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Abstract: The Gessel number P(n,r) is the number of lattice paths in the plane with (1,0) and
(0,1) steps from (0,0) to (n + r,n + r — 1) that never touch any of the points from the set
{(z,x) € Z* : x > r}. We show that there is a close relationship between Gessel numbers
P(n,r) and super Catalan numbers 7'(n, 7). A new class of binomial sums, so called M sums, is
used. By using one form of the Pfaff—Saalschiitz theorem, a new recurrence relation for M sums
is proved. Finally, we prove that an alternating convolution of Gessel numbers P(n, ) multiplied
by a power of a binomial coefficient is always divisible by %T (n,r).

Keywords: Gessel number, Super Catalan number, M sum, Catalan number, Pfaff—Saalschiitz
theorem.
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1 Introduction

Let n be a non-negative integer, and let r be a fixed positive integer. Let the number P(n,r)

denote 5 (®*")(*"). We shall call P(n,r) the n-th Gessel number of order r-

It is known that P(n, r) is always an integer. It has an interesting combinatorial interpretation,

since the Gessel number P(n, ) [6, p. 191] counts lattice paths in the plane with unit horizontal
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and vertical steps from (0,0) to (n + r,n + r — 1) that never touch any of the points (r,7),
(r+1,r+1),....

Recently [16, Theorem 5, p. 2], it has been shown that P(n, r) is also equal to the number of
lattice paths in the plane with (1,0) and (0, 1) steps from (0,0) to (n + r,n 4+ r — 1) that never
touch any of the points from the set {(z,z) € Z* : 1 < x < n}, where n and r are natural

numbers.
Let C, = n+r1 (2:) denote [14, Chapter 5, p. 103] the n-th Catalan number, and let T'(n, r) =

2n 2r
% denote the n-th super Catalan number of order r. Obviously, P(n, 1) = C,,. Furthermore,

n

it is readily verified that
P(n,r) = (

It is known that T'(n,r) is always an even integer except for the case n = r = 0. See

nrre 1) %T(n,r). 1)

n

[1, Introduction] and [3, Eq. (1), p. 1]. For only a few values of r, there exist combinatorial
interpretations of T'(n,r). See for example [1, 3, 4, 12,22, 24]. The problem of finding a
combinatorial interpretation for super Catalan numbers of an arbitrary order r is an intriguing
open problem.

By using Eq. (1), it follows that P(n, r) is an integer. Note that Gessel numbers P(n,r) have
a generalization [11, Eq. (1.10), p. 2]. Also, itis known [6, p. 191] that, for a fixed positive integer
r, the smallest positive integer K. such that

K, (2n) : . . (2
g ( n) is an integer for every n, is equal to 3 ( ! )

Let us consider the following sum:

e(2n,m,r—1) = Z(—l)k (%:L) P(k,r)P(2n — k,r), (2)

k=0
where m is a positive integer.

For r = 1, the sum in Eq. (2) reduces to

2n

9 m

k=0

Recently, by using a new method, it has been shown in [19, Cor. 4, p. 2] that the sum ¢(2n,m, 0)
is divisible by (2:) for all non-negative integers n and for all positive integers m. In particular,
v(2n,1,0) = C, (2:) See for example, [20, Th. 1, Eq. (2)], [23], and [5]. Gessel numbers
appear [19, Eq. (68), p. 17] in this proof.

By using Eq. (1), the sum (2n, m,r — 1) can be rewritten, as follows:

2n m
g 2n k+r—1\/2n—k+r—1\1 1
> (-1 (k) ( L > ( on 1 )§T(k,r)§T(2n — k7). 4)

k=0

Let ¥(2n,m,r — 1) denote the sum

S (-1 (2;) T(k,r)-T(2n — k, 7). (5)

k=0
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Recently, by using a new method, it has been shown in [18, Th. 3, p. 3] that the sum
U(2n,m,r — 1) is divisible by T'(n,r) for all non-negative integers n and m. In particular,
Y(2n,1,r —1)=T(n,r)-T(n+r,n). See [18, Th. 1, Eq. (1), p. 2].

Also, it is known [17, Th. 12] that the sum > 5~ (= 1) (%)™ ("*7=1) (*";5+7=1) is divisible

by lem( (2:), (”+;_1)) for all non-negative integers n and all positive integers m and 7.

