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Abstract: The length of the largest cycle consisting of quadratic residues of a positive integer
n is denoted by L(n). In this paper, we have obtained a formula for finding L(p), where p is a
prime. Also, we attempt to characterize a prime number p in terms of the largest cycle consisting
of quadratic residues of p.
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1 Introduction

In 2016, Haifeng Xu [2] introduced the notion of a cycle consisting of quadratic residues. It is
defined as follows:

Definition 1.1. If there exists a sequence of numbers {xi}ki=1 such that
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

x2
1 ≡ x2 (mod n)

x2
2 ≡ x3 (mod n)

...

x2
k−1 ≡ xk (mod n)

x2
k ≡ x1 (mod n)

then these k numbers form a cycle modulo n and the number k is defined as the cycle length.

It can be seen that for any integer n > 1 there exists a largest cycle modulo n and the length
of such a cycle is denoted by L(n).

Example 1.2. For n = 31, we get {0}, {1}, {5, 25}, {2, 4, 16, 8}, {9, 19, 20, 28} and {7, 18, 14, 10}
as possible cycles of lengths 1, 1, 2, 4, 4 and 4, respectively. Here, we have 3 largest cycles having
length 4, i.e., L(31) = 4.

Example 1.3. For n = 49, we get {0}, {1},{18, 30},{8, 15, 29},{36, 22, 43},{9, 32, 44, 25, 37, 46},
and {2, 4, 6, 11, 23, 39} as possible cycles of lengths 1, 1, 2, 3, 3, 6 and 6, respectively. Here, we
have 2 largest cycles having length 6, i.e., L(49) = 6.

Remark 1.4. For any n > 1, we have

02 ≡ 0 (mod n)

12 ≡ 1 (mod n)

These two cycles are named trivial cycles. Therefore it is clear L(n) ≥ 1 for n > 1.

From Definition 1.1 it is easy to verify that for i = 1, 2, . . . , k,

x2k

i ≡ xi (mod n)

It is also clear that if L(n) = k, then k is the smallest power of 2 satisfying

x2k

j ≡ xj (mod n)

where xj is any element of any cycle of length k.
In this paper, we provide a general formula to compute L(p), where p is prime and also

characterize the prime p for the largest cycle consisting of quadratic residues. We organize our
paper as follows:

In Section 2, an explicit formula is obtained to calculate L(p), where p is prime. In Section 3,
an attempt has been made to characterize the prime p for the length of the largest cycle consisting
of quadratic residues.

We have followed David M. Burton [1] throughout the paper for all symbols and notations.
Thus, gcd(m,n) and lcm(m,n) will mean the greatest common divisor and least common multiple
of integers m and n, respectively, ordn(a) will mean the order of an element a modulo n, QRp

will mean the set of all quadratic residues of p and ϕ(n) denote the number of positive integers
not exceeding n that are relatively prime to n.
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2 Main results

In this section, we provide a general formula to compute L(p) for any prime p. If p = 2, then it
can easily be computed as L(p) = 1. Therefore, we consider only odd primes and state our result
in the form of a theorem as follows.

Theorem 2.1. If p is any odd prime number and L(p) is the length of a largest cycle consisting
of quadratic residues modulo p, then

L(p) =


ordϕ(p)

2

(2), if ϕ(p)
2

is odd

ordrs(2), if ϕ(p)
2

is even and ϕ(p)
2

= 2trs, t ≥ 1, s > 0 and r is odd

1, if ϕ(p)
2

is even and ϕ(p)
2

= 2t, t ≥ 0

Proof. Let p be an odd prime number. Assuming L(p) to be the length of any largest cycle of
quadratic residues of p, let {x1, x2, . . . , xL(p)} form such a largest cycle.

Let g be a primitive root of p. Then there is a positive integer y such that y ≡ g2 (mod p)

and ordp(y) =
ϕ(p)
2

= p−1
2

. Now, for any xi ∈ QRp, xi ≡ yai (mod p) with 1 ≤ ai ≤ p−1
2

. By
definition of the length of a cycle:

x2L(p)−1
i ≡ 1 (mod p)

⇒ (yai)2
L(p)−1 ≡ 1 (mod p)

⇒ yai(2
L(p)−1) ≡ 1 (mod p)

So, ϕ(p)
2

| ai(2L(p) − 1). Now, there are two cases:

Case I: Let ϕ(p)
2

be odd.
If ϕ(p)

2
∤ 2L(p)−1, then ϕ(p)

2
| ai, i.e., ai =

ϕ(p)
2

= p−1
2

, which implies xi ≡ y
p−1
2 ≡ 1 (mod p).

