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Abstract: In order to investigate the relationship between Gaussian Fibonacci numbers  

and quantum numbers and to develop both a deeper theoretical understanding in this study,  

q-Gaussian Fibonacci, q-Gaussian Lucas quaternions and polynomials are taken with quantum 

integers by bringing a different perspective. Based on these definitions, the Binet formula of 

these number sequences is found, and some algebraic properties, important theorems, 

propositions and identities related to the formula are given. Thus, new perspectives are obtained 

in the analysis and applications of complex systems. 
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1 Introduction 

Quantum integers are a generalization of classical integers that incorporate concepts from 

quantum mechanics. They are used in various fields of mathematics and physics, including 

quantum number theory, quantum information theory and quantum algorithms. They can 

represent more information than classical integers. They can be used to solve problems that are 
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difficult for classical computers. They can be used to develop new and more efficient quantum 

algorithms [10, 20]. 

If we talk about the relationship between the quantum numbers mentioned above and 

Gaussian Fibonacci numbers: Gaussian Fibonacci numbers can be used in the design of quantum 

computers and the analysis of their algorithms. Furthermore, those working on the security of 

quantum technologies, such as quantum cryptography, can investigate how Gaussian Fibonacci 

sequences can be used in this field. 

Quaternions, discovered by William Rowan Hamilton, are the number system that deals 

with the generalization of complex number systems. A quaternion is defined as 

 ,   p a bi cj dk  

where , , , a b c d  and , ,i j k  are quaternion units. 

The conjugate of the quaternion is defined as follows: 

* .   p a bi cj dk  

 Horadam, inspired by William's work, defined Fibonacci and Lucas quaternions in 1963. 

Fibonacci and Lucas numbers took the place of , , ,a b c d  in this study, respectively. Later, in the 

following years, many authors such as [3, 4, 6, 21] worked on Pell, Jacobsthal, Pell–Lucas 

quaternions in addition to Fibonacci and Lucas quaternions. Gauss Fibonacci and Lucas numbers 

were defined by Jordan in [8] with the recurrence relations given below, 

 1 2 0 1,  ,  1    n n nGF GF GF GF i GF  

and 

 1 2 0 1,  2 ,  1 2      n n nGL GL GL GL i GL i  

afterwards their more general forms were discussed by many authors in the following years 

[2, 15, 22, 23]. 

The general terms of these numbers can be obtained more easily by making use of their 

relationship with the Fibonacci and Lucas numbers [8]. Namely: 

 1 n n nGF F iF  

and 

 1. n n nGL L iL  

The fact that quantum calculus has many fields of use such as number theory, combinatorics, 

orthogonal polynomials, fundamental hypergeometric functions, and quantum theory, which is 

seen as a connection between other sciences, mechanics and relativity theory, studies in the  

fields of mathematics and physics have led this field. Based on this effect, many authors have 

worked in this field [1, 5, 11, 13, 14, 16, 17, 19]. Also, Kızılateş et al. [12] introduced higher-

order generalized Fibonacci quaternions with q-integer components, combining q-calculus and 

quaternion theory. Several special cases and properties of these quaternions are also explored. 

In accordance with our purpose, quaternion sequences with component quantum integers for 

a is defined [9]: 

[𝑎]𝑞 =∑𝑞𝑛
𝑎−1

𝑛=0

. 
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If a  is also defined, it is expressed as  

  
1

0

.






  
a

n

q
n

a q  

In particular, let K  be a ring with a unit with the property of associative and q is an element of 

K.  If 1 q  is invertible, then the definitions we discussed above can be more easily formulated. 

Namely in accordance with our purpose, the q-integer of the number a is defined by  

 
1

,  if 1
1

if 1,  

a

q
a

a

q
q

q

q

 


 
   

In the quantum calculus approach, we can express addition and multiplication operations as 

        a

q q q
a b a q b , 

       aq q q
ab a b  

where , a b  and q is invertible element in K. 

For 2

1




q  , the Binet formula for Gaussian Fibonacci and Gaussian Lucas number can be 

expressed in q-integer form as follows: 

    1 2

1 1 1    n n

n q q
QGF n n i  and 

   
1

1 1

[2 ] [2 2]
,

1
  
 
  
 
 

q qn n

n

q q

n n
QGL i

n n
 

where 11    i q  and 1 2,   are roots of characteristic equation for Gaussian Fibonacci 

and Gaussian Lucas numbers. 

