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Abstract: The Gessel number P (n, r) is the number of lattice paths in the plane with (1, 0) and
(0, 1) steps from (0, 0) to (n + r, n + r − 1) that never touch any of the points from the set
{(x, x) ∈ Z2 : x ≥ r}. We show that there is a close relationship between Gessel numbers
P (n, r) and super Catalan numbers T (n, r). A new class of binomial sums, so called M sums, is
used. By using one form of the Pfaff–Saalschütz theorem, a new recurrence relation for M sums
is proved. Finally, we prove that an alternating convolution of Gessel numbers P (n, r) multiplied
by a power of a binomial coefficient is always divisible by 1

2
T (n, r).
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1 Introduction

Let n be a non-negative integer, and let r be a fixed positive integer. Let the number P (n, r)

denote r
2(n+r)

(
2n
n

)(
2r
r

)
. We shall call P (n, r) the n-th Gessel number of order r.

It is known that P (n, r) is always an integer. It has an interesting combinatorial interpretation,
since the Gessel number P (n, r) [6, p. 191] counts lattice paths in the plane with unit horizontal
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and vertical steps from (0, 0) to (n + r, n + r − 1) that never touch any of the points (r, r),
(r + 1, r + 1), . . . .

Recently [16, Theorem 5, p. 2], it has been shown that P (n, r) is also equal to the number of
lattice paths in the plane with (1, 0) and (0, 1) steps from (0, 0) to (n + r, n + r − 1) that never
touch any of the points from the set {(x, x) ∈ Z2 : 1 ≤ x ≤ n}, where n and r are natural
numbers.

Let Cn = 1
n+1

(
2n
n

)
denote [14, Chapter 5, p. 103] the n-th Catalan number, and let T (n, r) =

(2nn )(
2r
r )

(n+r
n )

denote the n-th super Catalan number of order r. Obviously, P (n, 1) = Cn. Furthermore,

it is readily verified that

P (n, r) =

(
n+ r − 1

n

)
1

2
T (n, r). (1)

It is known that T (n, r) is always an even integer except for the case n = r = 0. See
[1, Introduction] and [3, Eq. (1), p. 1]. For only a few values of r, there exist combinatorial
interpretations of T (n, r). See for example [1, 3, 4, 12, 22, 24]. The problem of finding a
combinatorial interpretation for super Catalan numbers of an arbitrary order r is an intriguing
open problem.

By using Eq. (1), it follows that P (n, r) is an integer. Note that Gessel numbers P (n, r) have
a generalization [11, Eq. (1.10), p. 2]. Also, it is known [6, p. 191] that, for a fixed positive integer
r, the smallest positive integer Kr such that Kr

n+r

(
2n
n

)
is an integer for every n, is equal to r

2

(
2r
r

)
.

Let us consider the following sum:

φ(2n,m, r − 1) =
2n∑
k=0

(−1)k
(
2n

k

)m

P (k, r)P (2n− k, r), (2)

where m is a positive integer.
For r = 1, the sum in Eq. (2) reduces to

φ(2n,m, 0) =
2n∑
k=0

(−1)k
(
2n

k

)m

CkC2n−k. (3)

Recently, by using a new method, it has been shown in [19, Cor. 4, p. 2] that the sum φ(2n,m, 0)

is divisible by
(
2n
n

)
for all non-negative integers n and for all positive integers m. In particular,

φ(2n, 1, 0) = Cn

(
2n
n

)
. See for example, [20, Th. 1, Eq. (2)], [23], and [5]. Gessel numbers

appear [19, Eq. (68), p. 17] in this proof.
By using Eq. (1), the sum φ(2n,m, r − 1) can be rewritten, as follows:

2n∑
k=0

(−1)k
(
2n

k

)m(
k + r − 1

k

)(
2n− k + r − 1

2n− k

)
1

2
T (k, r)

1

2
T (2n− k, r). (4)

Let Ψ(2n,m, r − 1) denote the sum

2n∑
k=0

(−1)k
(
2n

k

)m

T (k, r) · T (2n− k, r). (5)
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Recently, by using a new method, it has been shown in [18, Th. 3, p. 3] that the sum
Ψ(2n,m, r − 1) is divisible by T (n, r) for all non-negative integers n and m. In particular,
Ψ(2n, 1, r − 1) = T (n, r) · T (n+ r, n). See [18, Th. 1, Eq. (1), p. 2].