Our main result is as follows.

Theorem 1. The sum ¢(2n, m,r —1) is always divisible by 3T (n, ) for all non-negative integers

n and for all positive integers m and r.

In order to prove Theorem 1, we use a new class of binomial sums [17, Eqns. (27) and (28)]
that we call M sums.

Definition 2. Let n and a be non-negative integers, and let m be a positive integer. Let
S(n,m,a) = Y p_, ()" F(n, k,a), where F(n,k,a) is an integer-valued function. Then the
M sums for the sum S(n, m, a) are as follows:

N N—2j . t

— -2

Ms(n, j t;a) = <nj ]) Z (n . ‘7) (j—tv) F(n,j+v,a), (6)
v=0

where j and ¢ are non-negative integers such that j < |7 |.
Obviously, equation [17, Eq. (29)]
S(n,m,a) = Ms(n,0,m — 1;a) (7)

holds.
Let n, 7, t, and a be the same as in Definition 2.
It is known [17, Th. 8] that M sums satisfy the following recurrence relation:

1252)

Ms(n, j,t + 1;a) = (?) 3 (n;j)Ms(n,jert;a)- @®)

u=0

Moreover, we shall prove that M sums satisfy another interesting recurrence relation.

Theorem 3. Let n and a be non-negative integers, and let m be a positive integer. Let R(n, m, a)

i (Z)ma(n, k,a),

k=0

denote

where G(n, k,a) is an integer-valued function. Let QQ(n, m,a) denote
> (}) k)
k=0

where H(n, k,a) = (“:k) (aJ”;_k)G (n, k,a). Then the following recurrence relation is true:

Mo(ngoia) = (T ("IN (D)) dtatni - tval )
l

a ) a—1
-0
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Note that by using the substitution £ = v + j, Eq. (6) becomes

Ms(n, j,t; a) = (" J_J) ni (’;__2]‘7) (Z)tF(n, k,a). (10)

k=j

From now on, we use Eq. (10) instead of Eq. (6).

2 Background

In 1998, Calkin proved that the alternating binomial sum S;(2n,m) = iio(—l)k(zg)m is
divisible by (25) for all non-negative integers n and all positive integers m. In 2007, Guo, Jouhet,
and Zeng proved, among other things, two generalizations of Calkin’s result [10, Thm. 1.2, Thm.
1.3, p. 2]. In 2018, Calkin’s result [2, Thm. 1] was proved by using D sums [15, Section 8]. Note
that there is a close relationship between D sums and M sums [17, Eqns. (9) and (19)].
Recently, Calkin’s result [2, Thm. 1] has been proved by using M sums [17, Section 5]. In

particular, it is known [17, Eqns. (22) and (25)] that

0, if0<j<n,
(_1)n’ ifj=n,

Mg, (2n,7,1) = (—1)" (2:) G)

Both M sums and D sums give an elementary proof of Dixon’s formula. See for example

MS1 (ZTL, ja O) =

[17, Section 5, Eq. (25)] for a proof using M sums. See also [9, Introduction].
By using M sums, it has been shown [17, Section 7] that the sum

s =3 (1) (1) (504

is divisible by lem ((“*"), (")) for all non-negative integers n and a and for all positive integers

a n

m. In particular, it is known [17, Eqns. (52) and (57)] that

Mg, (2n, j, 0;) = (=1)" ( . n) ( jj) (n - J)’

m\ <2 [ n jtu\[a+j+u a+n
Mg, (2n,7,1;a) = (—1)" .
Remark 4. Note that there is a minor error in [17, Eq. (52)]. The number (—1)""7 should be
replaced by (—1)". Similarly, the number (—1)"~7=% in [17, Eq. (57)] should be replaced by

(=1)"
By using D sums, it has been shown in [19, Thm. 1] that the sum
2n m
2n 2k\ (2(2n — k)
Ss(2 =) (-1)*
s(2mm) =) _(-1) ) )
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is divisible by (27?) for all non-negative integers n and for all positive integers m. The same result
can also be proved by using M sums. It can be shown that

M, (2, ,0) = (—1)] <2:> <2j]) (2(:__3‘7)) (11)

Note that Eq. (11) is equivalent to [19, Eq. (12)].

