o) a; =,QGF, +QGF, ,

6

()&, = (,0)QGF, +QGF, ;.



Theorem 2.7 The summation identities for QGF, and QGL, are as follows:

m m (ﬁ)m QGF,.,, miseven
0 3 Meadorash. | ),
\n (ﬁ) QGL,,,,, mis odd

m ‘m (ﬁ)m QGL,,,, m iseven
(”) Z(nj(_alzq)anGLZrH—k =

(\/§)m+l QGF,,, ,, m is odd
where V = (o, (1-1))°.

Proof. By using Binet formula for QGF, and QGL, , we have

mim men mm - a2n+ka*_a2n+k 2n+k_1a***
B

) - o (1-q)
Observe that
ﬁi:JFahW“Gﬁf=@ﬁ—amW,
5oz (@)’ =) -t
since n:O

0[12 _alzq = a0 (l_q) = alﬁ’

(alq)z - alzq = _alqﬁ’

(V)" —(~a V)" () 0™ [ o — (—a)™ () gy
T Py ~() 70 0) |

If m is even, then

T (V) [ S () o

If m is odd, then

T

o o +(aa)™ gty
(ﬁ) L alz (1_q) J
(

) (al””kaf T ()" g " )
™

(

(

m-1 . Mok — ox
) (a1m+k—la1 +(a )™ ey )
The other proof is done similarly.
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Theorem 2.8. Let me N. Then

0 i@]m (1+a)] (-afa)""QGF, =QGF,,

(ii) Z( ][al (1+0)]" (-efa)""QGL, = QGL,,,.

Proof. (i) By using Binet formula for QGF, and QGL, , we get

13" |lw )] Cator o,
=Zm(; e @ea)] (—afq)m{alal ;zlgo(liq_)q()4 % J

I
M=

':[af(1+q)]n(—afq)m"L—alz(olll_q)} nmo( j[“l 1+q)]n(‘“fq)mn{a?(1aiq)J
B R N G0 N
‘(“1)(055(1—@) -a) oo

The other proof is done similarly. O

>
Il
o

Theorem 2.9. Let n>2 be integer. Then it holds that

QGF, QGF.,) (QGF, QGF )1 1 "
QGF,,, QGF, B QGF, QGF,){1 0
Proof. The proof can be easily seen through induction. L

Theorem 2.10 (Catalan identity). Let m,k € Z",m >k then we have

Fokk

_(qk _1)2 qm k—lalZm 4%0[1

(1-q)’

QGF,,,QGF,_, —(QGF, )’ =
and

QGLWHkQGLm—k —(QGLm) alal alzm qu k_l(qk _1)2.
Proof. The Binet formula for the QGFE, and after some algebraic operations, we get the following

equation:

* m+k =1 % m-k _* m-k -1 Mmoo "o e i
a1m+k0!1 +(,Q) kq l0!1 a, kal +(,0) kq lal oot (9)"q lal
Py % (-a) 2 (1-a)

2m m—-k-1 2m m+k-1 2m m-1
—a q alal —a; alal +2a,q alal

(o (1-a))
" o (q—k +q" _2) ) _(qk _1)2 " et e
(a?(1-q)) (1-a)’ |

The other proof is done similarly. [




Theorem 2.11 (Cassini identity). For m >1the following equation hold.

— _ 2 mo2  2m—4 * ok
QGF, ,QGF, ,—(QGF, )’ = (a-1)° q" ™"y

(1-a)’
and
QGL,.,QGL,, ~(QGL, ) = & &/ *q"* (q-1)".
Proof. A special case for k =1 of Theorem 2.10 the proof is done. [

Theorem 2.12 (d’Ocagnes identity). Let m,neZ", m>n+1, then we have

* R m+n-3 m-n n-1
qo o (1_q )q

QGF,QGF,,, —QGF, ,,QCGF, =
and
QGL,QGL,.,—QGL,.QGL, = &je; "o " (1-q"™")(a" =" ).

Proof. The Binet formula for the QGF, and after some algebraic operations we get the following

equation
m_* m -1 n+l _* n+l -1 % m+l _* m+l -1 n_* n-1_**
{al o +(20)"q J(al o + ()"0 J_(al o +(,0)""q oy J[alalJr(alq) q o ]
ot (1-q) o (1-9) o (1-q) o (1-q)
) al*al*’*almm—l(_qn_qm—1+qn—1+qm) _a:al***almm—l(l_qm—n)(qn—l_qn)
- 2 - 2
(e (1-0)) (e (1-0))
) al*a:**almm—?; (1_ qm—n ) qn—l
(1-a)
as desired. The other proof is done similarly. L

3 Gaussian Fibonacci quaternion polynomials
with quantum calculus approach

In this section, we get g-Gaussian Fibonacci QGF, (x) and g-Gaussian Lucas polynomials
QGL, (x). Based on the definitions, important results of these polynomials are obtained.

Definition 3.1. Let u(x) and v(x) be polynomials with complex coefficients. The g-Gaussian
polynomials QGF, (x) and QGL, (x) are defined by the recurrence relation

QGF,., (x)=u(x)QGF,., (x)—V(x)QGF, (x),
QGL,,, (x) =u(x)QGL,,, (x)-Vv(x)QGL, (x)

with initial conditions QGF,(x)=1, QGF,(x)=u(x)+i and QGL (x)=u(x)+2i,
QGL, (x)= u®(x)+2+u(x)i, respectively.