Also, it is known [17, Th. 12] that the sum
∑2n

k=0(−1)k
(
2n
k

)m(k+r−1
k

)(
2n−k+r−1

2n−k

)
is divisible

by lcm(
(
2n
n

)
,
(
n+r−1

n

)
) for all non-negative integers n and all positive integers m and r.

Our main result is as follows.

Theorem 1. The sum φ(2n,m, r−1) is always divisible by 1
2
T (n, r) for all non-negative integers

n and for all positive integers m and r.

In order to prove Theorem 1, we use a new class of binomial sums [17, Eqns. (27) and (28)]
that we call M sums.

Definition 2. Let n and a be non-negative integers, and let m be a positive integer. Let
S(n,m, a) =

∑n
k=0

(
n
k

)m
F (n, k, a), where F (n, k, a) is an integer-valued function. Then the

M sums for the sum S(n,m, a) are as follows:

MS(n, j, t; a) =

(
n− j

j

) n−2j∑
v=0

(
n− 2j

v

)(
n

j + v

)t

F (n, j + v, a), (6)

where j and t are non-negative integers such that j ≤ ⌊n
2
⌋.

Obviously, equation [17, Eq. (29)]

S(n,m, a) = MS(n, 0,m− 1; a) (7)

holds.
Let n, j, t, and a be the same as in Definition 2.
It is known [17, Th. 8] that M sums satisfy the following recurrence relation:

MS(n, j, t+ 1; a) =

(
n

j

) ⌊n−2j
2

⌋∑
u=0

(
n− j

u

)
MS(n, j + u, t; a). (8)

Moreover, we shall prove that M sums satisfy another interesting recurrence relation.

Theorem 3. Let n and a be non-negative integers, and let m be a positive integer. Let R(n,m, a)

denote
n∑

k=0

(
n

k

)m

G(n, k, a),

where G(n, k, a) is an integer-valued function. Let Q(n,m, a) denote

n∑
k=0

(
n

k

)m

H(n, k, a),

where H(n, k, a) =
(
a+k
a

)(
a+n−k

a

)
G(n, k, a). Then the following recurrence relation is true:

MQ(n, j, 0; a) =

(
a+ j

a

) a∑
l=0

(
n− j + l

l

)(
n− j

a− l

)
MR(n, j + a− l, 0; a). (9)
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Note that by using the substitution k = v + j, Eq. (6) becomes

MS(n, j, t; a) =

(
n− j

j

) n−j∑
k=j

(
n− 2j

k − j

)(
n

k

)t

F (n, k, a). (10)

From now on, we use Eq. (10) instead of Eq. (6).

2 Background

In 1998, Calkin proved that the alternating binomial sum S1(2n,m) =
∑2n

k=0(−1)k
(
2n
k

)m
is

divisible by
(
2n
n

)
for all non-negative integers n and all positive integers m. In 2007, Guo, Jouhet,

and Zeng proved, among other things, two generalizations of Calkin’s result [10, Thm. 1.2, Thm.
1.3, p. 2]. In 2018, Calkin’s result [2, Thm. 1] was proved by using D sums [15, Section 8]. Note
that there is a close relationship between D sums and M sums [17, Eqns. (9) and (19)].

Recently, Calkin’s result [2, Thm. 1] has been proved by using M sums [17, Section 5]. In
particular, it is known [17, Eqns. (22) and (25)] that

MS1(2n, j, 0) =

0, if 0 ≤ j < n,

(−1)n, if j = n,

MS1(2n, j, 1) = (−1)n
(
2n

n

)(
n

j

)
.

Both M sums and D sums give an elementary proof of Dixon’s formula. See for example
[17, Section 5, Eq. (25)] for a proof using M sums. See also [9, Introduction].

By using M sums, it has been shown [17, Section 7] that the sum

S2(2n,m, a) =
2n∑
k=0

(−1)k
(
2n

k

)m(
a+ k

k

)(
a+ 2n− k

2n− k

)
is divisible by lcm

((
a+n
a

)
,
(
2n
n

))
for all non-negative integers n and a and for all positive integers

m. In particular, it is known [17, Eqns. (52) and (57)] that

MS2(2n, j, 0; a) = (−1)n
(
a+ n

a

)(
a+ j

j

)(
a

n− j

)
,

MS2(2n, j, 1; a) = (−1)n
(
2n

n

) n−j∑
u=0

(
n

j + u

)(
j + u

u

)(
a+ j + u

j + u

)(
a+ n

2n− j − u

)
.