Recently, it has been shown by using D sums [18, Th. 3, p. 3] that ¥(2n, m, [ — 1) is divisible
by T'(n, () for all non-negative integers n and m. The same result can also be proved by using
M sums. Let [ be a positive integer and let n and j be non-negative integers such that j < n. Itis
readily verified [17, Eq. (91)] that

(E ) CR )

MW(Qnaja 07 [ — 1) = (_I)J (n_H) (2n+l—j) (12)
Furthermore, by using [18, Eq. (103)] and [17, Eq. (33)] it can be shown that
n—j . .
L ; n ; _ 2+ v)\ (n—7
Maton . 1511) = 027D () S st (1) (7)) 09

The rest of the paper is structured as follows. In Section 3, we give a proof of Theorem 3 by
using one variant of the Pfaff—Saalschiitz theorem. In Section 4, we give a proof of Theorem 1.
Our proof of Theorem 1 consists of two parts. In the first part, we prove that Theorem 1 is true
for m = 1. In the second part, we prove that Theorem 1 is true for all positive integers m such
that m > 2.

3 Proof of Theorem 3

We use three known binomial formulae.
Let a, b, and ¢ be non-negative integers such that a > b > c. The first formula [14, Eq. (1.4),

()= ()60 "

Let a, b, m, and n be non-negative integers. The second formula is one variant of the
Pfaff—Saalschiitz theorem (see [25, p. 243] and [7, Introduction]):

min(m,n)
a b a+b+k a+n\[(b+m
I RN [ R0 G B 0 [ B

Remark 5. Eq. (15) is equivalent to the triple binomial identity [8, Eq. (5.28), p. 171]; it was
first proved by J. Pfaff [21]. See also [13, Ex. 31, p. 7] and [26, Problem 14, p. 4].

p.5]is

The third formula is the symmetry [14, Thm. 1.1, p. 4] of binomial coefficients
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Proof. By setting S := () and ¢ := 0 in Eq. (10), it follows that

S 5 8 [/ GO PO LY

By using the symmetry of binomial coefficients and Eq. (14), it follows that

(EDC) e

By using Eq. (17), Eq. (16) becomes

i =3 ()55 ) L)L enso

k=j

SEDETE e o

By using the symmetry of binomial coefficients and Eq. (18), it follows that

(a—i—n—k)( n—k‘):(a%—n—‘k)(a%‘—j). (19)
a n—k—j a+) J

By using Eq. (19), Eq. (18) becomes
n—j\[(fa+n—=Fk\ (fa+k
. 2
GO emsa e

Mo(n, j,0;0) = <“;‘7)
By settingm :=a+ j,n:=a,a:=n—k,b:=k — j,and k := [ in Eq. (15), we obtain that
a+j a — a+j—1)\a—1 l
By using Eqns. (20) and (21), it follows that Mg (n, j,0; a) is equal to
N nN—J . a . .
a+J n—7j n—k E—3\(n—j+I
G(n,k,a). 22
( j >kz_](k—J>Z(a+j—l)(a—l)< )o@

In order for any summand on the right side of Eq. (21) to be nonzero, the following inequality
must hold:

h

B
II

J

n—k>a+j5—1,or
E<n—j—a+l. (23)

Similarly, in order for any summand on the right side of Eq. (22) to be nonzero, the following
inequality must hold:

k—j3>a—1,or
k>a+j—1. (24)
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By changing the order of summation in Eq. (22) and by using inequalities (23) and (24), it
follows that Mg (n, j,0; a) is equal to

. a . n—(a+j—1) . .
a+7 n—j+1 n—j n—k k—j
( j )ZZ;( l )k;_l (k—j>(a+j—l)<a—z)G("’k’a>‘ (25)

By using the symmetry of binomial coefficients and Eq. (14), it follows that
TL—]: n—k: _ n—.j n—a—Q.j—I—l ' 26)
k—j/)\a+j—1 a+yj—1 k—j

By using Eqns. (22) and (26), it follows that M (n, j,0; a) is equal to

(a+j)za:<n—j+l>< n—j )”“Z“’><n—a—zj+z><k—j)0(nka> o
i )&= l a+j—1 k—j a—1 S

k=a+j—1

By using the symmetry of binomial coefficients and Eq. (14), it follows that
n—a—25+10\ (k-7 n—a—25+10\(n—2a—25+2l
. = : - (28)
k— a—1 a—1 k—j—a+l
By using Eqns. (27) and (28), it follows that Mg (n, 7, 0; a) is equal to

