
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
2024, Volume 30, Number 4, 776–786
DOI: 10.7546/nntdm.2024.30.4.776-786

A note on Diophantine inequalities
in function fields

Kathryn Wilson
Department of Mathematics, Kansas State University

138 Cardwell Hall, 1228 N. 17th St, Manhattan, KS 66506, USA
e-mail: kathry18@ksu.edu

Received: 7 February 2024 Revised: 13 November 2024
Accepted: 14 November 2024 Online First: 18 November 2024

Abstract: We will discuss how the Bentkus–Götze–Freeman variant of the Davenport–Heilbronn
circle method can be used to study Fq[t] solutions to inequalities of the form

ord(λ1p
k
1 + · · ·+ λsp

k
s − γ) < τ,

where constants λ1, . . . , λs ∈ Fq((1/t)) satisfy certain conditions. This result is a generalization
of the work done by Spencer in [11] to count the number of solutions to inequalities of the form

ord(λ1p
k
1 + · · ·+ λsp

k
s) < τ.
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1 Introduction and statement of the result

The Davenport–Heilbronn method was developed to study the number of integral solutions to
Diophantine inequalities of the form

|λ1xk1 + · · ·+ λsx
k
s | < τ, (1)
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where k and s are positive integers with k > 1, τ is a fixed positive real number, and λ1, . . . , λs
are non-zero real numbers not all in rational ratio. The number of solutions to (1) such that
x ∈ [−P, P ]s ∩ Zs is denoted by N0(P,λ). The condition that the λi (1 ≤ i ≤ s) do not all have
the same sign is added in the case that k is even, to guarantee the existence of a real solution. The
method was constructed by Davenport and Heilbronn in [3]. In the aforementioned paper, they
showed that for s > 2k and (Pn)

∞
n=1 a sequence increasing to infinity that depends on λ,

N0(Pn,λ) ≫ P s−k
n .

In 2001, Hsu in [7] used the Davenport–Heilbronn method in function fields to study the
number of solutions of

ord(λ1p
k
1 + · · ·+ λsp

k
s) < τ,

where each pi is a monic irreducible polynomial in Fq[t], the λi satisfy appropriate conditions,
k < char(Fq), and

s ≥

2k + 1, when 2 ≤ k ≤ 11,

2[2k2 log k + k2 log log k + 2k2 − 2k] + 1, when k ≥ 11.

This broadened in scope the previous work Hsu had done on counting solutions in the linear case
with three monic irreducible polynomials (see [6]). In 2008, Spencer (see [11]) continued the
study of such methods to count solutions of Diophantine inequalities in the function field setting
by developing the Bentkus–Götze–Freeman variant of the Davenport–Heilbronn circle method
for function fields.

The Bentkus–Götze–Freeman variant of the Davenport–Heilbronn method was developed
over 50 years after the paper in which Davenport and Heilbronn first presented their method.
The variant established an asymptotic lower bound and asymptotic formula for N0(P,λ), for all
sufficiently large values of P (see [1, 4, 5, 13]). For

s ≥ k(log k + log log k +O(1)),

an asymptotic lower bound for N0(P,λ) was established, and for

s ≥ k2(log k + log log k + 2 + o(1)),

an asymptotic formula for N0(P,λ) was established. Spencer used the Bentkus–Götze–Freeman
variant of the Davenport–Heilbronn circle method for function fields to provide an asymptotic
lower bound for all sufficiently large positive numbers P on the number of Fq[t] solutions to

ord(λ1x
k
1 + · · ·+ λsx

k
s) < τ

in Fq((1/t)), for a real number τ and for s sufficiently large in terms of k and q. In this paper, we
follow much of the same methodology while considering the inequality

ord(λ1x
k
1 + · · ·+ λsx

k
s − γ) < τ,

where γ is an element of Fq((1/t)).
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First, we establish some basic notation. Let p be the characteristic of Fq. Let A = Fq[t] denote
the ring of polynomials over Fq, let K = Fq(t), and let K∞ = Fq((1/t)) be the completion of K
at the infinite place. If α ∈ K∞\{0}, it can be expressed as

α =
∑

−∞<i≤n

ait
i,

where n ∈ Z, each ai ∈ Fq, and an ̸= 0. In this case, we define ordα = n and leadα = an, and
if α is a polynomial, then ordα = degα. We set ord 0 = −∞ and let resα be the coefficient of
t−1.

There is a non-Archimedean valuation on K∞ defined by |α| = ⟨α⟩ = qordα. If u is a real
number, let û = qu. We now rewrite

ord(λ1x
k
1 + · · ·+ λsx

k
s − γ) < τ

as
⟨λ1xk1 + · · ·+ λsx

k
s − γ⟩ < τ̂.

Here k > 1 and s are positive integers with p ∤ k. Let Log x = max{1, log x} for any positive
real number x. Define ψ(k) = ψq(k) by ψ(k) = a0+a1+ · · ·+an, where k has base p expansion
k = a0 + a1p+ · · ·+ anp

n with 0 ≤ ai ≤ p− 1. We denote Bq(k) by

Bq(k) =

1, when k ≤ 2ψ−2,

(1− 2−ψ(k))−1, when k > 2ψ−2.