2 Gaussian Fibonacci quaternions  

with quantum calculus approach 

In this section, the previously defined quaternion is considered more generally. Throughout this 

section,   n  and 1 q  will be treated as nonzero complex numbers. 

 

Definition 2.1. The n-th q-Gaussian Fibonacci quaternion and n-th q-Gaussian Lucas quaternion 

of the form are as follows, respectively. 

 

              
    
         

1 2 1 1

1 1 1 1 1 1

2 1

1 1

2 2

1 1 1 1

1 1 2 1

3 2

1 1 1 3

     

 

   

   

 

 

         

   

       

n n n n n n

n q q q q q q

n n

q q

n n n n

q q q q

QGF n n i n n i i n n i j

n n i k

n n i n n k

 

and 
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1 1

1 1 1 1

2 1 3 2

1 1 1 1

1 1

1 1

[2 ] [2 2] [2 2] [2 ]

1 1

[2 4] [2 2] [2 6] [2 4]

2 1 3 2

[2 2] [2 2]

1 1

   

   

 

 

   

 

    
      
    
   

      
      
      
   

 
 

 

q q q qn n n n

n

q q q q

q q q qn n n n

q q q q

q qn n

q

n n n n
QGL i i i

n n n n

n n n n
i j i k

n n n n

n n

n n    
1 3

1 1

[2 2] [2 6]

1 3
  

    
    
    
   

q qn n

q q q

n n
i k

n n

 

Theorem 2.2. The Binet’s formula of the q-Gaussian Fibonacci quaternion and q-Gaussian 

Lucas quaternion are as follows, respectively. 

  
 12 * **

1 1 12

1


  



 

n

n

n q

q
QGF n  

and 

 1 * 1 ***

1 1 1 1( ,)     n n

nQGL q  

where 

    

* 2 2 4

1 1 1 1

** 2 2 4

1 1 1 1

*** 2 2 2 2 4 4

1 1 1 1

,

1 3 ,

.

   

   

   

   

    

   

q q

i i k k

i i k k

i q i q k q k

 

Proof. By Definition 2.1, we get 

 

         
               
        

2 2

1 1 1 1

2 2

1 1 1 1

2 2 2 4 2 2 2 4

1 1 1 1 1 1 1 1

1 1 1 3

1 3

1 3 .

   

   

       

 

 

 

       

        

        

n n n n

n q q q q

n n n n n n n n

q q q q q q

n n n

q q q

QGF n n i n n k

n q i n q i n q k n q k

n i i k k q i i k k

 

That is, 

  
 12 * **

1 1 12

1


  



 

n

n

n q

q
QGF n . 

By Definition 2.1, the Binet’s formula of nQGL is 

 

       
1 1 1 3

1 1 1 1

2 2 2 2 2 2 2 6
1 1 1 3

1 1 1 11 1 1 3

1

1

[2 2] [2 2] [2 2] [2 6]

1 1 1 3

1 1 1 1

1 1 1 1

   

   



   

   
   

   



      
      
      
   

          
          

          



q q q qn n n n

n

q q q q

n n n n
n n n n

n n n n

n

n n n n
QGL i k

n n n n

q q q q
i i k k

q q q q

       

   

1 1 1 1 1 3 3

1 1 1

1 2 2 4 1 1 2 2 2 2 4 4

1 1 1 1 1 1 1 1

1 1 1 1

.

  

       

      

  

      

       

n n n n n n n

n n n

q i q i q k q k

i i k k q i q i q k q k

 

That is,  
1 * 1 ***

1 1 1 1( .)     n n

nQGL q  

This completes the proof.  
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Remark 2.3. Binet’s formula of the q-quaternions 𝑄𝐺𝐹𝑛  is written in another forms. 