Remark 4. Note that there is a minor error in [17, Eq. (52)]. The number (−1)n−j should be
replaced by (−1)n. Similarly, the number (−1)n−j−u in [17, Eq. (57)] should be replaced by
(−1)n.

By using D sums, it has been shown in [19, Thm. 1] that the sum

S3(2n,m) =
2n∑
k=0

(−1)k
(
2n

k

)m(
2k

k

)(
2(2n− k)

2n− k

)
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is divisible by
(
2n
n

)
for all non-negative integers n and for all positive integers m. The same result

can also be proved by using M sums. It can be shown that

MS3(2n, j, 0) = (−1)j
(
2n

n

)(
2j

j

)(
2(n− j)

n− j

)
. (11)

Note that Eq. (11) is equivalent to [19, Eq. (12)].
Recently, it has been shown by using D sums [18, Th. 3, p. 3] that Ψ(2n,m, l− 1) is divisible

by T (n, l) for all non-negative integers n and m. The same result can also be proved by using
M sums. Let l be a positive integer and let n and j be non-negative integers such that j ≤ n. It is
readily verified [17, Eq. (91)] that

MΨ (2n, j, 0; l − 1) = (−1)j

(
2l
l

)(
2n
n

)(
2j
j

)(
2(n+l−j)
n+l−j

)(
2n−j
n

)(
n+l
n

)(
2n+l−j

n

) . (12)

Furthermore, by using [18, Eq. (103)] and [17, Eq. (33)] it can be shown that

MΨ (2n, j, 1; l−1) = (−1)j ·T (n, l)
(
n

j

) n−j∑
v=0

(−1)v·T (n+l−j−v, n)

(
2(j + v)

j + v

)(
n− j

v

)
. (13)

The rest of the paper is structured as follows. In Section 3, we give a proof of Theorem 3 by
using one variant of the Pfaff–Saalschütz theorem. In Section 4, we give a proof of Theorem 1.
Our proof of Theorem 1 consists of two parts. In the first part, we prove that Theorem 1 is true
for m = 1. In the second part, we prove that Theorem 1 is true for all positive integers m such
that m ≥ 2.

3 Proof of Theorem 3

We use three known binomial formulae.
Let a, b, and c be non-negative integers such that a ≥ b ≥ c. The first formula [14, Eq. (1.4),

p. 5] is (
a

b

)(
b

c

)
=

(
a

c

)(
a− c

b− c

)
. (14)

Let a, b, m, and n be non-negative integers. The second formula is one variant of the
Pfaff–Saalschütz theorem (see [25, p. 243] and [7, Introduction]):

min(m,n)∑
k=0

(
a

m− k

)(
b

n− k

)(
a+ b+ k

k

)
=

(
a+ n

m

)(
b+m

n

)
. (15)

Remark 5. Eq. (15) is equivalent to the triple binomial identity [8, Eq. (5.28), p. 171]; it was
first proved by J. Pfaff [21]. See also [13, Ex. 31, p. 7] and [26, Problem 14, p. 4].

The third formula is the symmetry [14, Thm. 1.1, p. 4] of binomial coefficients(
n

k

)
=

(
n

n− k

)
.
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Proof. By setting S := Q and t := 0 in Eq. (10), it follows that

MQ(n, j, 0; a) =

n−j∑
k=j

(
n− j

j

)(
n− 2j

k − j

)(
a+ k

a

)(
a+ n− k

a

)
G(n, k, a). (16)

By using the symmetry of binomial coefficients and Eq. (14), it follows that(
n− j

j

)(
n− 2j

k − j

)
=

(
n− j

k − j

)(
n− k

n− k − j

)
. (17)

By using Eq. (17), Eq. (16) becomes

MQ(n, j, 0; a) =

n−j∑
k=j

(
n− j

k − j

)(
n− k

n− k − j

)(
a+ k

a

)(
a+ n− k

a

)
G(n, k, a),

=

n−j∑
k=j

(
n− j

k − j

)(
a+ n− k

a

)(
n− k

n− k − j

)(
a+ k

a

)
G(n, k, a). (18)

By using the symmetry of binomial coefficients and Eq. (18), it follows that(
a+ n− k

a

)(
n− k

n− k − j

)
=

(
a+ n− k

a+ j

)(
a+ j

j

)
. (19)