So, L(p) = 1.
If ϕ(p)

2
| 2L(p) − 1, then 2L(p) ≡ 1 (mod ϕ(p)

2
). This means that ordϕ(p)

2

(2) ≤ L(p). Assuming

ordϕ(p)
2

(2) = k, we have k | L(p) and 2k− 1 ≡ 0 (mod ϕ(p)
2
) which implies x2k−1

i ≡ 1 (mod p).

But L(p) is the smallest positive integer such that x2L(p)−1
i ≡ 1 (mod p) for i = 1, 2, . . . , L(p).

So, if k < L(p), then x2k−1
i ≡ 1 (mod p) contradicting the Definition 1.1. Therefore k = L(p)

i.e., L(p) = ordϕ(p)
2

(2).

Case II: Let ϕ(p)
2

be even so that we can write ϕ(p)
2

= 2trs, t > 0, s ≥ 0 and r is an odd integer.
If s = 0, then ϕ(p)

2
= 2t. Therefore, ϕ(p)

2
∤ 2L(p) − 1 and so ϕ(p)

2
| ai. This means that ai =

ϕ(p)
2

and, in view of xi ≡ yai (mod p) we have xi ≡ 1 (mod p). Therefore, L(p) = 1.
Suppose s ̸= 0, then ϕ(p)

2
| ai(2L(p) − 1) implies 2trs | ai(2L(p) − 1). Since 2L(p) − 1 is odd,

we get 2t | ai and rs | 2L(p) − 1. Now, rs | 2L(p) − 1 implies 2L(p) ≡ 1 (mod rs). This means
that ordrs(2) ≤ L(p). Taking ordrs(2) = k1 we have k1 ≤ L(p). But k1 < L(p) contradicts the
Definition 1.1. Therefore L(p) = k1, i.e., L(p) = ordrs(2).
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Combining both cases, we have

L(p) =


ordϕ(p)

2

(2), if ϕ(p)
2

is odd

ordrs(2), if ϕ(p)
2

is even, where ϕ(p)
2

= 2trs, t ≥ 1, s > 0 and r is odd

1, if ϕ(p)
2

= 2t, t ≥ 0

Thus the proof is complete.

Corollary 2.2. For Fermat prime Fk, ϕ(Fk) = ϕ(22
k
+ 1) = 22

k and ϕ(Fk)
2

= 22
k−1. Therefore,

by Theorem 2.1 L(Fk) = 1 which also gives Proposition 4.1 of [2].

Corollary 2.3. For safe prime p = 2p1 + 1, where p1 is also a prime, ϕ(p)
2

is equal to 2 or an odd
prime. In case of ϕ(p)

2
= p1 = 2 we have L(p) = 1, i.e., L(5) = 1. If ϕ(p)

2
= p1 ̸= 2 and 2 is

a primitive root modulo p1, then L(p) = p−3
2

. Thus Proposition 4.4 of [2] also follows from the
preceding theorem.

Corollary 2.4. If p is a prime of the form p = 2k+1, where k ≥ 1, then ϕ(p)
2

= 2k−1, so L(p) = 1.

Note: It is easy to show that if n = pq and gcd(L(p), L(q)) = 1, then L(n) = L(p)L(q), p and q

being distinct primes.

3 Characterization of a prime associated
with largest cycles of quadratic residues

In this section, we obtain a characterization of a prime p in terms of any largest cycle consisting
of quadratic residues modulo the prime p.

Proposition 3.1. For an odd prime p, L(p) = 2, if and only if p is of the form 2k · 3 + 1, k ≥ 1.

Proof. Let us start by taking p = 2k ·3+1, k ≥ 1. Then ϕ(p) = 2k ·3 and thus, L(p) = ord3(2) =

2.
Conversely, let L(p) = 2.

Case I: If ϕ(p)
2

> 1 is an odd number, then either ϕ(p)
2

| 2L(p) − 1 or ϕ(p)
2

∤ 2L(p) − 1. In case, ϕ(p)
2

∤
2L(p)−1 we have L(p) = 1, which contradicts our assumption. Therefore ϕ(p)

2
| 2L(p)−1 = 3. As

ϕ(p)
2

> 1 we must have ϕ(p)
2

= 3, so that p = 7 = 2·3+1 which is in the form p = 2k ·3+1, k = 1.

