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1 Introduction

1.1 Derangement polynomials

A derangement is a permutation that has no fixed points. We denote the number of derangements
on a set of cardinality n by Dn. The derangement polynomials are natural extensions of the
derangement numbers, mostly admitting Dn in a certain value. These polynomials are defined in
several different ways in literature [5, 8, 9, 23, 24, 33, 34], but the most common definition is

Dn(x) = n!
n∑

j=0

(−1)j

j!
xn−j. (1.1)

This definition appears in the work of Radoux [33, 34], where he studied a Hankel determinant
constructed on Dn(x). These polynomials are associated with the number of derangements on a
set of cardinality n by Dn = Dn(1).

In this paper we consider the following variant of the derangement polynomial, defined for
any integer n ⩾ 0 and any real x ̸= 0 by

D̂n(x) = n!
n∑

j=0

xj

j!
, (1.2)

and for x = 0 by D̂n(0) = n!. As a classical result, Sylvester [39, p. 516] (see also [32, p. 46])
studied the roots of D̂n(x) by showing that it has no real zero or one real zero according as n is
even or odd. Also, this polynomial is known as derangement function [17, p. 6] and satisfies the
following generalized recursive relations

D̂n(x) = (x+ n)D̂n−1(x)− x(n− 1)D̂n−2(x)

= xn + nD̂n−1(x),

with initial values D̂0(x) = 1 and D̂1(x) = x + 1. Note that D̂n(−1) = Dn. Also D̂n(0) = n!,
which is indeed the number of permutations of n distinct objects. Moreover D̂n(1) = wn+2,
where wn+2 denotes the number of all distinct paths between a specific pair of vertices in a
complete graph on n+ 2 vertices (see [18, 19] and the references given there).

1.2 Asymptotic results

Analytic enumeration concerns with the study of asymptotic behaviour of combinatorial subjects,
and making precise the counting formulas in sense of their magnitude. We refer the interested
reader to [1, 4, 12, 16, 27, 28, 35, 38] for this topic and around. In this paper we refer to the notion
of asymptotic series [13, Section 1.5], due to Poincaré. Accordingly, an asymptotic expansion for
Dn has been obtained in [20, Theorem 3] by showing that given any positive integer r, for any
integer n ⩾ 1 we have

Dn =
n!

e
+

r∑
k=1

(−1)n+k−1 Bk

nk
+ Õ

(
Br+1

nr+1

)
, (1.3)
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where Bk denotes the k-th Bell number [41, p. 178], and through the paper by f = Õ(g) we
mean |f | ⩽ g, providing an explicit version of Bachmann–Landau Big O notation. We refer the
interested reader to [11, 14] for more relations between the number of derangements and Bell
numbers.

Similar to (1.3), an asymptotic expansion for wn+2 has been obtained in [21, Theorem 1.1] by
showing that there exist computable constants c1, . . . , cr such that

wn+2 = en!−
r∑

k=1

ck
nk

+ Õ
(
e2Br+1

nr+1

)
. (1.4)

Dobinski’s formula [41, p. 178] concerning the k-th Bell number asserts that

eBk =
∞∑
j=0

jk

j!
. (1.5)

The constants ck in (1.4) match the k-th term of the sequence A014182 on OEIS [37], and satisfy
the following alternating form of Dobinski’s formula

(−1)k

e
ck =

∞∑
j=0

(−1)j
jk

j!
. (1.6)

Some initial values of ck is 1, 0,−1, 1, 2,−9, 9, 50,−267, 413.

In this paper, first we obtain an asymptotic expansion concerning D̂n(x) with explicit error
term. Our work generalize asymptotic expansions (1.3) and (1.4). More precisely, we prove the
following result.

Theorem 1.1. Given any positive integer r, for any integer n ⩾ 1 and any real x ̸= 0 we have
the asymptotic expansion

D̂n(x) = exn!− xn

r∑
k=1

(−1)k

nk
Tk(−x) + Õ

(
|x|n

nr+1
ex+|x| Tr+1(|x|)

)
, (1.7)

where Tk(x) is the k-th Touchard polynomial.