By using Eq. (19), Eq. (18) becomes

MQ(n, j, 0; a) =

(
a+ j

j

) n−j∑
k=j

(
n− j

k − j

)(
a+ n− k

a+ j

)(
a+ k

a

)
G(n, k, a). (20)

By setting m := a+ j, n := a, a := n− k, b := k − j, and k := l in Eq. (15), we obtain that(
a+ n− k

a+ j

)(
a+ k

a

)
=

a∑
l=0

(
n− k

a+ j − l

)(
k − j

a− l

)(
n− j + l

l

)
. (21)

By using Eqns. (20) and (21), it follows that MQ(n, j, 0; a) is equal to(
a+ j

j

) n−j∑
k=j

(
n− j

k − j

) a∑
l=0

(
n− k

a+ j − l

)(
k − j

a− l

)(
n− j + l

l

)
G(n, k, a). (22)

In order for any summand on the right side of Eq. (21) to be nonzero, the following inequality
must hold:

n− k ≥ a+ j − l, or

k ≤ n− j − a+ l. (23)

Similarly, in order for any summand on the right side of Eq. (22) to be nonzero, the following
inequality must hold:

k − j ≥ a− l, or

k ≥ a+ j − l. (24)
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By changing the order of summation in Eq. (22) and by using inequalities (23) and (24), it
follows that MQ(n, j, 0; a) is equal to(

a+ j

j

) a∑
l=0

(
n− j + l

l

) n−(a+j−l)∑
k=a+j−l

(
n− j

k − j

)(
n− k

a+ j − l

)(
k − j

a− l

)
G(n, k, a). (25)

By using the symmetry of binomial coefficients and Eq. (14), it follows that(
n− j

k − j

)(
n− k

a+ j − l

)
=

(
n− j

a+ j − l

)(
n− a− 2j + l

k − j

)
. (26)

By using Eqns. (22) and (26), it follows that MQ(n, j, 0; a) is equal to(
a+ j

j

) a∑
l=0

(
n− j + l

l

)(
n− j

a+ j − l

) n−(a+j−l)∑
k=a+j−l

(
n− a− 2j + l

k − j

)(
k − j

a− l

)
G(n, k, a). (27)

By using the symmetry of binomial coefficients and Eq. (14), it follows that(
n− a− 2j + l

k − j

)(
k − j

a− l

)
=

(
n− a− 2j + l

a− l

)(
n− 2a− 2j + 2l

k − j − a+ l

)
. (28)

By using Eqns. (27) and (28), it follows that MQ(n, j, 0; a) is equal to(
a+j

j

) a∑
l=0

(
n−j+l

l

)(
n−j

a+j−l

)(
n−a−2j+l

a−l

)n−(a+j−l)∑
k=a+j−l

(
n−2a−2j+2l

k−j−a+l

)
G(n, k, a). (29)

Again, by using the symmetry of binomial coefficients and Eq. (14), it follows that(
n− j

a+ j − l

)(
n− a− 2j + l

a− l

)
=

(
n− j

a− l

)(
n− (j + a− l)

j + a− l

)
. (30)

By using Eqns. (29) and (30), it follows that MQ(n, j, 0; a) is equal to(
a+j

j

) a∑
l=0

(
n−j+l

l

)(
n−j

a−l

)(
n−(j+a−l)

j+a−l

) n−(a+j−l)∑
k=a+j−l

(
n−2(a+j−l)

k−(j+a−l)

)
G(n, k, a). (31)

Note that, by setting S := R, F := G, j := j + a− l, and t := 0 in Eq. (10), it follows that

MR(n, j + a− l, 0; a) =

(
n− (j + a− l)

j + a− l

) n−(a+j−l)∑
k=a+j−l

(
n− 2(a+ j − l)

k − (j + a− l)

)
G(n, k, a). (32)

Hence, by using Eqns. (31) and (32), it follows that

MQ(n, j, 0; a) =

(
a+ j

j

) a∑
l=0

(
n− j + l

l

)(
n− j

a− l

)
MR(n, j + a− l, 0; a).