Case II: If ϕ(p)
2

is an even number, then ϕ(p)
2

= 2trs, t ≥ 1, s ≥ 0 and r > 1 is any odd number.
The condition s = 0 can be ruled out since in that case, we shall have L(p) = 1 contradicting
our assumption. Thus ϕ(p)

2
= 2trs, t ≥ 1, s ≥ 1 and r > 1 is any odd number. By Theorem 2.1

2 = L(p) = ordrs(2), which implies rs = 3. Therefore ϕ(p) = 2t+1 · 3 = 2k · 3, k ≥ 2 i.e.,
p = 2k · 3 + 1, k ≥ 2.

Combining the two cases we conclude that p is a prime number of the form 2k · 3 + 1, k ≥ 1

which completes the proof.

846



Proposition 3.2. For an odd prime p, L(p) = 3, if and only if p is of the form 2k · 7 + 1, k > 1.

Proof. We may start by assuming p = 2k · 7 + 1, k ≥ 1. However, for k = 1, p = 15, which
is not a prime number. So, we assume that p = 2k · 7 + 1, k > 1. Then ϕ(p) = 2k · 7 and
L(p) = ord7(2) = 3.

Conversely, let L(p) = 3. If possible, let ϕ(p)
2

be an odd number. Then either ϕ(p)
2

| 2L(p) − 1

or ϕ(p)
2

∤ 2L(p) − 1. If ϕ(p)
2

∤ 2L(p) − 1, then L(p) = 1 contradicting our assumption. Hence
ϕ(p)
2

| 2L(p) − 1, which means that ϕ(p)
2

= 1 or 7. If ϕ(p)
2

= 1, then L(p) = 1 contradicting our
assumption again. If ϕ(p)

2
= 7, then ϕ(p) = 14, which admits of no solution for p. Therefore, ϕ(p)

2

must be an even number so that we can express ϕ(p)
2

= 2trs, t ≥ 1, s ≥ 0, where r > 1 is any odd
number. However, following the argument as mentioned in Proposition 3.1, the integer s = 0 is
ruled out. So, ϕ(p)

2
= 2trs, t ≥ 1, s ≥ 1, and r > 1 is any odd number. Now 3 = L(p) = ordrs(2)

implies rs = 7. Therefore ϕ(p) = 2t+1 · 7 = 2k · 7, k > 1 i.e., p is a prime of the form
2k · 7 + 1, k > 1.

Proposition 3.3. For an odd prime p, L(p) = 4, if and only if p is either of the form 2k · 5 + 1 or
2k · 15 + 1, where k ≥ 1.

Proof. Let p be either in the form 2k · 5 + 1 or 2k · 15 + 1, k ≥ 1. If p = 2k · 5 + 1, k ≥ 1,
then ϕ(p)

2
= 2k−1 · 5, k ≥ 1. This gives L(p) = ord5(2) = 4. Again, if p = 2k · 15 + 1, k ≥ 1,

then ϕ(p)
2

= 2k−1 · 15, k ≥ 1 which means that L(p) = ord15(2) = lcm(ord3(2), ord5(2)) =

lcm(2, 4) = 4.
Conversely, let L(p) = 4. If ϕ(p)

2
> 1 is an odd number, then either ϕ(p)

2
| 2L(p) − 1 or

ϕ(p)
2

∤ 2L(p) − 1. If ϕ(p)
2

∤ 2L(p) − 1, then L(p) = 1, which contradicts our assumption. Again, if
ϕ(p)
2

| 2L(p) − 1, then ϕ(p)
2

= 3, 5 or 15. For ϕ(p)
2

= 3, we have L(p) = ord3(2) = 2 which
contradicts our assumption. For ϕ(p)

2
= 5 and 15, we have L(p) = ord5(2) and ord15(2),

respectively, and in both cases L(p) = 4. Thus, p = 11 = 2 · 5 + 1 or p = 31 = 2 · 15 + 1.
On the other hand, if ϕ(p)

2
is an even number, then ϕ(p)

2
= 2trs, t ≥ 1, s ≥ 0 where r > 1 is any

odd number. However, following the argument as mentioned in Proposition 3.1, s = 0 is ruled
out. So, ϕ(p)

2
= 2trs, t ≥ 1, s ≥ 1, and r > 1 is any odd number. Then 4 = L(p) = ordrs(2),

which implies rs = 3, 5, 15. Here, only possible values of rs are 5 and 15. Therefore p is a prime
of the form 2k · 5 + 1 or 2k · 15 + 1 for k ≥ 1.

