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1 Introduction

There are a number of sufficient conditions known within the literature for an infinite series of
positive rationals to converge to an irrational or transcendal number. These conditions, which are
quite varied in form, share one common feature, namely, they all require rapid convergence.
In 1844, Joseph Liouville give the first example of transcendal number as a sum of rapidly
convergente series with rational coefficient

x =
∞∑
n=1

an
bn!

.

for any integer b ≥ 2 and any sequence of integers (a1, a2, . . .) such that 0 ≤ ak < b and ak ̸= 0
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for infinitely many k. In 1932, Cantor gave a criterion for the irrationality of a real number x
given by the infinite series

x =
∞∑
n=1

an
b1 · · · bn

,

and later, Oppenheim [8] extend hits method to prove other criterion for irrationality. Also, Hančl
and Tijdeman [4] study other conditions under which the Cantor series is irrational. Erdős [2]
proved that if the sequence {an}∞n=1 of positive integers converges quickly to infinity, then the
series

∞∑
n=1

1

an

is an irrational number.
Mahler in [5] introduced the main method of proving the transcendence of sums of infinite

series with rational coefficient. This method has been extended several times and Nishioka’s book
[6] contains a survey of these results. Another technique makes use of the Roth’s theorem [9].
One can also use Nyblom’s theorem which can be found in [7]. Other methods are given by
Sándor [10] and Badea [1].

These paper deals with a criteria concerning the irrationality and transcendence of the sums
of infinite series. The terms of these series consist of positive rational numbers which converge
rapidly to zero.

The main result of the first section is Theorem 2.2. It deals with a criterion for the irrationality
of sums of infinite series of rational numbers which depends on the speed and character of the
convergence. Our main result is a consequence of the Badea theorem [1]. The aim of the second
section is to prove the Theorem 3.2 on transendence of infinite series of positive rational terms,
which is a consequence of [3, Theorem 2.1]. In the next section, we prove a general theorem
which emphasizes the relationship between the irrationality and the transcendence of convergent
infinite series of positive rational numbers and their speed of convergence.

2 The irrationality cases

Definition 2.1. We introduce the following sets:

• L as the set of rational positive numbers r = {rn}∞n=1 such that lim
n→∞

sup rn+1

rn
≤ 1.

• J as the set of sequences of positive integers v = {vn}∞n=1 such that
{

vn+1

vn

}∞

n=1
is strictly

increasing.

Definition 2.2. Let v, u ∈ J . The sequence u precedes the sequence v if there exists n0 ∈ N
such that un0 ≥ vn0 and for every n ≥ n0 we have

un+1

un

≥ vn+1

vn
,

and we write u ≥ v.
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Definition 2.3. Let r = {rn}∞n=1 ∈ L and v = {vn}∞n=1 ∈ J . We introduce the function v ∗ r as
follows

v ∗ r(x) =
∞∑
n=1

rnx
vn .

Then v ∗ r is well defined on (0, 1). The function v ∗ r is called irrational if v ∗ r(x) is irrational
for any rational number x ∈ (0, 1) and we write r ∈ Ir(v).

In 1987 in [1] Badea proved the following theorem.

Theorem 2.1. [1] Let {an}∞n=1 and {bn}∞n=1 be two sequences of positive integers such that for
every large n,

an+1 >
bn+1

bn
a2n −

bn+1

bn
an + 1. (1)

Then the sum α =
∞∑
n=1

bn
an

is an irrational number.

Remark 2.1. The condition (1) is satisfied if for every large n we have

1 >
bn+1

bn

a2n
an+1

and
bn+1

bn
an > 1. (2)

The main result of this section is the following theorem.

Theorem 2.2. Let r ∈ L. Then there exists v = {vn}∞n=1 ∈ J such that r ∈ Ir(v). On the
other hand, for any sequence of positive integers u = {un}∞n=1 ∈ J such that v ≤ u, we have
r ∈ Ir(u).

Proof. Let

0 < x =
p

q
< 1 and rn =

bn
an

.

Our infinite series is
∞∑
n=1

rnx
vn =

∞∑
n=1

bnp
vn

anqvn
.