Let
sq,k = Bq(k)k(Log k + Log Log k + 2 +Bq(k)Log Log k/Log k).

We now state our generalization of [11, Theorem 1.1].

Theorem 1.1. There exists a positive absolute constant C with the following property. Suppose
that k and s are natural numbers with k > 1,

s ≥ sq,k + Ck
√
Log Log k/Log k,

and char(Fq) ∤ k. Let τ be some fixed integer, let γ be an element in K∞, and let λ1, . . . , λs be
fixed non-zero elements of K∞, not all in Fq(t) ratio. Suppose also that the equation

λ1z
k
1 + · · ·+ λsz

k
s = 0 (2)

has a non-trivial solution z in Ks
∞. Then, for all sufficiently large positive real numbers P , the

number of Fq[t]-solutions N(P,λ) of

⟨λ1xk1 + · · ·+ λsx
k
s − γ⟩ < τ̂

with ⟨xi⟩ ≤ P̂ for 1 ≤ i ≤ s satisfies

N(P,λ) ≫ P̂ s−k.

The implicit constant may depend on s, k, q, λ, γ, and τ .
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Stemming from results of Chevalley and Weil (see [2] and [12], respectively) and discussion
in [11], the following conditions on s, k, and q provide cases where a non-trivial solution to (2)
exists in Ks

∞.

Proposition 1.1. Suppose that char(Fq) ∤ k and let λ1, . . . , λs be non-zero elements of K∞. The
equation λ1zk1 + · · ·+λsz

k
s = 0 has a non-trivial solution z ∈ Ks

∞ whenever one of the following
three conditions are met:

(1) s ≥ k2 + 1,

(2) q > k4 and s ≥ 2k + 1,

(3) (k, q − 1) = 1 and s ≥ k + 1.

2 Proof of the theorem

2.1 The Davenport–Heilbron method for function fields

To produce the results found in Theorem 1.1, we utilize the Davenport–Heilbron method for
function fields. Let eq : Fq → C× be defined by eq(a) = e2πi tr(a)/p where tr : Fq → Fp is the
trace map. We define e : K∞ → C× by e(α) = eq(resα). Let T be a compact additive subgroup
of K∞ defined as T = {α : ordα < 0}. We normalize a Haar measure on K∞ so that∫

T
dα = 1.

First, like in [7], define the function χτ : K∞ → R by

χτ (α) =

τ̂ , when ⟨α⟩ < τ̂−1,

0, when ⟨α⟩ ≥ τ̂−1.

Then as in Lemma 2.2 of [7], we construct an indicator function:∫
K∞

e(αβ)χτ (α)dα =

1, when ⟨β⟩ < τ̂,

0, when ⟨β⟩ ≥ τ̂ .

We define the set of R-smooth polynomials A(P,R) as

A(P,R) = {x ∈ A : ⟨x⟩ ≤ P̂ ;ω irreducible and ω | x⇒ ⟨ω⟩ ≤ R̂},

whereR ≤ P for some real numbers P andR. WheneverR is used in the remainder of the paper,
we take R = ηP , and when R occurs in a statement, we are asserting that there exists a positive
number η0 such that the statement holds for all 0 < η ≤ η0. Denote

F (α) = F (α;P ) =
∑
⟨x⟩≤P̂

e(αxk)

and
f(α) = f(α;P,R) =

∑
x∈A(P,R)

e(αxk).
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Set Fi(α) = F (λiα) for 1 ≤ i ≤ s and fj(α) = f(λjα) for 3 ≤ j ≤ s. We now have that the
integral ∫

K∞

F1(α)F2(α)f3(α) · · · fs(α)e(−αγ)χτ (α)dα

counts the number of solutions x ∈ As of

⟨λ1xk1 + · · ·+ λsx
k
s − γ⟩ < τ̂,

where ⟨xi⟩ ≤ P̂ for i = 1, 2 and xj ∈ A(P,R) for 3 ≤ j ≤ s.

We say that a positive number u > 2k − 2 is accessible to the exponent k when there exists a
positive number δ for which∫

n

|F (α;P )2f(α;P,R)u|dα ≪ P̂ u+2−k−δ,

where n denotes the set of α ∈ T such that for a and g in A, when ⟨gα − a⟩ < P̂ 1−k and g ̸= 0,
then ⟨g⟩ > P̂ . By Theorem 9.4, Corollary 13.3, and Lemma 14.1 of [10], Theorem 1.1 is the
consequence of the following theorem.

Theorem 2.1. Suppose that k and s are natural numbers with k > 1 and char(Fq) ∤ k. Assume
that u > 2k − 2 is accessible to the exponent k and that s ≥ u + 5. Let τ be some fixed integer,
let γ be a non-zero element in K∞, and let λ1, . . . , λs be fixed non-zero elements of K∞, not all
in Fq(t) ratio. Suppose also that the equation λ1zk1 + · · · + λsz

k
s = 0 has a non-trivial solution

z in Ks
∞. Then, for all sufficiently large positive real numbers P , the number of Fq[t]-solutions

N(P,λ, γ) of
⟨λ1xk1 + · · ·+ λsx

k
s − γ⟩ < τ̂

with ⟨xi⟩ ≤ P for 1 ≤ i ≤ s satisfies

N(P,λ, γ) ≫ P̂ s−k.

