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1 Introduction

The present paper is devoted to the introduction of certain new arithmetic functions, and the study
of some inequalities involving them. Among the papers in the area that are relevant to the topic
and can draw the attention of the interested reader, are the authors’ book [7], a useful survey by
Dimitrov [3], some recent papers [1,2,5,6]. Many other similar results can be found in literature.

Let n = pα1
1 · · · pαr

r be the prime factorization of the natural number n > 1, where pi are
discinct primes and αi ≥ 1 are natural numbers. Then the classical Euler’s totient, Dedekind’s
function and sum of divisors function satisfy:
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φ(n) =
r∏

i=1

(pαi
i − pαi−1

i ), φ(1) = 1,

ψ(n) =
r∏

i=1

(pαi
i + pαi−1

i ), ψ(1) = 1, (1)

σ(n) =
r∏

i=1

(pαi
i + pαi−1

i + · · ·+ 1), σ(1) = 1,

In what follows, we will introduce and study the arithmetic functions φ−, φ+;ψ−, ψ+;σ−, σ+,
defined for the natural number n > 1 by

φ−(n) =
r∏

i=1

(φ(pαi
i )− 1), φ+(n) =

r∏
i=1

(φ(pαi
i ) + 1), (2)

ψ−(n) =
r∏

i=1

(ψ(pαi
i )− 1), ψ+(n) =

r∏
i=1

(ψ(pαi
i ) + 1), (3)

σ−(n) =
r∏

i=1

(σ(pαi
i )− 1), σ+(n) =

r∏
i=1

(σ(pαi
i ) + 1). (4)

Below, we will study some of their properties.

2 Main results

Let us assume that

φ−(1) = φ+(1) = ψ−(1) = ψ+(1) = σ−(1) = σ+(1) = 1.

Thus, e.g., when r = ω(n) = 1, one has

φ−(pα) = φ(pα)− 1 = pα − pα−1 − 1,

φ+(pα) = φ(pα) + 1 = pα − pα−1 + 1,

ψ−(pα) = ψ(pα)− 1 = pα + pα−1 − 1,

ψ+(pα) = ψ(pα) + 1 = pα + pα−1 + 1,

σ−(pα) = σ(pα)− 1 = pα + pα−1 + · · ·+ p,

σ+(pα) = σ(pα) + 1 = pα + pα−1 + · · ·+ p+ 2.

Theorem 1. For n > 1 one has

φ−(n) + 1 ≤ φ(n) ≤ φ+(n)− 1, (5)

ψ−(n) + 1 ≤ ψ(n) ≤ ψ+(n)− 1, (6)

σ−(n) + 1 ≤ σ(n) ≤ σ+(n)− 1. (7)
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Proof. We give here only the proof of (5). We will apply the well-known classical inequalities

r∏
i=1

(xi − 1) ≤
r∏

i=1

xi − 1 for xi > 1, (8)

r∏
i=1

(xi + 1) ≥
r∏

i=1

xi + 1 for xi > 0. (9)

Let xi = φ(pαi
i ) in (8). As the function φ is multiplicative, one has

r∏
i=1

φ(pαi
i ) = φ(

r∏
i=1

pαi
i ) = φ(n).

Applying (9) to the same xi, we get the two inequalities from (5). The other inequalities (6) and
(7), can be deduced in the same way.

Remark 1. As in (8) and (9) there is an equality only for r = 1, we get that there are equalities
in (5) only for r = ω(n) = 1, i.e., when n = pα for p being a prime number.

Theorem 2. For n > 1 one has

φ−(n) + φ+(n) ≥ 2φ(n) + 2(ω(n)− 1), (10)

ψ−(n) + ψ+(n) ≥ 2ψ(n) + 2(ω(n)− 1), (11)

σ−(n) + σ+(n) ≥ 2σ(n) + 2(ω(n)− 1). (12)

Proof. In [4, Relation (12)], the following inequality is stated:

r∏
i=1

(xi + 1) +
r∏

i=1

(xi − 1) ≥
r∏

i=1

xi + 2(r − 1) (13)

for r ≥ 1 and xi ≥ 2. In fact, inequality (13) holds true for xi ≥ 1 (i = 1, . . . , r). Indeed, (13) is
true for r = 1 and r = 2 with equality. Now, assuming that for r, for r + 1 one has:

(x1 + 1) · · · (xr + 1)(xr+1 + 1) + (x1 − 1) · · · (xr − 1)(xr+1 − 1)

= xr+1((x1+1) · · · (xr+1) + (x1−1) · · · (xr−1))+(x1−1) · · · (xr−1)+(x1+1) · · · (xr+1).