Remark 1.1. The Touchard polynomials Tk(x), studied by Jacques Touchard [40], defined by

Tk(x) =
k∑

j=0

S(k, j)xj,

where S(k, j) is the Stirling numbers of the second kind, counting the number of partitions of a
set of size k into j disjoint non-empty subsets. Thus, Tk(x) is a generating function for the finite
sequence (S(k, j))0⩽j⩽k. We refer the interested reader to [6,7,10,25,30,31,42] and [36, Chapter
5] for the above definition and a remarkable number of properties, including the following identity

Bk = Tk(1),
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and the probabilistic property asserting that if X is a random variable with a Poisson distribution
with expected value x, then its k-th moment is E(Xk) = Tk(x) (see the second page of [31]).
This leads to the following analogue of Dobinski’s formula

ex Tk(x) =
∞∑
j=0

xj j
k

j!
. (1.8)

Note that for x = 1 the relation (1.8) coincides with (1.5), and for x = −1 it coincides with (1.6).
More precisely, we have

ck = (−1)kTk(−1). (1.9)

Moreover, we observe that for x = −1 and x = 1 the relation (1.7) implies (1.3) and (1.4),
respectively.

A simple algebraic computation shows that the polynomials Dn(x) and D̂n(x) are related for
any real x ̸= 0 by the following identities

Dn(x) = xnD̂n

(
−1

x

)
, D̂n(x) = (−x)nDn

(
−1

x

)
. (1.10)

The above relations allow us to transfer results between Dn(x) and D̂n(x). Accordingly, the truth
of Theorem 1.1 reads as follows.

Corollary 1.1. Given any positive integer r, for any integer n ⩾ 1 and any real x ̸= 0 we have
the asymptotic expansion

Dn(x) = xne−
1
xn!− (−1)n

r∑
k=1

(−1)k

nk
Tk

(
1

x

)
+ Õ

(
1

nr+1
e−

1
x
+ 1

|x| Tr+1

(
1

|x|

))
,

where Dn(x) is the derangement polynomial defined by (1.1) and Tk(x) is the k-th Touchard
polynomial.

1.3 Moment results

The moments of the combinatorial differences Dn − e−1n! and wn+2 − en! have been computed
in [20, Theorem 2] and [21, Theorem 1.4], respectively. As a generalization, recently in [22] we
computed the k-th moments of the difference Dn(x) − xne−

1
xn! for any real x > 0 and each

integer k ⩾ 1. Because of the condition x > 0 we cannot use the transferring formulas (1.10)
to convert the above mentioned moment results in terms of D̂n(x). Although, following similar
argument as in [20–22] we are able to obtain the following.

Theorem 1.2. For any integer k ⩾ 1 and any real x ∈ [0, 1) we have

Mk(x) :=
∞∑
n=0

(
exn!− D̂n(x)

)k
= ekx

∫ x

0

· · ·
∫ x

0

e−(z1+···+zk)

1− z1 · · · zk
dZ, (1.11)

where Z represents the k-tuple (z1, . . . , zk). More precisely,

M1(x) = ex−1 (Ei(1)− Ei(1− x)) , (1.12)
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where the exponential integral function Ei [29, Section 6.2] is defined by the Cauchy principal
value of the integral

Ei(x) = −
∫ ∞

−x

e−z

z
dz.

Also,

M2(x) = 4e2x
∫ x

2

0

ĥ(z) dz, (1.13)

where

ĥ(z) =
e−2z

√
1− z2

tan−1 z√
1− z2

+
e2z−2x√

1− (x− z)2
tan−1 z√

1− (x− z)2
.

Remark 1.2. The function M1(x) defined by (1.12) satisfies M1(0) = 0 and limx→1− M1(x) =

+∞. Moreover, it satisfies the differential equation M′
1(x) = M1(x) + 1/(1 − x). Thus,

M′
1(x) > 0 for x ∈ [0, 1).

2 Proofs

2.1 Proof of Theorem 1.1

Let P (n, j) be the number of j-permutations of n objects. We rewrite D̂n(x) in terms of P (n, j)

as follows

D̂n(x) =
n∑

j=0

P (n, j)xn−j = xn

n∑
j=0

P (n, j)

(
1

x

)j

.

Regarding a generating function for the finite sequence (P (n, j))0⩽j⩽n, it is known [21, Theorem
1.3] that for any integer n ⩾ 0 and for each real x ̸= 0 we have

n∑
j=0

P (n, j)xj = (−1)n xn e
1
x

∫ − 1
x

−∞
tnet dt. (2.1)

Replacing x by 1

x
, and changing the variable t → −t in the last integral, we deduce that

D̂n(x) = ex Γ(n+ 1, x),

where Γ(α, z) is the incomplete gamma function (see [29, Chapter 8] and [41, p. 1473]) defined
by

Γ(α, z) =

∫ ∞

z

tα−1e−t dt.

