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Abstract: We prove that, for k ≥ 10, the Diophantine equation (xk − 1)(yk − 1)2 = zk − 1 in
positive integers x, y, z, k with z > 1, has no solutions satisfying 1 < x ≤ y or 1 < y < x ≤
((yk − 1)k−2 + 1)

1
k .
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1 Introduction

The Greek mathematician Diophantus, of the third century, found the set of four positive rational
numbers

{
1
16
, 33
16
, 17

4
, 105

16

}
with the property: the product of any two of them increased by 1 is

a perfect square. Fermat found firstly the set of four positive integers {1, 3, 8, 120} with the
above property (see [5]). Now, a set of m positive rational numbers {a1, a2, . . . , am} is called a
Diophantine m-tuple if aiaj + 1 is a perfect square for all 1 ≤ i < j ≤ m.

In 2003, Bugeaud and Dujella [4] considered an analogous problem: the existence of sets
{a, b, c} of positive integers such that the three numbers ab+1, ac+1 and bc+1 are perfect k-th
powers, for an integer k ≥ 3. And they further investigated several related questions. In 2004,
Bugeaud [3] showed that if {1, a, b} is such a triple, then k cannot exceed 74. Equivalently, the
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Diophantine equation
(xk − 1)(yk − 1) = zk − 1 (1)

has no solutions in positive integers with z ≥ 2 and k ≥ 75.
Another motivation of the work of Bugeaud [3] is that, for any integer n ≥ 2, there is an

identity
(n2 − 1)((n+ 1)2 − 1) = (n2 + n− 1)2 − 1,

which implies that the Diophantine equation

(x2 − 1)(y2 − 1) = z2 − 1 (2)

has infinitely many positive integer solutions. Kashihara [9] described the set of all integer
solutions of Eq. (2), which can be derived from the trivial solutions (n, 1, 1) and (1, n, 1).

In 2007, Bennett [2] showed that Eq. (1) has only the solutions (x, y, z, k) = (−1, 4,−5, 3)

and (4,−1,−5, 3) in integers x, y, z and k with |z| ≥ 2 and k ≥ 3. In the same paper, Bennett [2]
also proved that the Diophantine equation

(xk − 1)(yk − 1) = (zk − 1)2 (3)

has no solutions in integers x, y, z and k with x ̸= ±y, |z| ≥ 2 and k ≥ 4. An interesting case of
Eq. (3) is the case of k = 2, i.e.,

(x2 − 1)(y2 − 1) = (z2 − 1)2. (4)

There are many studies on this case, and we can refer to D23 of [7].
In 2014, as a generalization of Eq. (1), Zhang [11] showed that the Diophantine equation

(axk − 1)(byk − 1) = abzk − 1

has no positive integer solutions with a, b ∈ Z+, |x| > 1, |y| > 1 and k ≥ 4.
In 2015, Goedhart and Grundman [6] proved that the Diophantine equation

(a2cxk − 1)(b2cyk − 1) = (abczk − 1)2

has no solutions in positive integers x, y, z > 1 and k ≥ 7 with a, b, c ∈ Z+ and a2xk ̸= b2yk,
which is a modification of Eq. (3).

In D23 of [7], Bennett asked for the complete set of solutions in integers x, y, z > 1 to the
Diophantine equation

x2 − 1

y2 − 1
= (z2 − 1)2. (5)

In 2010, Hai and Walsh [8] obtained the set of all integer solutions of Eq. (5).
Eq. (5) can be rewritten as

(y2 − 1)(z2 − 1)2 = x2 − 1, for |y| > 1

which is a variant of Eq. (2) or Eq. (4).

826



To be more general, we generalize Eqs. (1) and (3) to

(xk − 1)t1(yk − 1)t2 = (zk − 1)t3 , (6)

where t1, t2, t3 ∈ Z+ and gcd(t1, t2, t3) = 1. If gcd(t1, t2, t3) = t > 1, then t1 = s1t, t2 = s2t,

t3 = s3t with gcd(s1, s2, s3) = 1. In this case, Eq. (6) can be simplified to (xk − 1)s1(yk − 1)s2 =

(zk − 1)s3 with gcd(s1, s2, s3) = 1.
When (t1, t2, t3) = (1, 1, 1), Eq. (6) deduces Eq. (1); when (t1, t2, t3) = (1, 1, 2), Eq. (6)

deduces Eq. (3). When t1 = t2 and t3 = 1, it is easy to see that Eq. (6) has no positive integer
solutions. This is because it is a special case of the famous Catalan equation xn − ym = 1, which
has only one solution (x, y, n,m) = (3, 2, 2, 3).