(3)



If we take u(x)=x and v(x)=-1, we get Gaussian Fibonacci polynomials and Gaussian

Lucas polynomials [18].
Similarly, if we take u(x)=2x and v(x)=-1, we get Gaussian Pell polynomials [7].
Let the roots of the characteristic equation

t? —u(x)t+v(x)=0

of the recurrence (3) be

then Binet formula for g-Gaussian polynomials QGF, (x) and QGL, (x) are

ay (t)+ief " (t) o (t)+ieg (1)

a(t)—a,(t)  a(t)—a,(t)

QGF, (x)=

and
QGL, (x)= (al" (t)+ic™ (t))+(a§ (t)+ia;™ (t))

Definition 3.2. The g-Gaussian quaternion polynomials QGF,(x) and QGL,(x) are defined by
the recurrence relation, n>1

QGF, (X) =QGF, (X)+ iQGFM(X)—i— JQGF,,, (X)+ kQGF, ., (X),
QGL, (x)=QGL, (x)+iQGL,,, (x)+ jQGL,,, (x)+kQGL,,; (x).

The initial conditions of g-Gaussian quaternion polynomials sequence QGF, (x) are
QGF, (X) = QGF, (X)+iQGF, (x)+ jQGF; (x)+kQGF, ()
=u(x)i+(u®(x)+u(x)-2u(x)v(x))k,
QGF, (x) =QGF, (x)+iQGF, (x)+ jQGF, (x)+kQGF; (x)
:(uz(x)—v(x))i +(u4(x)+u2(x)—3u2(x)v(x)+v2(x)—v(x))k.
The initial conditions of g-Gaussian quaternion polynomials sequence QGL,(x) are
QGL, (x) =QGL, (x)+iQGL, (x)+ jQGL, (x)+kQGL, (x)
= 40+ (x)i+(2u(x)=u® (x)+2u (x)v(x)) j+(3u? (x)—4v(x)+u* (x)—2u® (x)v(x) )k,
QGL, (x) =QGL, (x)+iQGL, (x)+ jQGL, (x)+kQGL; (x)
= 2+2v(x)+(u3(x)+3u(x)—u(x)v(x))i +(2u2(x)+2u2(x)v(x)—2v(x)—2v2(x))j
+(u® (%) +20° () =3u® () v(x) = 7u (X)v(x) +u (x)v* (x))k.

10



Theorem 3.3. The generating functions for the g-Gaussian quaternion polynomials QGF, (x)
and QGL, (x) are as follows, respectively.

QGF, (x )s+[QGF (x)—u(x)QGF,(x)]s’

—u(x)s+v(x)s?

QGF, (s)=

and
QGL, (x)s+[ QGL, (x)-u(x)QGL, (x)|s*
1-u(x)s+v(x)s’

Proof. The form of the generating function QGF,” (s) for the g-Gaussian quaternion polynomials

QGL, (s) =

QGF, (x) is ZQGF . Then the power series expansion of —u(x)s and v(x)s® will be

Z X)QGF, (x)s"* and ZV JQGF, (x)s™?, respectively. Thus, we obtain that

(1-u(x)s+v(x)s*)QGF, (s)=QGF, (x)s+[ QGF, (x)—u(x)QGF, (x) |s*
and so

QGF, (x)s+| QGF, (x)-u(x)QGF,(x)]s’

QGF, (s) = 1-u(x)s+v(x)s®

The generating function of g-Gaussian quaternion polynomials QGL, (x) is

QGL, (x)s+[ QGL, (x)-u(x)QGL, (x)]s*
1-u(x)s+v(x)s®

QGL, (s)=

Theorem 3.4. The Binet formulas for QGF, (x) and QGL, (x)are as follows, respectively.

o (D (t) -2 (Y, (1)
o (t)-a,(t)

QGF, (x) =
and

QGL, (x)=ag" (t)en ()03 (), (1),

where
a(t)=i+a? (t)i+a?()k+al (DK, a,(t)=i+a? (t)i+a?(t)k+al (t)k.

The following relations can be obtained:

QGF, (x)—a, (t)QGF, (x) =, (t)
QGF, (X) -, (t)QGF, (x) = a, (t)
QGL, (x) -~ () QGL, (x) =, (t) (@, (t) - (1))
QGL, (X)—ar, (1)QGL, (X) = & (t)(ex, (t) - &, (1))



Theorem 3.5. For QGF, (x) and QGL, (x), n>1, we have the following summation formula

M 2(v00)"" (u(x)) QGF, (x) =QCF,, ()

(1) Z(_V(X))m_n (u (X))n QGL, (X) =QGL,, (X)

n=0

Proof. (i) For the Binet formula for QGF, (x), we get

n

o ()™ “aln_l(t)al(t)_azn_l(t)aZ(t)

2 (V) (u(x) o (0)=a, (1)

VRS e Wa(t) & ey (e, (1)
_nZ_;( ( )) ( ( )) al(t —az(t) nz:;)( ( )) ( ( )) al(t)—a?_(t)

The proof of (ii) is done similarly. [

3 Conclusion

In this study, Quantum calculus approach to Gaussian Fibonacci and Gaussian Lucas recurrences
with polynomials were created. Then the corresponding Binet formula of these sequences and
many related properties were obtained. Also, several additive formulas of these new sequences
were obtained. This work can be applied to different number sequences, as well as to expanding
the p-analogue part to create (p, g)-analogue number sequences. This work can be placed in the
historical perspective going back to Leonard Carlitz of Duke University.

Research on the relationship between Gaussian Fibonacci numbers and quantum numbers
can lead to both a deeper theoretical understanding and the development of new methods for
practical applications. This could contribute to the further advancement of quantum
technologies. Also, this work can contribute to the literature in number theory, mathematical
physics, cryptography, signal processing and other fields. In particular, it can offer new
perspectives in the analysis and applications of complex systems.
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