This completes the proof of Theorem 3.
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4 Proof of Theorem 1

Let the function φ(2n,m, r − 1) be defined as in Eq. (4).
Let us consider the following sum

ϕ(2n,m, r − 1) =
1

4
Ψ(2n,m, r − 1). (33)

By Eq. (5), Eq. (33) becomes

ϕ(2n,m, r − 1) =
2n∑
k=0

(−1)k
(
2n

k

)m

· 1
2
T (k, r) · 1

2
T (2n− k, r). (34)

Note that, since r is a positive integer, both numbers 1
2
T (k, r) and 1

2
T (2n− k, r) are integers.

Therefore, the sum ϕ(2n,m, r − 1) is a sum from Definition 2.
Now we can apply Theorem 3. By setting Q := φ, n := 2n, a := r − 1, R := ϕ and

G(2n, k, r − 1) := (−1)k · 1
2
T (k, r) · 1

2
T (2n − k, r) in Theorem 3, it follows by Eq. (9) that

Mφ(2n, j, 0; r − 1) is equal to(
j + r − 1

j

) r−1∑
l=0

(
2n− j + l

l

)(
2n− j

r − 1− l

)
Mϕ(2n, j + r − 1− l, 0; r − 1). (35)

By Eqns. (6) and (33), it follows that

Mϕ(2n, j, t; r − 1) =
1

4
MΨ (2n, j, t; r − 1). (36)

By setting t := 0 and l := r in Eq. (12) and by using Eq. (36) and the definition of super
Catalan numbers, we obtain that

Mϕ(2n, j, 0; r − 1) = (−1)j
1

2
T (n, r)

(
2j
j

)(
2(n+r−j)
n+r−j

)(
2n−j
n

)
2
(
2n+r−j

n

) . (37)

By using Eq. (37), it follows that the sum Mϕ(2n, j + r − 1− l, 0; r − 1) is equal to

(−1)j+r−1−l 1

2
T (n, r)

(
2(j+r−1−l)
j+r−1−l

)(
2(n−j+l+1)
n−j+l+1

)(
2n−j−r+l+1

n

)
2
(
2n−j+l+1

n

) . (38)

By using the symmetry of binomial coefficients and Eq. (14), it follows that(
2n− j

r − 1− l

)(
2n− j − r + l + 1

n

)
=

(
2n− j

n

)(
n− j

r − l − 1

)
. (39)

By using Eqns. (38) and (39), it follows that the sum
(
2n−j
r−1−l

)
Mϕ(2n, j + r − 1 − l, 0; r − 1)

is equal to

(−1)j+r−1−l 1

2
T (n, r)

(
2n− j

n

)(
2(j+r−1−l)
j+r−1−l

)(
2(n−j+l+1)
n−j+l+1

)(
n−j

r−l−1

)
2
(
2n−j+l+1

n

) . (40)
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By using Eqns. (35) and (40), it follows that the sum Mφ(2n, j, 0; r − 1) is equal to

(−1)j+r−1

(
j+r−1

j

)
1

2
T (n, r)

(
2n−j

n

) r−1∑
l=0

(−1)l
(
2n−j+l

l

)(
2(j+r−1−l)
j+r−1−l

)(
2(n−j+l+1)
n−j+l+1

)(
n−j

r−l−1

)
2
(
2n−j+l+1

n

) .

(41)
By setting j := 0 in Eq. (41), we obtain that

Mφ(2n, 0, 0; r − 1) (42)

= (−1)r−11

2
T (n, r)

(
2n

n

) r−1∑
l=0

(−1)l
(
2n+ l

l

)(
2(r−1−l)
r−1−l

)(
2(n+l+1)
n+l+1

)(
n

r−l−1

)
2
(
2n+l+1

n

)
= (−1)r−11

2
T (n, r)

r−1∑
l=0

(−1)l
(
2n+ l

l

)(
2(r − 1− l)

r − 1− l

)(
n

r − l − 1

)(
2n
n

)(
2(n+l+1)
n+l+1

)
2
(
2n+l+1

n

)
= (−1)r−11

2
T (n, r)

r−1∑
l=0

(−1)l
(
2n+ l

l

)(
2(r − 1− l)

r − 1− l

)(
n

r − l − 1

)
1

2
T (n, n+ l + 1). (43)

By using Eq. (41), it follows that the sum Mφ(2n, 0, 0; r − 1) is divisible by 1
2
T (n, r).

By setting n := 2n, m := 1, S := φ, and a := r − 1 in Eq. (7), we obtain that

φ(2n, 1, r − 1) = Mφ(2n, 0, 0; r − 1). (44)

By using Eqns. (43) and (44), it follows that the sum φ(2n, 1, r − 1) is divisible by 1
2
T (n, r).