. a . . . n—(a+j—1) .
a+j n—j+I n—j n—a—2j+I n—2a—2j+2l
(D)2 2 (R em . e

1=0 k=a+j—1

Again, by using the symmetry of binomial coefficients and Eq. (14), it follows that
n—‘j n—a—=2j+1\ _(n—j n—.(j+a—l) . 30)
a+j—I a—1 a—1 jH+a—1
By using Eqns. (29) and (30), it follows that Mg (n, j, 0; a) is equal to

98 ol G [ [ Gl B i i) EECE R

=0 k=a+j—1

Note that, by setting S := R, F' := G, j :== j+a —[,and ¢t := 0 in Eq. (10), it follows that

. n—(a+j—1) .
, n—G+a—1) n—2a+j—1)
Mg(n,j+a—1,0;a) = ( , ) g ( ‘ G(n,k,a). (32)
jt+a—1 Nl k—(G+a—1)

Hence, by using Eqns. (31) and (32), it follows that

: a+iN\~=(n—j+0\(n—3j :
MQ(n,J,O;a)—< J)Z( lj )(a_?)MR(n,Jﬂta—l,O;a)-

J =0

This completes the proof of Theorem 3.
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4 Proof of Theorem 1

Let the function ¢(2n, m,r — 1) be defined as in Eq. (4).
Let us consider the following sum

o(2n,m,r —1) = i@(Qn,m, r—1). (33)

By Eq. (5), Eq. (33) becomes

2n m
S(2n,m,r — 1) = g(_l)k (2;) . %T(k, ") %T(Qn — k7). (34)
Note that, since r is a positive integer, both numbers $7'(k,r) and 57(2n — k, r) are integers.
Therefore, the sum ¢(2n, m,r — 1) is a sum from Definition 2.
Now we can apply Theorem 3. By setting () := ¢, n := 2n,a :=r — 1, R := ¢ and
G(@2n,k,r — 1) := (=1)* - IT(k,r) - 1T(2n — k,r) in Theorem 3, it follows by Eq. (9) that
M,(2n,7,0;7 — 1) is equal to

. r—1 . .
1 m—i+1\ [ 2n—
(jﬂ. )Z(nZ‘H)(Tfl_JZ>M¢(2n,j+r—1—l,o;r—1). (35)

J 1=0
By Eqns. (6) and (33), it follows that

1

By setting ¢ := 0 and [ := r in Eq. (12) and by using Eq. (36) and the definition of super
Catalan numbers, we obtain that

29\ (2(n+r—7)\ (2n—j
1 () et )

My(2n,5,0;7 — 1) = (=1)7 =T 272 nhr) fan 37

(207 = 1) = (15T r) @

By using Eq. (37), it follows that the sum My(2n,j +r — 1 —1,0;7 — 1) is equal to

2(j+r—1=1)\ (2(n—jF+I+1)\ (2n—j—r+I+1
~r771 ('r——)(n—‘ )( n )

(DG ) . (38)

By using the symmetry of binomial coefficients and Eq. (14), it follows that

2n —j 2n—j—r+Il+1\ (2n—j n—j
(T—l—l)( n )—( n )(r—l—l) 39

By using Eqns. (38) and (39), it follows that the sum (2"711) M,2n,j4+r—1—-1,0;r —1)

r—1—

is equal to

(40)

on — 7\ CYT) O (M)
n 9 (2n—j+l+1) :

n

Jj+r—1-1 1
(13
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By using Eqns. (35) and (40), it follows that the sum M, (2n, j,0;r — 1) is equal to

(Y L eV (e G P ()
(—1)]+ 1(] . )—T(n,r)( ])Z( 1) ( l.] ) Jj+r—1-1 2n_ji<l:l_41»1 1—1 ‘

i )2 n. )i 2
41)

By setting j := 0 in Eq. (41), we obtain that
M,(2n,0,0;r — 1) (42)

= (=1)" 11T (n,r (2”) - (2n+l) (QT 11:11)( élejll)(r— )
2 n ) = 2

- (2n+l+1)

