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Abstract: Let MD(G, i) be the family of monophonic dominating sets of a graph G with
cardinality i and let md(G, i) = |MD(G, i)|. Then the monophonic domination polynomial
MD(G,x) of G is defined as MD(G,x) =

∑p
i=γm(G)md(G,i)xi, where γm(G) is the monophonic

domination number of G. In this paper we have determined the family of monophonic dominating
sets of the path graph Pn with cardinality i. Also, the monophonic domination polynomial of the
path graph is calculated and some properties of the coefficient md(Pn, i) is discussed.
Keywords: Monophonic set, Monophonic dominating set, Monophonic domination polynomial,
Path graph.
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1 Introduction

The graph G considered in this paper is finite, simple, undirected and connected with vertex
set V (G) and edge set E(G), respectively. The order and size of G are denoted by n and m,
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respectively. For basic graph theoretic definitions we refer to [6,7]. The distance d(u, v) between
two vertices u and v is the length of a shortest u − v path in G. The neighborhood of a vertex v

denoted by N(v) is the set of all vertices adjacent to v. For any subset S of V (G), the induced
subgraph ⟨S⟩ is the maximal subgraph of G with the vertex set S. A vertex v is said to be an
extreme vertex if the subgraph ⟨N(v)⟩ is complete. F ⊆ V (G) is said to be a dominating set
of G if every vertex in V (G) − F is adjacent to at least one vertex in F . The least order of the
dominating sets of G is said to be the domination number of G and is denoted by γ(G). The
monophonic number of a graph was studied by Pelayo et al. in [8, 11]. Any chordless path
connecting the vertices u and v is called a u − v m-path. The monophonic closure of a subset S
of V (G) is given by JG[S] =

⋃
u,v∈S

JG[u, v], where JG[u, v] is the set containing u and v and all

vertices lying on some u− v m-path. If JG[S] = V (G), then S is said to be a monophonic set in
G. A monophonic set in G of least order is called a minimum monophonic set of G. The order
of the minimum monophonic set of G is called the monophonic number of G and is denoted by
m(G). Monophonic domination number of a graph is studied in [9, 12]. M ⊆ V (G) is said to be
a monophonic dominating set if it is both monophonic and dominating. The minimum cardinality
of a monophonic dominating set of G is the monophonic domination number and is denoted by
γm(G). The domination polynomial of a graph was introduced by Arocha and Llano in [4] and
was further studied by Saeid Alikhani et al. in [1–3]. The monophonic polynomial of a graph
was introduced and studied in [10]. The monophonic domination polynomial of a graph was
introduced and studied by P. Arul Paul Sudhahar et al. in [5].

The notation ⌈x⌉ represents the smallest integer greater than or equal to x and |F | denotes the
cardinality of F . Let us define the vertices of Pn by V (Pn) = [n], where [n] = {1, 2, . . . , n}.

In the second section, the family of monophonic dominating sets of the path Pn is constructed.
The third section determines the number of monophonic dominating sets of the path graph Pn of
cardinality i by using the recurrence relation connecting md(Pn−1, i − 1), md(Pn−2, i − 1) and
md(Pn−3, i− 1). Also, the monophonic domination polynomial of the path Pn is determined by
using the above recurrence relation.

2 Monophonic dominating set of the path Pn

Let MD(Pn, i) denote the collection of all monophonic dominating sets of Pn with cardinality i

and md(Pn, i) = |MD(Pn, i)|.

Lemma 2.1. For the path graph Pn, γm(Pn) = 2 +

⌈
n− 4

3

⌉
.

Lemma 2.2. MD(Pn, l) = ∅ if and only if l > n or l < 2 +

⌈
n− 4

3

⌉
.

Lemma 2.3. If Y ∈ MD(Pn−1, i− 1) or MD(Pn−2, i− 1) or MD(Pn−3, i− 1), then Y ∪ {n}
∈ MD(Pn, i).

788



Proof. First let us assume that Y ∈ MD(Pn−1, i − 1). The vertices labelled 1 and n − 1 will
belong to Y . It can be clearly seen that Y ∪ {n} is a monophonic dominating set of Pn. Now, let
us assume that Y ∈ MD(Pn−2, i− 1). Vertices labelled 1 and n− 2 will belong to Y . Clearly Y

is a dominating set of the path Pn−1. Y ∪ {n} forms the monophonic dominating set of Pn. Now,
let us consider the case when Y ∈ MD(Pn−3, i−1). Y contains the vertices labelled 1 and n−3.
The vertex labelled n−2 can be dominated by the vertex n−3 in Pn and the vertex labelled n−1

can be dominated by the vertex n. Hence Y ∪ {n} forms the dominating set of Pn. Since 1 and n

belongs to Y ∪ {n}, it forms the monophonic set of Pn. Hence Y ∪ {n} ∈ MD(Pn, i).