Now, by the induction hypothesis, as xr+1 ≥ 1, we have to prove that

(x1 + 1) · · · (xr + 1) ≥ 2 + (x1 − 1) · · · (xr − 1).

Then (13) will follow for r+1, as 2(r− 1)+2 = 2r. The above inequalities follow immediately,
again by induction.

Now, let xi = φ(pαi
i ) in (13). Then we get relation (10).

Relations (11) and (12) can be proved in the same manner.
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Theorem 3. For n > 1 with ω(n) ≥ 2 one has

φ+(n)− φ−(n) ≥ 2(ω(n)− 1)
∑
pa|n

φ(pa) for odd n, (14)

ψ+(n)− ψ−(n) ≥ 2(ω(n)− 1)
∑
pa|n

ψ(pa), (15)

σ+(n)− σ−(n) ≥ 2(ω(n)− 1)
∑
pa|n

σ(pa) (16)

Proof. We will apply the following inequality (see [4], relation (9)):

r∏
i=1

(xi + 1)−
r∏

i=1

(xi − 1) ≥ 2(r − 1)
r∑

i=1

xi (17)

for r ≥ 2, xi ≥ 2 (i = 1, . . . , r).
Let xi = φ(pαi

i ) ≥ 2 when n is an odd, so (14) follows from (17).
Relations (15) and (16) can be proved in the same manner.

Remark 2. Relations (14)–(16) imply the introduction of the following arithmetic functions:

F (n) =
r∑

i=1

φ(pαi
i ),

G(n) =
r∑

i=1

ψ(pαi
i ),

H(n) =
r∑

i=1

σ(pαi
i ),

which are the “additive analogues” of the arithmetic functions φ, ψ, σ. We note that the additive
analogue of the function E(n) = n for n > 1 is

B1(n) =
r∑

i=1

pαi
i

(see [8, pp. 147–149]).

Theorem 4. For n > 1 one has

(φ−(n))
1

ω(n) ≤ (φ(n))
1

ω(n) − 1 (18)

(ψ−(n))
1

ω(n) ≤ (ψ(n))
1

ω(n) − 1 (19)

(σ−(n))
1

ω(n) ≤ (σ(n))
1

ω(n) − 1 (20)

(φ+(n))
1

ω(n) ≥ (φ(n))
1

ω(n) + 1 (21)

(ψ+(n))
1

ω(n) ≥ (ψ(n))
1

ω(n) + 1 (22)

(σ+(n))
1

ω(n) ≥ (σ(n))
1

ω(n) + 1 (23)
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Proof. We will apply the Minkowski’s inequality

r

√√√√ r∏
i=1

(xi + yi) ≥ r

√√√√ r∏
i=1

xi +
r

√√√√ r∏
i=1

yi (24)

for xi, yi ≥ 0.
Let yi = 1 in (24). Then we get the inequality

r

√√√√ r∏
i=1

(xi + 1) ≥ r

√√√√ r∏
i=1

xi + 1. (25)

Suppose that zi ≥ 1 and put xi = zi − 1 in (25). Then we get from (25):

r

√√√√ r∏
i=1

(zi − 1) ≤ r

√√√√ r∏
i=1

zi − 1. (26)

We apply (26) for zi = φ(pαi
i ) and (25) for xi = φ(pαi

i ). As r = ω(n), we get from (26)
relation (18), and we get from (25) relation (21). The other inequalities can be proved in the same
manner, so we omit the details.

Theorem 5. For n > 1 one has

ψ+(n) ≤ σ(n), (27)

with equality only for n =

(
r∏

i=1

pαi
i

)2

, where p1, . . . , pr are distinct primes.

Proof. From (3) it follows

ψ+(n) =
r∏

i=1

(ψ1(p
αi
i ) + 1)

=
r∏

i=1

(pαi
i + pαi−1

i + 1)

≤
r∏

i=1

(pαi
i + pαi−1

i + · · ·+ 1)

= σ(n).

There is an equality only if

pαi
i + pαi−1

i + 1 = pαi
i + pαi−1

i + · · ·+ 1,

i.e., pαi−1
i = pi and we see immediately that ai − 1 = 1, i.e., ai = 2 for each i = 1, . . . , r.

Then n =

(
r∏

i=1

pi

)2

.
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3 Conclusion

In the present paper we introduced six new arithmetic functions and studied some of their properties.
On can consider the more general functions

F−(n) =
r∏

i=1

(F (pαi
i )− 1)

and

F+(n) =
r∏

i=1

(F (pαi
i ) + 1).

For F (n) = n we get that the function F− coincides with φ∗ and F+ coincides with σ∗.
Therefore the new functions coincide with E. Cohen’s functions. When F is multiplicative and
has some specific properties, some of the above theorems can be generalized.
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