Note that n! =
∫∞
0

tne−t dt. Thus,

D̂n(x) = exn!−Rn(x), (2.2)

where Rn(x) = ex In(x) with

In(x) =

∫ x

0

tne−t dt.
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The rest of proof is to obtain an asymptotic for In(x). Following an argument similar to the
proofs of [20, Theorem 3] and [21, Theorem 1.1] we have

In(x) =

∫ x

0

tn
∞∑
j=0

(−t)j

j!
dt =

∞∑
j=0

(−1)j

j!

∫ x

0

tn+j dt =
∞∑
j=0

(−1)j xn+j+1

j!(n+ j + 1)
.

We split the last sum by using the following simple but useful identity, which is valid for any real
c and positive integer r, provided n+ c ̸= 0,

1

n+ c
=

r∑
k=1

(−1)k−1 c
k−1

nk
+

(−1)r

n+ c

( c
n

)r
.

Since n > 0, taking c = j + 1 with j ⩾ 0 fulfills the above condition. Thus,
∞∑
j=0

(−1)j xn+j+1

j!(n+ j + 1)
=

∞∑
j=0

r∑
k=1

(−1)k−1

nk

(−1)j (j + 1)k−1

j!
xn+j+1

+ (−1)r
∞∑
j=0

(−1)j

j!(n+ j + 1)

(
j + 1

n

)r

xn+j+1.

Therefore,

In(x) =
r∑

k=1

(−1)k−1 xn

nk

∞∑
j=0

(−1)j (j + 1)k−1

j!
xj+1 +

(−1)r xn

nr

∞∑
j=0

(−1)j (j + 1)r

j!(n+ j + 1)
xj+1.

Note that Touchard polynomials are hidden in hear of the inner sum, because
∞∑
j=0

(−1)j (j + 1)k−1

j!
xj+1 =

∞∑
j=0

(−1)j
(j + 1)k

(j + 1)!
xj+1 =

∞∑
j=1

(−1)j−1 j
k

j!
xj

= −
∞∑
j=1

(−x)j
jk

j!
= −

∞∑
j=0

(−x)j
jk

j!
= −e−x Tk(−x).

Also, we have∣∣∣∣∣
∞∑
j=0

(−1)j (j + 1)r

j!(n+ j + 1)
xj+1

∣∣∣∣∣ ⩽
∞∑
j=0

(j + 1)r

j!(n+ j + 1)
|x|j+1 <

1

n

∞∑
j=0

(j + 1)r

j!
|x|j+1.

Note that
∞∑
j=0

(j + 1)r

j!
|x|j+1 =

∞∑
j=0

(j + 1)r+1

(j + 1)!
|x|j+1 =

∞∑
j=1

jr+1

j!
|x|j =

∞∑
j=0

jr+1

j!
|x|j.

Thus, we get ∣∣∣∣∣
∞∑
j=0

(−1)j (j + 1)r

j!(n+ j + 1)
xj+1

∣∣∣∣∣ < 1

n

∞∑
j=0

jr+1

j!
|x|j = 1

n
e|x|Tr+1(|x|).

Considering the above estimates we deduce that

Rn(x) = xn

r∑
k=1

(−1)k

nk
Tk(−x) + Õ

(
|x|n

nr+1
ex+|x| Tr+1(|x|)

)
. (2.3)

This completes the proof of Theorem 1.1. □
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Remark 2.1. We may rewrite In(x) in terms of the (second) incomplete gamma function [29,
Chapter 8] defined by

γ(α, z) =

∫ z

0

tα−1e−t dt (ℜ(α) > 0).

Moreover, in the proof of (2.3) we may take n > −1 any arbitrary real. Thus, from (2.3) we
deduce that

In(x) = γ(n+ 1, x) =
xn

ex

r∑
k=1

(−1)k

nk
Tk(−x) + Õ

(
|x|n

nr+1
e|x| Tr+1(|x|)

)
.

For more related expansions see [29, Section 8.7].

2.2 Proof of Theorem 1.2

We conclude from (2.2) that

Mk(x) =
∞∑
n=0

(
ex
∫ x

0

tne−tdt

)k

= ekx lim
N→∞

N∑
n=0

(∫ x

0

tne−tdt

)k

.

By using Fubini’s theorem [3, Theorem 5.32] we deduce that

Mk(x) = ekx lim
N→∞

N∑
n=0

k∏
j=1

(∫ x

0

znj e
−zjdzj

)

= ekx lim
N→∞

N∑
n=0

∫ x

0

· · ·
∫ x

0

k∏
j=1

(
znj e

−zj
)
dZ

= ekx lim
N→∞

∫ x

0

· · ·
∫ x

0

e−(z1+···+zk)

N∑
n=0

(z1 · · · zk)n dZ

= ekx lim
N→∞

∫ x

0

· · ·
∫ x

0

e−(z1+···+zk)

(
1− (z1 · · · zk)N+1

1− z1 · · · zk

)
dZ.

