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Abstract: We prove that, for k& > 10, the Diophantine equation (zF — 1)(y* — 1)? = 2* — 1 in
positive integers x,y, z, k with z > 1, has no solutions satisfying 1 < z < yorl <y < x <
(WF = D2+ D)%,
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1 Introduction

The Greek mathematician Diophantus, of the third century, found the set of four positive rational
numbers {1—16, ?—2, %, 11%5} with the property: the product of any two of them increased by 1 is
a perfect square. Fermat found firstly the set of four positive integers {1, 3,8,120} with the
above property (see [5]). Now, a set of m positive rational numbers {a;, as, ..., a,,} is called a
Diophantine m-tuple if a;a; + 1 is a perfect square forall 1 <7 < j < m.

In 2003, Bugeaud and Dujella [4] considered an analogous problem: the existence of sets
{a, b, c} of positive integers such that the three numbers ab+ 1, ac + 1 and bc + 1 are perfect k-th
powers, for an integer £ > 3. And they further investigated several related questions. In 2004,

Bugeaud [3] showed that if {1, a,b} is such a triple, then k cannot exceed 74. Equivalently, the
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Diophantine equation
(@ =D -1 =21 ()

has no solutions in positive integers with z > 2 and k£ > 75.
Another motivation of the work of Bugeaud [3] is that, for any integer n > 2, there is an
identity
(n* = 1((n+1)"=1) = (n* +n—1)" — 1,

which implies that the Diophantine equation
(@ =D -1 =2"~1 2)

has infinitely many positive integer solutions. Kashihara [9] described the set of all integer
solutions of Eq. (2), which can be derived from the trivial solutions (n, 1, 1) and (1,7, 1).

In 2007, Bennett [2] showed that Eq. (1) has only the solutions (x,y, z, k) = (—1,4,—5,3)
and (4, —1, —5, 3) in integers x, y, z and k with |z| > 2 and k& > 3. In the same paper, Bennett [2]
also proved that the Diophantine equation

(@ =) —1) = (" - 1) 3)

has no solutions in integers x, y, z and k with = # +y, |2| > 2 and k£ > 4. An interesting case of
Eq. (3)isthe case of k = 2, i.e.,

(z> = 1)(y* — 1) = (z> = 1)*. @)

There are many studies on this case, and we can refer to D23 of [7].
In 2014, as a generalization of Eq. (1), Zhang [11] showed that the Diophantine equation

(az® — 1) (by" — 1) = abz* — 1

has no positive integer solutions with a,b € Z*, |x| > 1,|y| > 1 and k& > 4.
In 2015, Goedhart and Grundman [6] proved that the Diophantine equation

(a®cx® — 1)(b?cy® — 1) = (abcz® — 1)?

has no solutions in positive integers z,y, 2 > 1 and k > 7 with a,b,c € Z* and a?2* # b*yF,
which is a modification of Eq. (3).

In D23 of [7], Bennett asked for the complete set of solutions in integers z,y, z > 1 to the
Diophantine equation

= (2> - 1)~ 5)

In 2010, Hai and Walsh [8] obtained the set of all integer solutions of Eq. (5).
Eq. (5) can be rewritten as

(> —1)(z2 =12 =21, for |y| >1
which is a variant of Eq. (2) or Eq. (4).
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To be more general, we generalize Egs. (1) and (3) to
(@ =)y =1 = (" - 1)", 6)

where t1,ty,t3 € ZT and ged(ty, ta, t3) = 1. If ged(ty, ta,t3) = t > 1, then t; = s1t,ty = sot,
t3 = s3t with ged(sy, s2, s3) = 1. In this case, Eq. (6) can be simplified to (¥ —1)% (y* — 1)%2 =
(2% — 1)% with ged(sy, 89, 83) = 1.

When (tq,t9,t3) = (1,1,1), Eq. (6) deduces Eq. (1); when (t,t2,t3) = (1,1,2), Eq. (6)
deduces Eq. (3). When t; = 5 and 3 = 1, it is easy to see that Eq. (6) has no positive integer
solutions. This is because it is a special case of the famous Catalan equation 2" — y™ = 1, which
has only one solution (x,y,n,m) = (3,2,2,3).

Ift; =t3=1,t, = 2and k = 2, Eq. (6) is equivalent to Eq. (5) for x > 1. In this paper, we
consider the general case of Eq. (5), that is, the Diophantine equation

which is equivalent to
(8 — D) —1)? =2F 1, for z > 1.

By using the theory of Diophantine approximation, we prove

Theorem 1.1. If k > 10, the Diophantine equation
(@ =D =1 =2" -1, (7

in positive integers x,vy, z, k with z > 1, has no solutions satisfying 1 <z < yorl <y <z <
(s — 12+ D),

To prove our theorem, we use the following lemma from [1], which provides a bound on how
well one can approximate certain algebraic numbers by rational numbers. For n > 2, define

w= [[ v

pln
p prime

Lemma 1.1 (Bennett, Theorem 1.3 of [1]). If k, u, p and q are positive integers with k > 3 and

(Vi + VrF T2 > ()

1
{1+-— E‘ > (8kpu) g™
u o q

then

with

®)
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2 Proof of the Theorem

Proof of Theorem 1.1. We focus particularly on the case where £ is a prime number in Eq. (7).
This is because if k = pq, with p being a prime number, then Eq. (7) can be written as

(277 = 1) ((y")P = 1)* = (=7 - L.