If t1 = t3 = 1, t2 = 2 and k = 2, Eq. (6) is equivalent to Eq. (5) for x > 1. In this paper, we
consider the general case of Eq. (5), that is, the Diophantine equation

xk − 1

yk − 1
= (zk − 1)2,

which is equivalent to
(xk − 1)(yk − 1)2 = zk − 1, for x > 1.

By using the theory of Diophantine approximation, we prove

Theorem 1.1. If k ≥ 10, the Diophantine equation

(xk − 1)(yk − 1)2 = zk − 1, (7)

in positive integers x, y, z, k with z > 1, has no solutions satisfying 1 < x ≤ y or 1 < y < x ≤
((yk − 1)k−2 + 1)

1
k .

To prove our theorem, we use the following lemma from [1], which provides a bound on how
well one can approximate certain algebraic numbers by rational numbers. For n ≥ 2, define

µn =
∏
p|n

p prime

p
1

p−1 .

Lemma 1.1 (Bennett, Theorem 1.3 of [1]). If k, u, p and q are positive integers with k ≥ 3 and

(
√
u+

√
u+ 1)2(k−2) > (kµk)

k,

then ∣∣∣∣ k

√
1 +

1

u
− p

q

∣∣∣∣ > (8kµku)
−1q−λ

with

λ = 1 +
log(kµk(

√
u+

√
u+ 1)2)

log( 1
kµk

(
√
u+

√
u+ 1)2)

. (8)

827



2 Proof of the Theorem

Proof of Theorem 1.1. We focus particularly on the case where k is a prime number in Eq. (7).
This is because if k = pq, with p being a prime number, then Eq. (7) can be written as

((xq)p − 1) ((yq)p − 1)2 = (zq)p − 1.

The prime numbers less than 10 are only 2, 3, 5 and 7. Therefore, any composite number
greater than 9 either contains a prime factor greater than 10, or contains one of the following
numbers as a factor.

24, 33, 52, 72, 22 · 3, 2 · 32, 2 · 5, 2 · 7, 3 · 5, 3 · 7, 5 · 7. (9)

Thus, we only need to consider the case that k is a prime number greater than 10, or k takes one
of the numbers in (9).

We assume that Eq. (7) has a positive integer solution and thereby obtain a contradiction. Let
k ≥ 4 be an integer. Let us write

u+ 1 = xk, v + 1 = yk, (10)

where u, v are positive integers. Then, from Eq. (7), we obtain uv2 + 1 = zk.
Since

xky2k = (u+ 1)(v + 1)2 > uv2 + 1 = zk,

we have xy2 ≥ z + 1, then

(u+ 1)(v + 1)2 ≥
(
(uv2 + 1)

1
k + 1

)k

.

Expanding this, we have

2uv + u+ v2 + 2v > k(uv2 + 1)
k−1
k +

(
k

2

)
(uv2 + 1)

k−2
k

+

(
k

3

)
(uv2 + 1)

k−3
k +

(
k

4

)
(uv2 + 1)

k−4
k .

(11)

• Case 1. Suppose that x > y > 1, we have u > v. It follows from k ≥ 10 that

(uv2 + 1)k−3 > (uv2)k−3 > v3(k−1) > v2k,

therefore,
(uv2 + 1)

k−3
k > v2. (12)

Similarly, we get
(uv2 + 1)

k−4
k > v. (13)

Let v < u ≤ vk−2, i.e., y < x ≤ ((yk − 1)k−2 + 1)
1
k . It follows from k ≥ 10 that

(uv2 + 1)k−1 > (uv2)k−1 = uk−1v2k−2 ≥ ukvk,

therefore,
(uv2 + 1)

k−1
k > uv. (14)

Similarly, we have
(uv2 + 1)

k−2
k > u. (15)