Now we use the bounded convergence theorem [3, Theorem 3.26] to interchange the limit and
multiple integral in the last relation. Since limN→∞ (z1 · · · zk)N+1 = 0, we obtain (1.11).

For k = 1, the relation (1.11) reads as follows

M1(x) = ex
∫ x

0

e−t

1− t
dt.

To evaluate the last integral we apply the change of variable −z = 1− t, satisfying t = 1+ z and
dt = dz. Therefore∫ x

0

e−t

1− t
dt =

∫ x−1

−1

e−1−z

−z
dz = e−1

(
−
∫ −(1−x)

−1

e−z

z
dz

)
= e−1 (Ei(1)− Ei(1− x)) .

This gives (1.12).
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For k = 2, the relation (1.11) reads as follows

M2(x) = e2x
∫ x

0

∫ x

0

e−(z1+z2)

1− z1z2
dAz1,z2 .

We denote the last double integral by J . To compute J we follow an argument due to LeVeque
[26], which has been described by Aigner and Ziegler in [2, Chapter 9]. Accordingly, we apply
the change of coordinates by letting u = (z2+z1)/2 and v = (z2−z1)/2. We get the new domain
of integration from old domain by first rotating it by −45◦ and then shrinking it by a factor of√
2. This new domain of integration and the function to be integrated are symmetric with respect

to the u-axis. Also, dAz1,z2 = 2dAu,v. Therefore,

J = 4

∫ x
2

0

∫ u

0

e−2u

1− u2 + v2
dvdu+ 4

∫ x

x
2

∫ x−u

0

e−2u

1− u2 + v2
dvdu

= 4

∫ x
2

0

e−2u

√
1− u2

tan−1 u√
1− u2

du+ 4

∫ x

x
2

e−2u

√
1− u2

tan−1 x− u√
1− u2

du.

By letting z = x − u in the last integral and simplifying we obtain (1.13), hence concluding the
proof. □

3 Conclusion

The idea of representing combinatorial numbers by integrals is a fruitful one, first done for
generalized derangements by Even and Gillis [15]. By generalized derangements we mean the
problem of redistributing elements of sets (boxes) of given sizes n1, n2, . . . , nk in such a way
that nothing stays in the set (box) it originally occupied. Recently, the second author of the
present paper, obtained integral representations for Dn, the number of derangements on a set of
cardinality n, and wn+2, the number of all distinct paths between a specific pair of vertices in a
complete graph on n+ 2 vertices, as follows

Dn =
n!

e
+

r∑
k=1

(−1)n+k−1 Bk

nk
+ Õ

(
Br+1

nr+1

)
, and wn+2 = en!−

r∑
k=1

ck
nk

+ Õ
(
e2Br+1

nr+1

)
,

where Bk denotes the k-th Bell number, ck is the sequence A014182 on OEIS [37], and by
f = Õ(g) we mean |f | ⩽ g. Motivated by gathering the above asymptotic relations, in this paper
we consider the following variant of the derangement polynomial, defined for any integer n ⩾ 0

and any real x ̸= 0 by

D̂n(x) = n!
n∑

j=0

xj

j!
.

Hence, D̂n(−1) = Dn and D̂n(1) = wn+2. We show that given any positive integer r, for any
integer n ⩾ 1 and any real x ̸= 0 we have

D̂n(x) = exn!− xn

r∑
k=1

(−1)k

nk
Tk(−x) + Õ

(
|x|n

nr+1
ex+|x| Tr+1(|x|)

)
,
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where Tk(x) is the k-th Touchard polynomial, admitting Bk = Tk(1) and ck = (−1)kTk(−1).
Moreover, we study the moments of the difference exn!− D̂n(x), by showing that for any integer
k ⩾ 1 and any real x ∈ [0, 1) we have

Mk(x) :=
∞∑
n=0

(
exn!− D̂n(x)

)k
= ekx

∫ x

0

· · ·
∫ x

0

e−(z1+···+zk)

1− z1 · · · zk
dZ,

where Z represents the k-tuple (z1, . . . , zk). More precisely, M1(x) = ex−1 (Ei(1)− Ei(1− x)),
where Ei denotes the exponential integral function, and

M2(x) = 4e2x
∫ x

2

0

( e−2z

√
1− z2

tan−1 z√
1− z2

+
e2z−2x√

1− (x− z)2
tan−1 z√

1− (x− z)2

)
dz.
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