Theorem 2.1.

(i) If MD(Pn−1, i− 1) = MD(Pn−3, i− 1) = ∅, then MD(Pn−2, i− 1) = ∅.

(ii) If MD(Pn−1, i− 1) ̸= ∅ and MD(Pn−3, i− 1) ̸= ∅, then MD(Pn−2, i− 1) ̸= ∅.

(iii) If MD(Pn−1, i− 1) = MD(Pn−3, i− 1) = MD(Pn−2, i− 1) = ∅, then MD(Pn, i) = ∅.

Proof.

(i) MD(Pn−1, i− 1) = MD(Pn−3, i− 1) = ∅

⇒ i− 1 > n− 1 or i− 1 < 2 +

⌈
n− 7

3

⌉
. Hence i− 1 > n− 2 or i− 1 < 2 +

⌈
n− 6

3

⌉
.

Therefore MD(Pn−2, i− 1) = ∅.

(ii) MD(Pn−1, i− 1) ̸= ∅ and MD(Pn−3, i− 1) ̸= ∅

⇒ 2+

⌈
n− 5

3

⌉
≤ i−1 ≤ n−1 and 2+

⌈
n− 7

3

⌉
≤ i−1 ≤ n−3. Hence 2+

⌈
n− 6

3

⌉
≤

i− 1 ≤ n− 2, which implies that MD(Pn−2, i− 1) ̸= ∅.

(iii) MD(Pn−1, i− 1) = MD(Pn−3, i− 1) = MD(Pn−2, i− 1) = ∅

⇒ i − 1 > n − 1 or i − 1 < 2 +

⌈
n− 7

3

⌉
. If i − 1 > n − 1, then MD(Pn, i) = ∅. If

i− 1 < 2 +

⌈
n− 7

3

⌉
then i < 2 +

⌈
n− 4

3

⌉
. Thus in both cases MD(Pn, i) = ∅.

Now, we are on the way to find the recurrence relation between MD(Pn, i) and the monophonic
dominating sets MD(Pn−1, i − 1), MD(Pn−2, i − 1) and MD(Pn−3, i − 1). First, let us find
the nature of MD(Pn, i) to be empty or not; depending on whether the family of monophonic
dominating sets MD(Pn−1, i−1), MD(Pn−2, i−1) and MD(Pn−3, i−1) is empty or not. Hence,
we get eight combinations for the family of monophonic dominating sets MD(Pn−1, i − 1),
MD(Pn−2, i−1) and MD(Pn−3, i−1) to be empty or not. The combination MD(Pn−1, i−1) =

MD(Pn−2, i − 1) = MD(Pn−3, i − 1) = ∅ is not considered, as it implies MD(Pn, i) = ∅.
Since MD(Pn−3, i−1) ̸= ∅, MD(Pn−1, i−1) ̸= ∅ implies MD(Pn−2, i−1) ̸= ∅ (by Theorem
2.1(ii)), the family of monophonic dominating sets that come under this category is same as that
of case (v) in Theorem 2.2. Hence we have neglected the above case in Theorem 2.2. Also the
combination MD(Pn−1, i− 1) = MD(Pn−3, i− 1) = ∅ implies MD(Pn, i) = ∅ [by Theorem
2.1(i)]. Hence it is not considered in Theorem 2.2.
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Theorem 2.2. If MD(Pn, i) ̸= ∅, then

(i) MD(Pn−1, i − 1) = ∅, MD(Pn−2, i − 1) ̸= ∅ and MD(Pn−3, i − 1) ̸= ∅ if and only if
n = 3k and i = k + 1 for some k ∈ N.

(ii) MD(Pn−1, i − 1) ̸= ∅, MD(Pn−2, i − 1) ̸= ∅ and MD(Pn−3, i − 1) = ∅ if and only if
i = n− 1.

(iii) MD(Pn−1, i − 1) = ∅, MD(Pn−2, i − 1) = ∅ and MD(Pn−3, i − 1) ̸= ∅ if and only if
n = 3k + 1 and i = k + 1 for some k ∈ N.