— T S G (s T
)

1=0
r—1
2n+1 r—1-1)
7" 1
= T

tgren e () ()
By using Eq. (41), it follows that the sum M,(2n,0,0;r — 1) is divisible by 17'(n,r).
By setting n :=2n, m :=1, S := ¢, and a := r — 1 in Eq. (7), we obtain that

?’L+l+l
n-‘rH—l
r— l _ 1 2 2n+l+1

1
7 [+1). @
- r—l—1>2 (n,nt141). @43)

o(2n,1,r — 1) = M,(2n,0,0;r — 1). (44)

By using Eqns. (43) and (44), it follows that the sum ¢(2n, 1, — 1) is divisible by %T(n, T).
This completes the proof of Theorem 1 for the case m = 1.

Let us calculate the sum M, (2n, j,1;r — 1), where n and j are non-negative integers such
that 7 < n.

By setting n :=2n, S := ¢, t := 0, and @ := r — 1 in Eq. (8), we obtain that

n—j .
om\ (2n —
M, (20, Lr—1) =Y (j”) ( ”u j)M@(Qn,j o, 0 — 1), (45)
u=0

By using the symmetry of binomial coefficients and Eq. (14), it follows that

OE-6EI) -

By using Eqns. (45) and (46), it follows that

n—j
9
M,(2n,j,1;7r — (j + “> ( " )MW(Qn,j +u,0;r — 1) (47)

—~ U 2n—j3 —u

By using Eq. (41), it follows that the sum (, *"_ )M, (2n,j + u,0;r — 1) equals

J—u

2 2n —j — , ' —1\1
" PTITUY (e (JEUETER) S, .
2n—j3 —u n 7+ u 2

Gy (2= =k ) CRREEED) GOt ()
' Z(_ ) l 2(2n—j—u+l+1) :

n

(48)
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By using the symmetry of binomial coefficients and Eq. (14), it follows that

(b 5-) )= GO0 w

2n
2n—j—u

1 n , o fjFtu+r—1 — 2n—j—u+l
g7 (e (TR S ey )
2 Jtu Jtu . [ (50)

0
2(j 1 —j—u\1
( Gtutr l))(n J U)ET(n,n—j—u—l—l—l-l).

By using Eqns. (48) and (49), it follows that the sum ( )My(2n,j + u,0;7 — 1) equals

jtu+r—1-—1
Hence, by using the Eq. (50), we obtain that

9 1
(Qn —?— U) My(2n,5 +u,0;r —1) = §T(n,7”) ce(n,j +u,r—1), 1)

where ¢(n, j + u,r — 1) is always an integer.
By using Eq. (51), Eq. (47) becomes

n—j

] :
M,(2n,7,1;r—1) = §T(n, r) (J :u) c(n,j+u,r—1). (52)
=0

IS

By Eq. (52), it follows that the sum M,(2n,j,1;7 — 1) is divisible by $7'(n,r) for all
non-negative integers n and j such that j < n, and for all positive integers r. By using Eq. (8) and
the induction principle, it can be shown that the sum M, (2n, j, ¢;r — 1) is divisible by 27'(n, )
for all non-negative integers n and j such that j < n, and for all positive integers r and .

By setting S := o, n :=2n,m :=t+ 1,and a := r — 1 in the Eq. (7), it follows that

e2n,t+ 1,7 —1) = My(2n,0,t;7r — 1). (53)

Since t > 1, it follows that ¢ + 1 > 2. By Eq. (52), it follows that the sum ¢(2n, m,r — 1) is
always divisible by %T(m r) for all non-negative integers n, and for all positive integers m and r
such that m > 2. This completes the proof of Theorem.

Remark 6. See also [17, Section 4] for an additional insight of how the method of M sums works.
Forr =1, by using Theorem 1 and the fact %T(n, 1) = C,, it follows that the sum @(2n, m,0) is
divisible by C,,. Therefore, for r = 1, the result of Theorem 1 is weaker than the result that sum
©(2n,m,0) is divisible by (2:) [19, Cor. 4, p. 2]. However, for n = 3, r = 2, and m = 1, the
sum @(2n, m,r — 1) is neither divisible by (") nor by T(n, ).
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