Substituting (12), (13), (14), and (15) into (11) will lead to a contradiction.
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• Case 2. Assume that 1 < x ≤ y, we get u ≤ v. It follows from k ≥ 10 that

(uv2 + 1)k−2 > (uv2)k−2 = uk−2v2k−4 ≥ ukv2k−6 > ukvk,

therefore,
(uv2 + 1)

k−2
k > uv. (16)

Similarly, we obtain

(uv2 + 1)
k−3
k > v and (uv2 + 1)

k−4
k > u. (17)

Substituting (16) and (17) into (11), we obtain

v2 > k(uv2 + 1)
k−1
k > k(uv2)

k−1
k ,

which yields
v > k

k
2u

k−1
2 . (18)

Note that from (10), we have∣∣∣∣(xy2

z

)k

− u+ 1

u

∣∣∣∣ = (u+ 1)(2uv + u− 1)

u(uv2 + 1)
<

(u+ 1)(2v + 1)

uv2 + 1
≤ Cuv

zk
,

where C =
2096128

1046529
, thus ∣∣∣∣ k

√
1 +

1

u
− xy2

z

∣∣∣∣ < Cuv

kzk
, (19)

where we have used the formula ak − bk = (a− b)
k−1∑
i=0

ak−1−ibi.

On the other hand, if k ≥ 10, x ≥ 2, we check easily that
√
u+

√
u+ 1√

u+ 1
> 1.99,

where u+ 1 = xk. We thus have

(
√
u+

√
u+ 1)2(k−2) > (1.99 ·

√
u+ 1)2(k−2) ≥ (1.99 · 2

k
2 )2(k−2) > k2k > (kµk)

k.

Then (19) together with Lemma 1.1 leads to

zk−λ < 8Cµku
2v.

Since zk = uv2 + 1, we further obtain

vk−2λ < 8kCkµk
ku

k+λ. (20)

Next, we will show that conditions (18) and (20) are contradictory. We only need to
establish the following inequality

k
k
2u

k−1
2 > 8

k
k−2λC

k
k−2λµ

k
k−2λ

k u
k+λ
k−2λ . (21)

In fact, when k is a prime number, (21) is equivalent to

k
k
2
− k

(k−1)(k−2λ)u
k−1
2

− k+λ
k−2λ > (8C)

k
k−2λ ,

and thus we obtain
k

k−2λ
2

− 1
k−1u

k−2λ−3
2 > 8C.
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◦ Case 2.1. If k ≥ 11 is prime, then µk = k
1

k−1 . Since u = xk − 1, from (8), it is not
hard to see that λ is monotone decreasing in x ≥ 2 and k ≥ 11, whereby λ < 2.83. It
is easy to verify that k−2λ

2
− 1

k−1
> 2 and k−2λ−3

2
> 1. Thus,

k
k−2λ

2
− 1

k−1u
k−2λ−3

2 > k2u > 8C.

◦ Case 2.2. If k takes one of the numbers in (9), with the help of software Maple [10],
we can easily verify that condition (21) still holds. For example, if k = 10 = 2 · 5,
then µk = 2

1
2−1 · 5

1
5−1 . Since x ≥ 2, then λ < 3.39. A quick calculation shows that

condition (21) holds.

The establishment of (21) means that conditions (18) and (20) are contradictory.

This completes the proof.

3 Some related questions

For the Diophantine equation (xk−1)(yk−1)2 = zk−1, we show that there is no positive integer
solutions satisfying 1 < x ≤ y or 1 < y < x ≤ ((yk − 1)k−2 + 1)

1
k . Based on some numerical

calculations (for cases 3 ≤ k ≤ 10 and 2 ≤ y < x ≤ 103), we have

Question 3.1. If k ≥ 3, then the Diophantine equation

(xk − 1)(yk − 1)2 = zk − 1

has no solutions in positive integers x, y, z > 1.

More generally,

Question 3.2. If k ≥ 3, then the Diophantine equation

(xk − 1)t1(yk − 1)t2 = (zk − 1)t3

has no solutions in positive integers x, y, z > 1, where t1, t2, t3 ∈ Z+ and gcd(t1, t2, t3) = 1.
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