The prime numbers less than 10 are only 2,3,5 and 7. Therefore, any composite number
greater than 9 either contains a prime factor greater than 10, or contains one of the following
numbers as a factor.

24 3% 52 7%,22.3,2.32,2-5,2-7,3-5,3-7,5-T. 9)

Thus, we only need to consider the case that £ is a prime number greater than 10, or k£ takes one
of the numbers in (9).

We assume that Eq. (7) has a positive integer solution and thereby obtain a contradiction. Let
k > 4 be an integer. Let us write

w41 =zF v+1:yk, (10)

where u, v are positive integers. Then, from Eq. (7), we obtain uv? + 1 = 2.

Since
"y = (u+1)(v+1) > +1=2"
we have xy? > 2 + 1, then
k
(u+1)(v+1)%> ((uv2 +1)F + 1) .

Expanding this, we have

~ k B
2uv + u + v* 4 2v > k(uv® + 1)% + (2> (uv® + 1)%

k 9 k-3 k 9 k-4 (1D
+ (3) (w*+1) % + (4) (wv®+1) % .
* Case 1. Suppose that z > y > 1, we have u > v. It follows from k£ > 10 that
(uv? + 1)F73 > (un?)F=3 > 3k > 2k,

therefore,

(wo? + 1) % > % (12)
Similarly, we get

(uw? + 1) % > v, (13)
Letv < u < vF 2 ie,y <z < ((y* — 1)* 2+ 1)x. It follows from k > 10 that

(wo? + 1)1 > (up?)FL = k122 > gk

therefore,

(w0 + 1) % > . (14)
Similarly, we have

(uv? + 1)% > u. (15)

Substituting (12), (13), (14), and (15) into (11) will lead to a contradiction.
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» Case 2. Assume that 1 < =z < y, we get u < v. It follows from k£ > 10 that
(uvZ 4 1)1<;—2 > (UUZ)k—2 Tl LN L L

therefore,
k—2

(wv® + 1) F > uv. (16)

Similarly, we obtain

k-3 k—4

(uw?+1) % >v and (w®+1)F >u. (17)
Substituting (16) and (17) into (11), we obtain
k—1

v? > k(uw? +1) % > k(uv2)%l,

which yields
k—1

v> kT (18)
Note that from (10), we have

22\* u+1
2 u

(u+1)2uv+u—1) (u+1)(2v+1) < Cuv

u(uv? + 1) uv? + 1 = 2k
2096128
where C' = 1016529 thus
1 ay? Cuv
A (19)
u z kz
k=1 o
where we have used the formula a* — b* = (a — b) Y a*~ 17,
i=0

On the other hand, if £ > 10, x > 2, we check easily that

Vu+Vu+1
—+ ] > 1.99,
v u

where u + 1 = 2*. We thus have
(Vu + vVu+ 1252 > (1.99 - u+ 1)202 > (1.99 - 25)2¢2) 5 k26 5 (fp,)F.
Then (19) together with Lemma 1.1 leads to

A < 8C v,

k — wv? + 1, we further obtain

Uk*ZA <:8k(jk/L£uk+A. (20)

Since z

Next, we will show that conditions (18) and (20) are contradictory. We only need to
establish the following inequality

k
]{;%u% > 8kf2>\ Ckfw\lu;;*”‘ukkj;\)\. (21)
In fact, when £ is a prime number, (21) is equivalent to

Bk k=1 k) k
k2 D20 2 k-2x > (80) F=2X

and thus we obtain
k—2X\

= > &C.




o Case 2.1. If £ > 11 is prime, then pu; = kﬁ. Since u = zF — 1, from (8), it is not
hard to see that A is monotone decreasing in z > 2 and £ > 11, whereby A < 2.83. It

is easy to verify that % — ﬁ > 2 and % > 1. Thus,

k—2X\ E—2X\—-3

1
2 kiy 2 > k2u > 8C.

o Case 2.2. If k takes one of the numbers in (9), with the help of software Maple [10],
we can easily verify that condition (21) still holds. For example, if £ = 10 = 2 - 5,
then py = 2ﬁ . Sﬁ. Since x > 2, then A < 3.39. A quick calculation shows that
condition (21) holds.

The establishment of (21) means that conditions (18) and (20) are contradictory.

This completes the proof. []

3 Some related questions

For the Diophantine equation (¥ —1)(y* —1)? = 2¥ — 1, we show that there is no positive integer
solutions satisfying 1 <z <yorl <y <z < ((yF —1)¥2+ 1)%. Based on some numerical
calculations (for cases 3 < k < 10and 2 < y < x < 10?), we have

Question 3.1. If k > 3, then the Diophantine equation
(@* =D -1 =2" -1
has no solutions in positive integers x,y, z > 1.
More generally,
Question 3.2. If k > 3, then the Diophantine equation
(@ = (g = 1) = (-

has no solutions in positive integers x,y, z > 1, where t1, t,t3 € Z" and ged(tq, ts,t3) = 1.
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