(iv) MD(Pn−1, i − 1) ̸= ∅, MD(Pn−2, i − 1) = ∅ and MD(Pn−3, i − 1) = ∅ if and only if
i = n.

(v) MD(Pn−1, i − 1) ̸= ∅, MD(Pn−2, i − 1) ̸= ∅ and MD(Pn−3, i − 1) ̸= ∅ if and only if

3 +

⌈
n− 5

3

⌉
≤ i ≤ n− 2.

Proof.

(i) Since MD(Pn−1, i − 1) = ∅, by Lemma 2.2 i − 1 > n − 1 or i − 1 < 2 +

⌈
n− 5

3

⌉
.

If i − 1 > n − 1, then i > n and hence by Lemma 2.2, MD(Pn, i) = ∅. Therefore

i− 1 < 2 +

⌈
n− 5

3

⌉
. Also, Since MD(Pn−2, i− 1) ̸= ∅ we have i− 1 ≥ 2 +

⌈
n− 6

3

⌉
.

Hence 2 +

⌈
n− 6

3

⌉
≤ i − 1 < 2 +

⌈
n− 5

3

⌉
. Therefore n = 3k and i = k + 1 for some

k ∈ N.
Conversely, let n = 3k and i = k+1 for some k ∈ N. It follows that MD(Pn−1, i−1) = ∅,
MD(Pn−2, i− 1) ̸= ∅ and MD(Pn−3, i− 1) ̸= ∅.

(ii) Since MD(Pn−1, i − 1) ̸= ∅ and MD(Pn−2, i − 1) ̸= ∅, by Lemma 2.2 we have

2 +

⌈
n− 5

3

⌉
≤ i − 1 ≤ n − 2. Since MD(Pn−3, i − 1) = ∅, by Lemma 2.2 we have

i−1 > n−3 or i−1 < 2+

⌈
n− 7

3

⌉
. If i−1 < 2+

⌈
n− 7

3

⌉
, then MD(Pn−2, i−1) = ∅,

which is a contradiction. Hence i − 1 > n − 3. Thus i = n − 1 or i = n. If i = n, then
MD(Pn−2, i− 1) = ∅. Hence i = n− 1.
Conversely, let us assume i = n − 1. By Lemma 2.2 we have MD(Pn−1, i − 1) ̸= ∅,
MD(Pn−2, i− 1) ̸= ∅ and MD(Pn−3, i− 1) = ∅.

(iii) Since MD(Pn−1, i − 1) = MD(Pn−2, i − 1) = ∅, we have i − 1 > n − 1 or i − 1 <

2 +

⌈
n− 6

3

⌉
. If i − 1 > n − 1, then MD(Pn, i) is empty. Hence i − 1 < 2 +

⌈
n− 6

3

⌉
.

Also, MD(Pn−3, i − 1) ̸= ∅ by Lemma 2.2, 2 +

⌈
n− 7

3

⌉
≤ i − 1 ≤ n − 3. Thus

2 +

⌈
n− 7

3

⌉
≤ i− 1 <

⌈
n− 6

3

⌉
. Therefore, n = 3k + 1 and i = k + 1 for some k ∈ N.

Conversely, let n = 3k + 1, i = k + 1 for some k ∈ N. Then by Lemma 2.2
MD(Pn−1, i− 1) = MD(Pn−2, i− 1) = ∅ and MD(Pn−3, i− 1) ̸= ∅.
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(iv) Since MD(Pn−1, i − 1) ̸= ∅ by Lemma 2.2, 2 +

⌈
n− 5

3

⌉
≤ i − 1 ≤ n − 1. Since

MD(Pn−2, i − 1) = ∅ and MD(Pn−3, i − 1) = ∅ by Lemma 2.2, i − 1 > n − 3 or

i − 1 < 2 +

⌈
n− 6

3

⌉
. If i − 1 ≥ 2 +

⌈
n− 5

3

⌉
, then MD(Pn−2, i − 1) ̸= ∅. Hence

i − 1 ≤ n − 1 and i − 1 > n − 3. This implies that i = n − 1, n. When i = n − 1,
MD(Pn−2, i− 1) ̸= ∅, which is a contradiction. Hence i = n.
Conversely, Assume that i = n. By Lemma 2.2, MD(Pn−1, i−1) ̸= ∅, MD(Pn−2, i−1) =

MD(Pn−3, i− 1) = ∅.