Then (2) becomes

1 >
bn+1

bn

a2n
an+1

pvn+1−vn

qvn+1−2vn
and

bn+1

bn
anp

vn+1−vnqvn > 1. (3)

Sufficient conditions for (3) to be satisfied are

lim
n→∞

log

[
bn+1

bn

a2n
an+1

pvn+1−vn

qvn+1−2vn

]
= −∞ and lim

n→∞
log

[
bn+1

bn
anp

vn+1−vnqvn
]
= +∞.
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Now by a simple calculation we obtain

log

[
bn+1

bn

a2n
an+1

pvn+1−vn

qvn+1−2vn

]
= log

(
bn+1

bn

a2n
an+1

)
+ (vn+1 − vn) log p− (vn+1 − 2vn) log q

= vn

[
1

vn
log

(
bn+1

bn

a2n
an+1

)
+

(
vn+1

vn
− 1

)
log p−

(
vn+1

vn
− 2

)
log q

]
= vn

[
1

vn
log

(
rn+1

rn

)
+

1

vn
log (an) +

(
vn+1

vn
− 1

)
log p−

(
vn+1

vn
− 2

)
log q

]
.

On the other hand,

log

[
bn+1

bn
anp

vn+1−vnqvn
]

= log

(
bn+1

bn
an

)
+ (vn+1 − vn) log p+ vn log q

= log

(
rn+1

rn

)
+ log (an+1) + (vn+1 − vn) log p+ vn log q.

It suffices to take v = {vn}∞n=1 satisfying the following conditions

lim
n→∞

1

vn
log (an) = 0 and vn = o(vn+1). (4)

On the other hand, if we take another increasing sequence of positive integers u = {un}∞n=1 such
that u ≥ v, then we obtain for every n ≥ n0

un ≥ vn ⇒ lim
n→∞

1

un

log (an) = 0.

Also we have
un+1

un

≥ vn+1

vn
⇒ lim

n→∞

un+1

un

= +∞.

So u satisfies (4) and we obtain the result r ∈ Ir(u).

3 The transcendence cases

Definition 3.1. Let r = {rn}∞n=1 ∈ L and v = {vn}∞n=1 ∈ J . The function v ∗ r is called
transcendental if v ∗ r(x) is transcendental number for any rational number x ∈ (0, 1) and we
write r ∈ Tr(v).

In [3, Theorem 2.1] J. Hančl and P. Rucki have proven the following theorem.

Theorem 3.1. [3] Let {an}∞n=1 and {bn}∞n=1 be two sequences of positive integers such that

lim
n→∞

sup
an+1

(a1 · · · an)
1

bn+1

= ∞, (5)

and
lim
n→∞

inf
an+1

an

bn
bn+1

> 1. (6)
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Then the number

ξ =
∞∑
n=1

bn
an

< ∞

is transcendental.

The main result of these section is the following:

Theorem 3.2. Let r ∈ L. Then there exists v = {vn}∞n=1 ∈ J such that r ∈ Tr(v). On the other
hand, for any sequence u = {un}∞n=1 ∈ J such that v ≤ u we have r ∈ Tr(u).

Proof. Let

0 < x =
p

q
< 1 and rn =

bn
an

.

Our infinite series is
∞∑
n=1

rnx
vn =

∞∑
n=1

bnp
vn

anqvn
.

Then (5) becomes

lim
n→∞

sup
an+1

(a1 · · · an)2+δ

1

bn+1

qvn+1−(v1+···+vn)pvn+1 = +∞ (7)

and (6) takes the following form

lim
n→∞

inf
an+1

an

bn
bn+1

(
q

p

)vn+1−vn

> 1. (8)

Now by a simple calculation we obtain

lim
n→∞

vn+1

[
1

vn+1

log

(
an+1

(a1 · · · an)
1

bn+1

)
+

(
1− 1

vn+1

(v1 + · · ·+ vn)

)
log q − log p

]
= +∞.

A sufficient conditions for (7) to be satisfied is

lim
n→∞

1

vn+1

log

(
an+1

(a1 · · · an)
1

bn+1

)
= 0 and (v1 + · · ·+ vn) = o(vn+1). (9)

The condition (8) is a simple consequence of the fact that

lim
n→∞

sup
rn+1

rn
≤ 1.

On the other hand, if we take another increasing sequence of positive integers u = {un}∞n=1 such
that u ≥ v, then we obtain for every n ≥ n0

un ≥ vn ⇒ lim
n→∞

1

vn+1

log

(
an+1

(a1 · · · an)
1

bn+1

)
= 0.

Without loss of generality, we take n0 = 1, then

u1 + · · ·+ un =
u1

v1
v1 + · · ·+ un

vn
vn

≤ un+1

vn+1

(v1 + · · ·+ vn)

= un+1o(1)

= o(un+1).

Hence, u satisfies (9) and we obtain the result r ∈ Tr(u).
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4 A general overview

Theorem 4.1. Let A be a countable subset of L. Then there exist α, β ∈ J such that A ⊂ Ir(α)

and A ⊂ Tr(β).