 

         2 2

1 1 1 1

1 1 1 3
2 2

1 1 1 1

1 2 2 1 2 2 1

1 1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1 1

1 1 1 3

1 1 1 1

1 1 1 1

   

   

      

     

 

   
 

      

       

          
          

          

  
   

  

n n n n

n q q q q

n n n n
n n n n

n n n n n n n n n

QGF n n i n n k

q q q q
i i k k

q q q q

q q q
i i k

q q q

   

 

4 4 3

1

2 2

1 1

1
2 2 4 2 2 2 2 4 41 1
1 1 1 1 1 12 2 2 2

1 1 1 1

* 1 ***

1 1 1 1

2

1

.
1



 

 
     

   

   



  









       
 






n n n

n n n

n n n

q
k

q

q
i i k k i q i q k q k

q q

q

q

 

Theorem 2.4. The exponential generating function for the q-Gaussian Fibonacci quaternions and 

q-Gaussian Lucas quaternions are as follows, respectively, 

 
 

1 1( )* 1 ***

1 1

2

1 1

  








x q x

n

e q e
QGF

q
 

and 

 
1 1( )* *** 1

1 1 .
  






x q x

n

e q e
QGL  

Proof. By using Binet formula of nQGF  and nQGL , we have 

0 !

 





n

x n

n

x
e

n
. 

So, the desired result is obtained. So that, 

 

 

 

 

 

 

   

 

1 1

1 1

* 1 ***

1 1 1 1

2
0 0 1

* 1 ***
1 11 1

2 2
0 01 1

* 1 ***

1 1

2 2

1 1

( )* 1 ***

1 1

2

1

! 1 !

1 ! 1 !

1 1

.
1

 

 

   



  

 

 

 

 



 

 

 

 





 
    

 
 

 
 






 

 

n n nn n

n

n n

n n

n n

x qx

x q x

qx x
QGF

n q n

x qxq

q n q n

q
e e

q q

e q e

q

 

Similarly, 



6 

 

 

   

1 1

1 1

1 * 1 ***

1 1 1 1

0 0

* ***
1 11 1

0 01 1

* ***

1 1

1 1

( )* *** 1

1 1

( )
! !

! !

.

 

 

   

  

 

 

 

 



 
 

 

 

 



 

 

 




 

 

n n
n n

n n

n n

n n

x qx

x q x

x x
QG q

n n

x qx

n q n

e e
q

e q e

 

This completes the proof.  

Remark 2.5. Let 1 2

1

1 5 1
, 

2




 
 q  then Gaussian Fibonacci quaternions are obtained. 

Similarly, for 1 2

1

1
1 2,  




  q  , Gaussian Pell quaternions and for 1

1
2, 

2



 q , Gaussian 

Jacobsthal quaternions are obtained. 

 

Remark 2.6. Let 2

1 1.  q  From the Binet formula of nQGF  and nQGL , 1,  n n ,  

 
 

 
 

 
 

   
 

 

* 1 *** 1 * 1 2 ***

1 1 1 1 1 1 1 1
1 1 12 2

1 1

* 1 2 2 2 2 4 4

1 1 1 1 1 1

2

1

1 * 1 2 2 2 2 4 4

1 1 1 1 1 1 1

2

1

* *

1 1 1 1

2

1

2 *

1 1

1 1

1

1

1

       
 

 

     



      



   



 

   





 



 
  

 

   




    











n n n n n n

n n

n n n

n n n

n n

n

q q
QGF q QGF q

q q

q i q i q k q k

q

q q i q i q k q k

q

q

q

 
(1) 

and 

 
 

 

 
 

 

 

2 2 4 1 ***

1 1 1 1 1 1

1 1 2

1

2 2 4 2 ***

1 1 1 1 1 1

2

1

*** 2

1 1

2

1

2 ***

1 1

1

1

1

1

( )

     




     



 



 











   
 



   











n n n

n n

n n n

n n

n

i i k k q
QGF QGF

q

i i k k q

q

q q

q

q

 
(2) 

multiplying equation (1) and (2) by 1  and 1 , q  respectively, the linearization of nQGF  are 

obtained, so that 

  1 *

1 1 1 1  

 n

n nQGF QGF  

  1 ***

1 1 1 1) ( .  

 n

n nq q QGF QGF  
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Theorem 2.7 The summation identities for nQGF  and nQGL  are as follows: 

(i)   
 

 
2

1 2 1
0

1

,    is even
( )

,    is odd






 


 

   
   

   




m

m m k
m n

n k m
n

m k

QGF mm
q QGF

n
QGL m

 

(ii)  
 

 
2

1 2 1
0

1

,     is even
( )

,     is odd






 


 

   
   

   




m

m m k
m n

n k m
n

m k

QGL mm
q QGL

n
QGF m

 

where 2

1( (1 )) .   q  

Proof. By using Binet formula for nQGF  and nQGL , we have 

 
 

2 * 2 2 1 ***
2 2 1 1 1 1
1 2 1 2

0 0 1

( ) ( )
1

   
 



   
 



 

     
               
 

n k n k n km m
m n m n

n k

n n

m m q
T q QGF q

n n q
. 