(v) Since MD(Pn−1, i−1) ̸= ∅, MD(Pn−2, i−1) ̸= ∅ and MD(Pn−3, i−1) ̸= ∅, by Lemma

2.2, 2 +
⌈
n− 5

3

⌉
≤ i − 1 ≤ n − 1, 2 +

⌈
n− 6

3

⌉
≤ i − 1 ≤ n − 2 and 2 +

⌈
n− 7

3

⌉
≤

i− 1 ≤ n− 3. Thus 2 +
⌈
n− 5

3

⌉
≤ i− 1 ≤ n− 3. Therefore, 3 +

⌈
n− 5

3

⌉
≤ i ≤ n− 2.

Conversely, assume that 3+
⌈
n− 5

3

⌉
≤ i ≤ n−2. Then by Lemma 2.2, MD(Pn−1, i−1) ̸=

∅, MD(Pn−2, i− 1) ̸= ∅ and MD(Pn−3, i− 1) ̸= ∅.

Theorem 2.3. For every path Pn, n ≥ 5,

(i) If MD(Pn−1, i − 1) = ∅, MD(Pn−2, i − 1) ̸= ∅ and MD(Pn−3, i − 1) ̸= ∅, then
MD(Pn, i) = [A ∪ {3k}/A ∈ MD(P3k−3, k)] ∪ [B ∪ {3k}/B ∈ MD(P3k−2, k)].

(ii) If MD(Pn−1, i − 1) ̸= ∅, MD(Pn−2, i − 1) ̸= ∅ and MD(Pn−3, i − 1) = ∅, then
MD(Pn, i) = {[n]− {x}/x ∈ [n]− {1, n}}.

(iii) If MD(Pn−1, i − 1) = ∅, MD(Pn−2, i − 1) = ∅ and MD(Pn−3, i − 1) ̸= ∅, then
MD(Pn, i) = {1, 4, 7, . . . , 3k − 2, 3k + 1}.

(iv) If MD(Pn−1, i − 1) ̸= ∅, MD(Pn−2, i − 1) = ∅ and MD(Pn−3, i − 1) = ∅, then
MD(Pn, i) = {[n]}.

(v) If MD(Pn−1, i − 1) ̸= ∅, MD(Pn−2, i − 1) ̸= ∅ and MD(Pn−3, i − 1) ̸= ∅, then
MD(Pn, i) = {A1 ∪ {n}/A1 ∈ MD(Pn−1, i− 1)}∪{A2 ∪ {n}/A2 ∈ MD(Pn−2, i− 1)}
∪ {A3 ∪ {n}/A3 ∈ MD(Pn−3, i− 1)}.

Proof.

(i) Let MD(Pn−1, i−1) = ∅, MD(Pn−2, i−1) ̸= ∅ and MD(Pn−3, i−1) ̸= ∅. By Theorem
2.2(i), we have n = 3k and i = k+1 for some k ∈ N. Let A = {1, 4, 7, . . . , 3k−5, 3k−3}
∈ MD(P3k−3, k). Clearly, A ∪ {3k} ∈ MD(P3k, k + 1). Similarly, if B ∈ MD(P3k−2, k)

then B ∪ {3k} ∈ MD(P3k, k + 1). Hence

[A ∪ {3k}/A ∈ MD(P3k−3, k)] ∪ [B ∪ {3k}/B ∈ MD(P3k−2, k)] ⊆ MD(P3k, k + 1).

Now, let Y ∈ MD(P3k, k + 1). Then the vertices labelled 1 and 3k must belong to
MD(P3k, k+1). If the vertex 3k−3 belongs to Y, then Y ={A ∪ {3k}/A ∈ MD(P3k−3, k)}.
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Similarly, if the vertex 3k − 2 belongs to Y, then Y = {B ∪ {3k}/B ∈ MD(P3k−2, k)}.
Hence MD(P3k, k+1) ⊆ [A ∪ {3k}/A∈MD(P3k−3, k)]∪ [B ∪ {3k}/B∈MD(P3k−2, k)].

(ii) MD(Pn−1, i−1) ̸= ∅, MD(Pn−2, i−1) ̸= ∅ and MD(Pn−3, i−1) = ∅. By Theorem 2.2(ii),
we have i = n− 1. Thus, MD(Pn, i) = MD(Pn, n− 1) = {[n]− {x}/x ∈ [n]− {1, n}}.