Proof. We only expose the proof of Ir(α) because the case of Tr(β) is similar. Let (r1, r2, . . .)
be an enumeration of the elements of A. From Theorem 2.2 we can assume that for every k =

1, 2, . . . ,

rk ∈ Ir(vk),

for some vk =
(
vk1 , v

k
2 , . . .

)
∈ J . We shall prove that there exists α ∈ J such that for every

k = 1, 2, . . . ,

rk ∈ Ir(α),

A sufficient condition is that for every large n and k = 1, 2, . . .

vk ≤ α ⇔
vkn+1

vkn
≤ αn+1

αn

.

For the construction of the sequence α = {αn}∞n=1 we use the diagonalization method. The n-th
sequence is in the n-th line.

v12
v11

v13
v12

v14
v13

v15
v14

v16
v15

· · ·
v22
v21

v23
v22

v24
v23

v25
v24

v26
v25

· · ·
v31
v31

v31
v31

v31
v31

v31
v31

v31
v31

· · ·
... ... ... ... ... · · ·

For our first element we take α1 = 1. Now take the first number of sequence one, and multiply
by α1. That is our second element α2. Now take the second number of sequence two, and the
number from the previous step. Take the larger of both and multiply by α2. That is our element α3.
Keep doing that and construct the sequence α = {αn}∞n=1 of monotonically increasing integers.
By assumption, this sequence belongs to J and precedes any sequence vk, ∀k = 1, 2, . . .

Proposition 4.1. Let v, w ∈ J and p be a positive integer. Then we have

Ir(v) ⊂ Ir(v + p) and Tr(v) ⊂ Tr(v + p). (10)

If vn+1

vn
/ vn
vn−1

> p+1
p

for every large n, we obtain

Ir(v) ⊂ Ir(pv) and Tr(v) ⊂ Tr(pv), (11)

Ir(v) ⊂ Ir(vw) and Tr(v) ⊂ Tr(vw). (12)
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Proof. We only expose the proof of Ir(v) because the case of Tr(v) is similar. Let v ∈ J , then
v + p = {vn + p}∞n=1 ∈ J . In fact,

vn+1

vn
>

vn
vn−1

⇒ vn+1vn−1 > v2n,

and for every large n
vn+1 + vn−1

vn
>

vn+1

vn
> 2.

This implies
vn+1vn−1 + p (vn+1 + vn−1) + p2 > v2n + 2pvn + p2,

which gives
vn+1 + p

vn + p
>

vn + p

vn−1 + p
⇒ v + p ∈ J .

Now, let r = {rn}∞n=1 ∈ Ir(v), then

v ∗ r(x) =
∞∑
n=0

rnx
vn

is an irrational number for any rational x ∈ (0, 1). Therefore,

(v + p) ∗ r(x) = xp

∞∑
n=0

rnx
vn

is also an irrational number for any rational x ∈ (0, 1) and then r ∈ Ir(v + p).

Let v ∈ J then pv = {pvn}∞n=1 ∈ J . Therefore,

(pv) ∗ r(x) =
∞∑
n=0

rn (x
p)vn

is also an irrational number for any rational x ∈ (0, 1) and then r ∈ Ir(pv). To prove (12) first we
should verify that for any v, w ∈ J ,

vw ∈ J .

In fact, we have

vn+1

vn
>

vn
vn−1

,
wn+1

wn

>
wn

wn−1

⇒ vn+1wn+1

vnwn

>
vnwn

vn−1wn−1

⇒ vw ∈ J .

Now, let r = {rn}∞n=1 ∈ Ir(v), then

(vw) ∗ r(x) =
∞∑
n=0

rn (x
wn)vn

is an irrational number for any rational x ∈ (0, 1) and r ∈ Ir(vw). Note that vw ≥ v.
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Remark 4.1. Many questions about Ir(v) and Tr(v) remain unsolved:

• For example, are they countable sets?

• Given a subset A of L, can we affirm that there exists v ∈ J such that Ir(v) = A or
Tr(v) = A ?

• If we have Ir(v) ⊂ Ir(u) or Tr(v) ⊂ Tr(u), this does not necessarily imply that v ≤ u. In
fact, a counterexample is given in (10) for u = v + p ⩾̸ v.

• Motivated by the results proven in (11), (12), Theorem 3.2 and Theorem 2.2, we formulate
the following conjecture.

Conjecture 4.1. Let v, u ∈ J such that v ≤ u. Then

Ir(v) ⊂ Ir(u) and Tr(v) ⊂ Tr(u).
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