Observe that 

 

 

    

2 2 2 2

1 1 1 1

0

2 22 2

1 1 1 1

0

,( ) ( )

( ) ,( )

   

   









 
   

 

 
   

 





m
n

m n m

n

m n
m n m

n

m
q q

n

m
q q q q

n

 

since 

  2 2

1 1 1 1 11 ,        q q  

  
2 2

1 1 1 ,     q q q  

 
 

 
 

 

 

* 1 *** * 1 ***

1 1 1 1 1 1 1 1 1 1 1

2 2

1 1

( ) ( ) ( )
.

1 1

          

 

        
  
  
 

k km k m m k m
mq q q q q q

T
q q

 

If m  is even, then 

  
 

* 1 ***

1 1 1 1

2

1

( )

1

   



   
     

m k m km q q
T

q
  . 

m

m kQGF  

If m  is odd, then 

 

 
 

 

   

 

* 1 ***

1 1 1 1

2

1

* 1 ***

1 1 1 1

1

1
1 * 1 ***

1 1 1 1

1

1

( )

1

( )

( )

.

   



   



   

  

  


   



 

 
     

 
     

  

 

m k m km

m k m km

m
m k m k

m

m k

q q
T

q

q q

q

QGL

 

The other proof is done similarly.  
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Theorem 2.8.  Let .m  Then  

(i)   2

1 1 2

0

1 ( ) ,  



 
      

 


m
n m n

n m

n

m
q q QGF QGF

n
 

(ii)    2

1 1 2

0

1 ( ) .  



 
      

 


m
n m n

n m

n

m
q q QGL QGL

n
 

Proof. (i) By using Binet formula for nQGF  and nQGL , we get 

 

 

 
 

 
 

 

2

1 1

0

* 1 ***
2 1 1 1 1

1 1 2
0 1

* 1
2 2 2 21
1 1 1 12

0 01

1 ( )

( )
1 ( )

1

1 ( ) 1 ( )
1

 

   
 



 
   













 

 

 
      

 

   
             

    
                    





 

m
n m n

n

n

n nm
n m n

n

m m
n n

m n m n

n n

m
T q q QGF

n

m q q
q q

n q

m m q
q q q q q

n nq  

 
 

 
 

***

1

2

1

2 2 1 ****
1 12 1

1 22 2

1 1

1

.
1 1



 


 



 
   

 
      

m

m

m

q

q q
QGF

q q

 

The other proof is done similarly.  

 

Theorem 2.9. Let 2n  be integer. Then it holds that 

 

1

1 2 1

1 3 2

.
1 1

1 0







    
    

    

n

n n

n n

QGF QGF QGF QGF

QGF QGF QGF QGF
 

Proof. The proof can be easily seen through induction.  

 

Theorem 2.10 (Catalan identity). Let , ,  m k m k  then we have 

  
 

 

2
1 2 4 * ***

2 1 1 1

2

1

1

    

 

 
 



k m k m

m k m k m

q q
QGF QGF QGF

q
 

and 

    
22 * *** 2 2 1

1 1 1 1 .     

    m m k k

m k m k mQGL QGL QGL q q  

Proof. The Binet formula for the 𝑄𝐺𝐹𝑛 and after some algebraic operations, we get the following 

equation: 

 

     

  

2
* 1 *** * 1 *** * 1 ***

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2

1 1 1

2 1 * *** 2 1 * *** 2 1 * ***

1 1 1 1 1 1 1 1 1

2
2

1

1 2 * ***

1 1 1

( ) ( ) ( )

1 1 1

2

1

           

  

        



  

      

    

 

      
              

  







m k m k m k m k m m

m m k m m k m m

m m k

q q q q q q

q q q

q q q

q

q q 

  

 
 

2
1 2 4 * ***

1 1 1

2 2
2

1

2 1
.

11

  



     




k k m k mq q q

qq

 

The other proof is done similarly.  
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Theorem 2.11 (Cassini identity). For 1m the following equation hold. 