(iii) MD(Pn−1, i−1) = ∅, MD(Pn−2, i−1) = ∅ and MD(Pn−3, i−1) ̸= ∅. By Theorem 2.2(iii),
we have n=3k+1 and i=k+1 for some k ∈ N. Therefore, MD(Pn, i)=MD(P3k+1, k+1)

= {1, 4, 7, . . . , 3k − 2, 3k + 1}.

(iv) MD(Pn−1, i − 1) ̸= ∅, MD(Pn−2, i − 1) = ∅ and MD(Pn−3, i − 1) = ∅, by Theorem
2.2(iv) we have i = n. Hence MD(Pn, i) = MD(Pn, n) = {[n]}.

(v) MD(Pn−1, i − 1) ̸= ∅, MD(Pn−2, i − 1) ̸= ∅ and MD(Pn−3, i − 1) ̸= ∅. By Theorem

2.2(v), we have 3 +

⌈
n− 5

3

⌉
≤ i ≤ n − 2. Let A1 ∈ MD(Pn−1, i − 1). Then the vertex

labelled 1 and n − 1 will belongs to MD(Pn−1, i − 1). Thus, A1 ∪ {n} ∈ MD(Pn, i).
Let A2 ∈ MD(Pn−2, i − 1), Then by Lemma 2.3, we have A2 ∪ {n} ∈ MD(Pn, i). Let
A3 ∈ MD(Pn−3, i− 1), Then by Lemma 2.3, we have A3 ∪ {n} ∈ MD(Pn, i). Hence

{A1 ∪{n}/A1 ∈ MD(Pn−1, i− 1)} ∪ {A2 ∪ {n}/A2 ∈ MD(Pn−2, i− 1)}
∪ {A3 ∪ {n}/A3 ∈ MD(Pn−3, i− 1)} ⊆ MD(Pn, i).

Let Y ∈ MD(Pn, i). The vertices labelled 1 and n will belong to MD(Pn, i). The vertices
labelled n−3 or n−2 or n−1 will belong to MD(Pn, i). If n−3 ∈ Y, then Y = A1∪{n}
for some A1 ∈ MD(Pn−3, i − 1). If n − 2 ∈ Y , then Y = A2 ∪ {n} for some A2 ∈
MD(Pn−2, i − 1). If n − 1 ∈ Y , then Y = A3 ∪ {n} for some A3 ∈ MD(Pn−1, i − 1).
Thus

MD(Pn, i) ⊆ {A1 ∪ {n}/A1 ∈ MD(Pn−1, i− 1)}
∪ {A2 ∪ {n}/A2 ∈ MD(Pn−2, i− 1)}

∪ {A3 ∪ {n}/A3 ∈ MD(Pn−3, i− 1)} .

The monophonic dominating sets of size i, 2+
⌈
n− 4

3

⌉
≤ i ≤ n is determined using Theorem

2.3 in Example 2.1 for the path graph P8.

Example 2.1. Consider the path P8 with V (P8) = [8]. By using Theorem 2.3, we have constructed
MD(P8, i) for 4 ≤ i ≤ 8.
Since MD(P5, 3) = {{1, 3, 5}, {1, 2, 5}, {1, 4, 5}}, MD(P6, 3) = {{1, 6, 3}, {1, 6, 4}} and
MD(P7, 3) = {1, 7, 4} by Theorem 2.3 we have,

MD(P8, 4) = {A1 ∪ {8}/A1 ∈ MD(P7, 3)} ∪ {A2 ∪ {8}/A2 ∈ MD(P6, 3)}
∪ {A3 ∪ {8}/A3 ∈ MD(P5, 3)}

= {{1, 3, 5, 8}, {1, 2, 5, 8}, {1, 4, 5, 8}, {1, 6, 3, 8}, {1, 6, 4, 8}, {1, 7, 4, 8}} .
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Since MD(P5, 4) = {{1, 5, 2, 3}, {1, 5, 2, 4}, {1, 5, 3, 4}},
MD(P6, 4) = {{1, 6, 2, 4}, {1, 6, 2, 3}, {1, 6, 2, 5}, {1, 6, 3, 4}, {1, 6, 3, 5}, {1, 6, 4, 5}} and
MD(P7, 4) = {{1, 7, 4, 2}, {1, 7, 4, 3}, {1, 7, 4, 5}, {1, 7, 4, 6}} by Theorem 2.3 we have

MD(P8, 5) = {A1 ∪ {8}/A1 ∈ MD(P7, 4)} ∪ {A2 ∪ {8}/A2 ∈ MD(P6, 4)}
∪ {A3 ∪ {8}/A3 ∈ MD(P5, 4)} .