Proposition 3.4. For an odd prime p, L(p) = 5, if and only if p is of the form 2k · 31 + 1 where
k > 1.

Proof. We start by assuming p = 2k ·31+1, k>1. Then ϕ(p)
2

=2k−1 ·31. So, L(p)=ord31(2)=5.

Conversely, let L(p) = 5. If ϕ(p)
2

> 1 is an odd number, then either ϕ(p)
2

| 2L(p) − 1 or
ϕ(p)
2

∤ 2L(p) − 1. If ϕ(p)
2

∤ 2L(p) − 1, then L(p) = 1, which contradicts our assumption. Again, if
ϕ(p)
2

| 2L(p) − 1, then ϕ(p)
2

= 31 which is not possible. Therefore ϕ(p)
2

must be an even number so
that we can take ϕ(p)

2
= 2trs, t ≥ 1, s ≥ 0 where r > 1 is any odd number. However, following

the argument as mentioned in Proposition 3.1, s = 0 is ruled out. So, ϕ(p)
2

= 2trs, t ≥ 1, s ≥ 1,
and r > 1 is any odd number. Therefore, 5 = L(p) = ordrs(2) which implies rs = 31. Therefore
p is a prime of the form 2k · 31 + 1, k > 1.

847



Proposition 3.5. For an odd prime p, L(p) = 6, if and only if p is in one of the forms 2k · 9 + 1,
2k · 21 + 1 or 2k · 63 + 1, where k ≥ 1.

Proof. Let p be in any one of the forms 2k · 9 + 1, 2k · 21 + 1 or 2k · 63 + 1, k ≥ 1. For p =

2k ·9+1, k ≥ 1, ϕ(p)
2

= 2k−1 ·9, k ≥ 1. This gives L(p) = ord9(2) = 6. For p = 2k ·21+1, k ≥ 1,
ϕ(p)
2

= 2k−1 · 21, k ≥ 1 which gives L(p) = ord21(2) = lcm(ord3(2), ord7(2)) = lcm(2, 3) = 6.
Finally, for p = 2k · 63 + 1, k ≥ 1, ϕ(p)

2
= 2k−1 · 63, k ≥ 1 which gives L(p) = ord63(2) =

lcm(ord7(2), ord9(2)) = lcm(3, 6) = 6.
Conversely, let L(p) = 6. If ϕ(p)

2
> 1 is an odd number, then either ϕ(p)

2
| 2L(p) − 1 or

ϕ(p)
2

∤ 2L(p) − 1. If ϕ(p)
2

∤ 2L(p) − 1, then L(p) = 1, which contradicts our assumption. Again,
ϕ(p)
2

| 2L(p) − 1 implies ϕ(p)
2

= 3, 7, 9, 21 or 63. Clearly, ϕ(p)
2

̸= 3, 7. Therefore p = 19, 43 or 127.
Now, let ϕ(p)

2
be an even number so that ϕ(p)

2
= 2trs, t ≥ 1, s ≥ 0 where r > 1 is any odd number.

However, following the argument as mentioned in Proposition 3.1, the integer s = 0 is ruled out.
So, ϕ(p)

2
= 2trs, t ≥ 1, s ≥ 1, where r > 1 is any odd number. Now, 6 = L(p) = ordrs(2) which

gives rs = 3, 7, 9, 21 or 63. But rs = 3 or 7 contradicts the assumption that L(p) = 6. Therefore,
only possible values of rs are 9, 21 and 63. This shows that p is a prime of the form 2k · 9 + 1 or
2k · 21 + 1 or 2k · 63 + 1, k ≥ 1.

The characterization of the prime number p in terms of the length of largest cycles with L(p) =

n where n = 1, 2, 3, 4, 5 and 6 motivates us to derive the same for any value of n. However, we
are successful partially in our attempt which is contained in the following proposition.