  
 

 

2 2 2 4 * ***
2 1 1 1

1 1 2

1

1

   

 

 
 



m m

m m m

q q
QGF QGF QGF

q
 

and 

    
2 2* *** 2 2 2

1 1 1 1 1 .1    

    m m

m m mQGL QGL QGL q q  

Proof. A special case for 1k  of Theorem 2.10 the proof is done.   

 

Theorem 2.12 (d’Ocagnes identity). Let , , m n 1, m n  then we have 

 
 

 

* *** 3 1

1 1 1

1 1

1

1

      

 


 



m n m n n

m n m n

q q
QGF QGF QGF QGF

q
 

and 

   * *** 1 1

1 1 1 1 1 1 .      

    m n m n n n

m n m nQGL QGL QGL QGL q q q  

Proof. The Binet formula for the nQGF  and after some algebraic operations we get the following 

equation 

       

 

  

* 1 *** 1 * 1 1 *** 1 * 1 1 *** * 1 ***

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2

1 1 1 1

* *** 1 1 1 * ***

1 1 1 1 1 1

2
2

1

( ) ( ) ( ) ( )

1 1 1 1

1

               

   

     



       

   

        
                  

   
 



m m n n m m n n

m n n m n m m

q q q q q q q q

q q q q

q q q q

q

  

  

 
 

1 1

2
2

1

* *** 3 1

1 1 1

1

1

1

1



  

   

   

 








n m n n n

m n m n n

q q q

q

q q

q

 

as desired. The other proof is done similarly.  

3 Gaussian Fibonacci quaternion polynomials  

with quantum calculus approach 

In this section, we get q-Gaussian Fibonacci ( )nQGF x  and q-Gaussian Lucas polynomials 

( ).nQGL x  Based on the definitions, important results of these polynomials are obtained. 

 

Definition 3.1. Let   u x  and   v x  be polynomials with complex coefficients. The q-Gaussian 

polynomials  nQGF x  and  nQGL x  are defined by the recurrence relation  

         

         

2 1

2 1

, 

 

 

 

n n n

n n n

QGF x u x QGF x v x QGF x

QGL x u x QGL x v x QGL x
 (3) 

with initial conditions  1 1, QGF x     2  QGF x u x i  and    1 2 ,   QGL x u x i

 2  QGL x     2 2 ,  u x u x i respectively. 
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If we take    u x x  and    1 v x , we get Gaussian Fibonacci polynomials and Gaussian 

Lucas polynomials [18]. 

Similarly, if we take   2u x x  and   1 v x , we get Gaussian Pell polynomials [7].  

Let the roots of the characteristic equation 

    2 0  t u x t v x  

of the recurrence (3) be 

  
     

 
     2 2

1 2

4 4
, ,

2 2
 

   
 

u x u x v x u x u x v x
t t  

then Binet formula for q-Gaussian polynomials  nQGF x   and  nQGL x  are 

  
   

   

   

   

1 1

1 1 2 2

1 2 1 2

   

   

  
 

 

n n n n

n

t i t t i t
QGF x

t t t t
 

and  

            1 1

1 1 2 2 .       n n n n

nQGL x t i t t i t  

Definition 3.2. The q-Gaussian quaternion polynomials ( )nQGF x  and ( )nQGL x  are defined by 

the recurrence relation, 1n  

 
         

         

1 2 3

1 2 3

,

.

  

  

   

   

n n n n n

n n n n n

QGF x QGF x iQGF x jQGF x kQGF x

QGL x QGL x iQGL x jQGL x kQGL x
 

The initial conditions of q-Gaussian quaternion polynomials sequence ( )nQGF x  are 

 

         

          
         

                 

1 1 2 3 4

3

2 2 3 4 5

2 4 2 2 2

2 ,

3 .

   

   

   

      

QGF x QGF x iQGF x jQGF x kQGF x

u x i u x u x u x v x k

QGF x QGF x iQGF x jQGF x kQGF x

u x v x i u x u x u x v x v x v x k

 

The initial conditions of q-Gaussian quaternion polynomials sequence ( )nQGL x  are 

         

                     
1 1 2 3 4

2 3 2 4 24 2 2 3 4 2 ,

   

        

QGL x QGL x iQGL x jQGL x kQGL x

i u x i u x u x u x v x j u x v x u x u x v x k
 

         

                     

                

2 2 3 4 5

3 2 2 2

5 3 3 2

2 2 3 2 2 2 2

2 3 7 .