= {{1, 5, 2, 3, 8}, {1, 5, 2, 4, 8}, {1, 5, 3, 4, 8}, {1, 6, 2, 4, 8}, {1, 6, 2, 3, 8},
{1, 6, 2, 5, 8}, {1, 6, 3, 4, 8}, {1, 6, 3, 5, 8}{1, 6, 4, 5, 8}, {1, 7, 4, 2, 8},
{1, 7, 4, 3, 8}, {1, 7, 4, 5, 8}, {1, 7, 4, 6, 8}} .

Since MD(P5, 5) = {1, 2, 3, 4, 5},
MD(P6, 5) = {{1, 2, 3, 4, 6}, {1, 6, 5, 2, 3}, {1, 6, 5, 2, 4}, {1, 6, 5, 3, 4}} and
MD(P7, 5) = {{1, 7, 2, 3, 4}, {1, 7, 5, 2, 3}, {1, 7, 5, 2, 4}, {1, 7, 5, 3, 4}, {1, 7, 6, 2, 3}, {1, 7, 6, 2, 4},
{1, 7, 6, 2, 5}, {1, 7, 6, 3, 4}, {1, 7, 6, 3, 5}} by Theorem 2.3 we have,
MD(P8, 6) = {{1, 2, 3, 4, 5, 8}, {1, 2, 3, 4, 6, 8}, {1, 6, 5, 2, 3, 8}, {1, 6, 5, 2, 4, 8}, {1, 6, 5, 3, 4, 8},
{1, 7, 2, 3, 4, 8}, {1, 7, 5, 2, 3, 8}, {1, 7, 5, 2, 4, 8}, {1, 7, 5, 3, 4, 8}, {1, 7, 6, 2, 3, 8}, {1, 7, 6, 2, 4, 8},
{1, 7, 6, 2, 5, 8}, {1, 7, 6, 3, 4, 8}, {1, 7, 6, 3, 5, 8}}.
Since MD(P5, 6) = ∅, MD(P6, 6) = {1, 2, 3, 4, 5, 6} and MD(P7, 6) = {{1, 2, 3, 4, 5, 7},
{1, 7, 2, 3, 4, 6}, {1, 7, 2, 3, 5, 6}, {1, 7, 2, 4, 5, 6}, {1, 7, 3, 4, 5, 6}} by Theorem 2.3 we have

MD(P8, 7) = {[8]− {x}/x ∈ [8]− {1, 8}}
= {{1, 2, 3, 4, 5, 6, 8}, {1, 2, 3, 4, 5, 7, 8}, {1, 7, 2, 3, 4, 6, 8},

{1, 7, 2, 3, 5, 6, 8}, {1, 7, 2, 4, 5, 6, 8}, {1, 7, 3, 4, 5, 6, 8}}

Since MD(P5, 7) = ∅, MD(P6, 7) = ∅ and MD(P7, 7) = {1, 2, 3, 4, 5, 6, 7} by Theorem 2.3
we have, MD(P8, 8) = {1, 2, 3, 4, 5, 6, 7, 8}.

3 Monophonic domination polynomial of the path graph Pn

Let MD(Pn, x) =
∑n

i=γm(Pn)
md(Pn, i)x

i be the monophonic domination polynomial of the path
graph Pn.

Theorem 3.1. For the path Pn,

1. md(Pn, i) = md(Pn−1, i− 1) + md(Pn−2, i− 1) + md(Pn−3, i− 1).

2. For every path Pn with n ≥ 5, MD(Pn, x) = x{MD(Pn−3, x)+MD(Pn−2, x)+MD(Pn−1, x)}
with MD(P2, x) = x2, MD(P3, x) = x2 + x3 and MD(P4, x) = x2 + 2x3 + x4.

Proof.

1. The result holds from Theorem 2.3.

2. Monophonic dominating set of Pn−3, Pn−2 or Pn−1 together with the vertex {n} forms the
monophonic dominating set of Pn. Hence the monophonic dominating polynomial of Pn

will be generated by x{MD(Pn−3, x) +MD(Pn−2, x) +MD(Pn−1, x)}.
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By using the Theorem 3.1, we have calculated the values of md(Pn, j) for 2 ≤ n ≤ 16 and it
is shown in Table 1.