Proposition 3.6. For any odd prime p and any positive integer n ≥ 3 with L(p) = n,

(a) if 2n−1 is prime, then n is a prime and p is of the form 2kMn+1, where k ≥ 2, Mn = 2n−1

is a Mersenne prime, and

(b) if 2n − 1 is composite and n is a prime, then

p =

2Πℓ
i=1qi + 1, qi ≡ ±1 (mod 8), ℓ ≥ 1 if ϕ(p)

2
is odd

2tΠℓ
i=1qi + 1, qi ≡ ±1 (mod 8), ℓ ≥ 1, t > 1 if ϕ(p)

2
is even

Proof. To start with, let us take 2n − 1 as prime. In this case n is also a prime number [1]. Now,
let ϕ(p)

2
be odd. Then either ϕ(p)

2
| 2L(p) − 1 or ϕ(p)

2
∤ 2L(p) − 1. If ϕ(p)

2
∤ 2L(p) − 1, then L(p) = 1,

which contradicts that L(p) = n ≥ 3. Again, if ϕ(p)
2

| 2L(p) − 1, then ϕ(p) = 2(2n − 1) which
imply p = 2n+1 − 1. But if p = 2n+1 − 1 is prime, then n + 1 is prime. This is not possible for
any prime n ≥ 3. So, 2(2n − 1) + 1 is composite and thus ϕ(p) = 2(2n − 1) has no solution [1].
Therefore ϕ(p)

2
must be even.

Let ϕ(p)
2

= 2trs, t ≥ 1, s ≥ 0 and r > 1 is any odd number. Here, also s = 0 leads us to a
contradictory value L(p) = 1 as L(p) ≥ 3. Thus ϕ(p)

2
= 2trs, t ≥ 1, s ≥ 1 and r > 1 is any odd

number. Clearly, rs | 2n−1 implies 2n−1 = rs as 2n−1 is prime. Therefore p = 2t+1(2n−1)+1.
Thus, if L(p) = n ≥ 3 and 2n − 1 is prime, then n must be an odd prime and p is of the form
2kMn + 1, where k ≥ 2 and Mn = 2n − 1 is a Mersenne prime.
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Next, let 2n − 1 be composite where n is a prime number. Then by [1], any prime divisor
of Mn = 2n − 1 is of the form 2kn + 1 for some integer k. More precisely, prime divisor q
of Mn is of the form q ≡ ±1 (mod 8) [1]. It is also conjectured that 2n − 1 is square-free
if n is prime. So, we consider 2n − 1 as a square-free number and hence it has at least two
distinct prime factors. We start by taking exactly two distinct prime factors say q1 and q2 and then
generalize the result for all possible distinct prime factors. Now, q1 = 2k1n + 1 ≡ ±1 (mod 8)

and q2 = 2k2n + 1 ≡ ±1 (mod 8). Let ϕ(p)
2

> 1 be odd. Then ϕ(p)
2

| 2n − 1 which implies
ϕ(p)
2

= q1, q2, or q1q2.
Without loss of generality, we may take ϕ(p)

2
= q1, then p = 2q1 + 1, q1 ≡ ±1 (mod 8)

and n = L(p) = ordq1(2). As q1 ≡ ±1 (mod 8), so the Legendre symbol
(

2
q1

)
= 1, i.e., 2 is

quadratic residue of q1, i.e., 2 is not a primitive root of q1. Therefore, n must be a prime factor of
q1−1
2

.
If ϕ(p)

2
= q1q2, then p = 2q1q2 + 1, qi ≡ ±1 (mod 8) and n = L(p) = ordq1q2(2) =

lcm(ordq1(2), ordq2(2)). As n is prime, so either any one of ordq1(2) and ordq2(2) is equal to n

while the other is 1 or ordq1(2) = ordq2(2) = n. Therefore by similar argument as mentioned in
the preceding paragraph n must be prime factor of q1−1

2
or q2−1

2
or both, i.e., n must be a prime

factor of Π2
i=1

qi−1
2

. For more than two distinct prime factors of 2n − 1, we may argue similarly
and arrive at a general expression for p namely, p = 2Πℓ

i=0qi + 1, where qi ≡ ±1 (mod 8) and
ℓ ≥ 1 is the number of prime factors of 2n − 1.

Now, let ϕ(p)
2

be even. In this case also we can similarly show that p must be a prime of the
form 2tΠℓ

i=0qi + 1, where qi ≡ ±1 (mod 8), ℓ ≥ 1 and t > 1.

Remark 3.7. The question of deriving an expression for p when n and 2n− 1 are both composite
remains open.

4 Conclusion

In this paper, we have derived a general formula to compute L(p), where p is prime. Under the
same context we have also characterized p in terms of the largest cycle consisting of quadratic
residues. In case of power digraphs [3] also we encounter with the problem of computing possible
number of cycles. The present results easily help us to compute the length of largest cycles for
power digraphs modulo n, where n is a prime. Similar computation of length of largest cycle for
a power digraph modulo n where n is composite is yet to be solved in the context of the present
study.
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