This completes the proof of Theorem 1 for the case m = 1.
Let us calculate the sum Mφ(2n, j, 1; r − 1), where n and j are non-negative integers such

that j ≤ n.
By setting n := 2n, S := φ, t := 0, and a := r − 1 in Eq. (8), we obtain that

Mφ(2n, j, 1; r − 1) =

n−j∑
u=0

(
2n

j

)(
2n− j

u

)
Mφ(2n, j + u, 0; r − 1). (45)

By using the symmetry of binomial coefficients and Eq. (14), it follows that(
2n

j

)(
2n− j

u

)
=

(
2n

2n− j − u

)(
j + u

u

)
. (46)

By using Eqns. (45) and (46), it follows that

Mφ(2n, j, 1; r − 1) =

n−j∑
u=0

(
j + u

u

)(
2n

2n− j − u

)
Mφ(2n, j + u, 0; r − 1). (47)

By using Eq. (41), it follows that the sum
(

2n
2n−j−u

)
Mφ(2n, j + u, 0; r − 1) equals(

2n

2n− j − u

)(
2n− j − u

n

)
(−1)j+u+r−1

(
j + u+ r − 1

j + u

)
1

2
T (n, r)·

·
r−1∑
l=0

(−1)l
(
2n− j − u+ l

l

)(
2(j+u+r−1−l)
j+u+r−1−l

)(
2(n−j−u+l+1)
n−j−u+l+1

)(
n−j−u
r−l−1

)
2
(
2n−j−u+l+1

n

) .
(48)
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By using the symmetry of binomial coefficients and Eq. (14), it follows that(
2n

2n− j − u

)(
2n− j − u

n

)
=

(
2n

n

)(
n

j + u

)
. (49)

By using Eqns. (48) and (49), it follows that the sum
(

2n
2n−j−u

)
Mφ(2n, j + u, 0; r − 1) equals

1

2
T (n, r)

(
n

j + u

)
(−1)j+u+r−1

(
j + u+ r − 1

j + u

) r−1∑
l=0

(−1)l
(
2n− j − u+ l

l

)
·

·
(
2(j + u+ r − 1− l)

j + u+ r − 1− l

)(
n− j − u

r − l − 1

)
1

2
T (n, n− j − u+ l + 1).

(50)

Hence, by using the Eq. (50), we obtain that(
2n

2n− j − u

)
Mφ(2n, j + u, 0; r − 1) =

1

2
T (n, r) · c(n, j + u, r − 1), (51)

where c(n, j + u, r − 1) is always an integer.
By using Eq. (51), Eq. (47) becomes

Mφ(2n, j, 1; r − 1) =
1

2
T (n, r)

n−j∑
u=0

(
j + u

u

)
c(n, j + u, r − 1). (52)

By Eq. (52), it follows that the sum Mφ(2n, j, 1; r − 1) is divisible by 1
2
T (n, r) for all

non-negative integers n and j such that j ≤ n, and for all positive integers r. By using Eq. (8) and
the induction principle, it can be shown that the sum Mφ(2n, j, t; r − 1) is divisible by 1

2
T (n, r)

for all non-negative integers n and j such that j ≤ n, and for all positive integers r and t.
By setting S := φ, n := 2n, m := t+ 1, and a := r − 1 in the Eq. (7), it follows that

φ(2n, t+ 1, r − 1) = Mφ(2n, 0, t; r − 1). (53)

Since t ≥ 1, it follows that t+ 1 ≥ 2. By Eq. (52), it follows that the sum φ(2n,m, r − 1) is
always divisible by 1

2
T (n, r) for all non-negative integers n, and for all positive integers m and r

such that m ≥ 2. This completes the proof of Theorem.

Remark 6. See also [17, Section 4] for an additional insight of how the method of M sums works.
For r = 1, by using Theorem 1 and the fact 1

2
T (n, 1) = Cn, it follows that the sum φ(2n,m, 0) is

divisible by Cn. Therefore, for r = 1, the result of Theorem 1 is weaker than the result that sum
φ(2n,m, 0) is divisible by

(
2n
n

)
[19, Cor. 4, p. 2]. However, for n = 3, r = 2, and m = 1, the

sum φ(2n,m, r − 1) is neither divisible by
(
2n
n

)
nor by T (n, r).
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