   

        

    

QGL x QGL x iQGL x jQGL x kQGL x

v x u x u x u x v x i u x u x v x v x v x j

u x u x u x v x u x v x u x v x k
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Theorem 3.3. The generating functions for the q-Gaussian quaternion polynomials  nQGF x  

and  nQGL x  are as follows, respectively. 

  
       

   

2

1 2 1*

21

   
 

n

QGF x s QGF x u x QGF x s
QGF s

u x s v x s
 

and 

  
       

   

2

1 2 1*

2
.

1

   
 

n

QGL x s QGL x u x QGL x s
QGL s

u x s v x s
 

Proof. The form of the generating function  *

nQGF s  for the q-Gaussian quaternion polynomials 

 nQGF x  is  
1

. 





n

n

n

QGF x s  Then the power series expansion of    u x s  and   2 v x s  will be 

    1

1







n

n

n

u x QGF x s  and     2

1

 







n

n

n

v x QGF x s , respectively. Thus, we obtain that 

               2 * 2

1 2 11       nu x s v x s QGF s QGF x s QGF x u x QGF x s  

and so 

  
       

   

2

1 2 1*

21

   
 

n

QGF x s QGF x u x QGF x s
QGF s

u x s v x s
 

The generating function of q-Gaussian quaternion polynomials  nQGL x  is 

  
       

   

2

1 2 1*

2
.

1

   
 

n

QGL x s QGL x u x QGL x s
QGL s

u x s v x s
 

Theorem 3.4. The Binet formulas for   nQGF x  and    nQGL x are as follows, respectively. 

  
       

   

1 1

1 1 2 2

1 2

   

 

 




n n

n

t t t t
QGF x

t t
 

and  

          1 1

1 1 2 2 ,     n n

nQGL x t t t t  

where 

                2 2 4 2 2 4

1 1 1 1 2 2 2 2,   .              t i t i t k t k t i t i t k t k  

The following relations can be obtained: 

 

       

       

            
           

2 1 1 2

2 2 1 1

2 1 1 2 2 1

2 2 1 1 1 2( ).

 

 

   

   

 

 

  

  

QGF x t QGF x t

QGF x t QGF x t

QGL x t QGL x t t t

QGL x t QGL x t t t
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Theorem 3.5. For  nQGF x  and   ,nQGL x  1n , we have the following summation formula 

(i)          2

0





 
m

m n n

n m

n

v x u x QGF x QGF x  

(ii)           2

0

.




 
m

m n n

n m

n

v x u x QGL x QGL x  

 

Proof. (i) For the Binet formula for  nQGF x , we get 

 

     
       

   

     
   

   
     

   

   

      
   

   
      

   

   

       

   
 

1 1

1 1 2 2

0 1 2

1 1

1 1 2 2

0 01 2 1 2

1 1

1 1 2 2

1 1

1 2 1 2

2 1 2 1

1 1 2 2

2

1 2

.

   

 

   

   

   
 

   

   

 

 




 
 

 

 

 






   
 

     
 


 





 

n nm
m n n

n

n nm m
m n n m n n

n n

n n
m m

m m

m

t t t t
v x u x

t t

t t t t
v x u x v x u x

t t t t

t t t t
v x u x t v x u x t

t t t t

t t t t
QGF x

t t

 

The proof of (ii) is done similarly.  

3 Conclusion 

In this study, Quantum calculus approach to Gaussian Fibonacci and Gaussian Lucas recurrences 

with polynomials were created. Then the corresponding Binet formula of these sequences and 

many related properties were obtained. Also, several additive formulas of these new sequences 

were obtained. This work can be applied to different number sequences, as well as to expanding 

the p-analogue part to create (p, q)-analogue number sequences. This work can be placed in the 

historical perspective going back to Leonard Carlitz of Duke University. 

Research on the relationship between Gaussian Fibonacci numbers and quantum numbers 

can lead to both a deeper theoretical understanding and the development of new methods for 

practical applications. This could contribute to the further advancement of quantum 

technologies. Also, this work can contribute to the literature in number theory, mathematical 

physics, cryptography, signal processing and other fields. In particular, it can offer new 

perspectives in the analysis and applications of complex systems. 
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