Table 1. md(Pn, j)

n \ j 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 1

3 1 1

4 1 2 1

5 0 3 3 1

6 0 2 6 4 1

7 0 1 7 10 5 1

8 0 0 6 16 15 6 1

9 0 0 3 19 30 21 7 1

10 0 0 1 16 45 50 28 8 1

11 0 0 0 10 51 90 77 36 9 1

12 0 0 0 4 45 126 161 112 45 10 1

13 0 0 0 1 30 141 266 266 156 55 11 1

14 0 0 0 0 15 126 357 504 414 210 66 12 1

15 0 0 0 0 5 90 393 784 882 615 275 78 13 1

16 0 0 0 0 1 50 357 1016 1554 1452 880 352 91 14 1

Theorem 3.2. The following properties holds for the coefficient md(Pn, j) of MD(Pn, x)

1. For every n ≥ 2, md(Pn, n) = 1.

2. For every n ≥ 3, md(Pn, n− 1) = n− 2.

3. For every n ≥ 4, md(Pn, n− 2) =
(n− 2)(n− 3)

2
.

4. For every n ≥ 5, md(Pn, n− 3) =
n(n− 4)(n− 5)

6
.

5. md(P3n+1, n+ 1) = 1.

6. md(P3n, n+ 1) = n.

7. md(P3n−1, n+ 1) =
n(n+ 1)

2
.

Proof.

1. By Theorem 2.3 (iv), we have MD(Pn, n) = {1, 2, 3, . . . , n}. Therefore, md(Pn, n) = 1.

2. By Theorem 2.3 (ii), we get MD(Pn, n − 1) = {[n]− {x}/x ∈ [n]− {1, n}}. Hence
md(Pn, n− 1) = n− 2.
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3. We prove this result by induction on n. md(P4, 2) = 1 =
(4− 2)(4− 3)

2
. Thus the result is

true for n = 4. Assume that the result is true for all natural numbers less than n. Now, let
us prove that the result is true for n.

md(Pn, n− 2) = md(Pn−1, n− 3) + md(Pn−2, n− 3) + md(Pn−3, n− 3)

=
(n− 3)(n− 4)

2
+ n− 4 + 1

=
(n− 2)(n− 3)

2
.

4. We prove this by induction on n. Since md(P5, 2) = 0, the result holds for n = 5. Now
let us assume that the result is true for all natural numbers less than n. Now, we prove the
result for n.

md(Pn, n− 3) = md(Pn−1, n− 4) + md(Pn−2, n− 4) + md(Pn−3, n− 4)

=
(n− 1)(n− 5)(n− 6)

6
+

(n− 4)(n− 5)

2
+ n− 5

=
n(n− 4)(n− 5)

6
.

5. By Theorem 2.3 (iii) we have MD(P3k+1, k + 1) = {1, 4, 7, . . . , 3k − 2, 3k + 1}. Thus
md(P3k+1, k + 1) = 1.

6. Proof by induction on n. Since md(P3, 2) = 1, the result is true for n = 1. Assume that
the result is true for all positive integers less than n. Now, we have to prove that the result
holds for n. By Theorem 2.3 (i), we have

md(P3n, n+ 1) = md(P3n−2, n) + md(P3n−3, n)

= md(P3(n−1)+1, (n− 1) + 1) + md(P3(n−1), (n− 1) + 1)

= n.

7. Proof by induction on n. Since md(P2, 2) = 1, the result is true for n = 1. Assume that
the result is true for all positive integers less than n. Now, we have to prove that the result
is true for n.

md(P3n−1, n+ 1) = md(P3n−2, n) + md(P3n−3, n) + md(P3n−4, n)

= md(P3(n−1)+1, (n− 1) + 1) + md(P3(n−1), (n− 1) + 1)

+ md(P3(n−1)−1, (n− 1) + 1)

=
n(n+ 1)

2
.

4 Conclusion

In this paper, we have determined the characterisation of monophonic dominating sets of the path
graph Pn and have found the recurrence relation between the monophonic dominating sets of
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the path graph Pn, Pn−1, Pn−2 and Pn−3. By using this we have determined the monophonic
domination polynomial of the path graph Pn. In the near future, we can use this polynomial in
various applications.
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