The implicit constant may depend on s, k, q, λ, γ, and τ .

Following the Davenport–Heilbronn method, we split the region K∞ into three arcs. First, set
S1(P ) = (Log P̂ )1/8. Define the major arc by

M = {α ∈ K∞ : ⟨α⟩ < S1(P )P̂
−k},

the minor arc by
m = {α ∈ K∞ : S1(P )P̂

−k ≤ ⟨α⟩ < τ̂−1},

and the trivial arc by
t = {α ∈ K∞ : ⟨α⟩ ≥ τ̂−1}.

The trivial arcs provide no contribution to the bound, as∫
⟨α⟩≥τ̂−1

F1(α)F2(α)f3(α) · · · fs(α)e(−αγ)χτ (α)dα = 0.
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Thus, for Theorem 2.1 to hold we want∫
m

F1(α)F2(α)f3(α) · · · fs(α)e(−αγ)χτ (α)dα = o(P̂ s−k)

and ∫
M

F1(α)F2(α)f3(α) · · · fs(α)e(−αγ)χτ (α)dα ≫ P̂ s−k

for sufficiently large values of P .

2.2 The minor arc

To establish the desired bound on the minor arcs, we need an appropriate Weyl-type estimate and
a suitable mean value estimate for f(α). We will closely follow the analysis provided in Sections
3 and 4 of [11], with a slight difference in the proof of one of the lemmas.

The machinery provided by Lemma 4.1 of [11] will still be used to establish a mean value
estimate for f(α), without any changes. However, our discussion of the Weyl-type estimate will
slightly diverge from what is given by Section 3 of [11]. In [11], the proof of Lemma 3.1 cites a
result from a preprint that never appeared in the literature. We will provide a proof analogous to
Lemma 3.1 of [11] using a result that does currently exist in the literature.

We will first provide definitions for terms that are used in the statement of the result we will
cite. Let K be a finite set of positive integers. We define the shadow of K to be

S(K) =

{
j ∈ Z+ : p ∤

(
r

j

)
for some r ∈ K

}
,

where we adopt the convention that if j > r,
(
r
j

)
= 0. We can then construct

K∗ = {k ∈ K : p ∤ k and pvk /∈ S(K) for any v ∈ Z+}.

We are now able to state the result we will use in proving Lemma 3.1, which is Theorem 3.1
from [9].

Theorem 2.2. Fix q and a finite set K ⊂ Z+. There exist positive constants ξ and C, depending
only on K and q, such that the following holds. Let ϵ > 0 and let M be sufficiently large in terms
of K, ϵ, and q. Suppose that h(x) =

∑
r∈K∪{0} αrx

r is a polynomial with coefficients in K∞

satisfying the bound ∣∣∣∣∣∣
∑

⟨x⟩<M̂

e(h(x))

∣∣∣∣∣∣ ≥ qM−σ, (3)

for some positive number σ with σ ≤ ξM. Then for each maximal k ∈ K∗, there exist a ∈ Fq[t]
and monic g ∈ Fq[t] having the property that

ord(gαk − a) < −kM + ϵM + Cσ and ord g ≤ ϵM + Cσ.
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For the purpose of this paper, we set K = {k}, h(x) = αxk, M = P + 1, ϵ = 1/4, and
σ = min{P/(4C), ξP}. Furthermore, we have that {k} ⊆ S(K) ⊆ {1, . . . , k} and K∗ = {k},
since p ∤ k and pvk > k for all v ∈ Z+. Thus, if (3) holds and P is sufficiently large in terms of k
and q, it follows that there exists a ∈ Fq[t] and monic g ∈ Fq[t] satisfying

ord(gα− a) < −k(P + 1) + ϵ(P + 1) + Cσ < (3/4− k)P

and
ord g ≤ ϵ(P + 1) + Cσ ≤ 3P/4.

Let n∗ denote the set of α ∈ T such that, for a and monic g in A satisfying ord(gα − a) <

(3/4− k)P , we have ord g > 3P/4. Since k is maximal in K∗, by the contrapositive of Theorem
2.2, there exists a small positive constant ν = ν(q, k) such that

sup
α∈n∗

|F (α;P )| ≪ P̂ 1−ν .

We adapt the proof of Lemma 3.1 of [11] using the set n∗ defined above.

Lemma 2.1. There is a positive constant c, depending at most on k and q, with the following
property. Suppose that P is a real number, sufficiently large in terms of k and q. Suppose that δ
is a positive number with P̂−ν/2 < δ ≤ 1. Then, whenever |F (α)| ≥ δP̂ , there exist a and g in A
such that (a, g) = 1, 1 ≤ ⟨g⟩ ≤ cδ−k and ⟨gα− a⟩ ≤ δ−kP̂−k.

Proof. Suppose there exists an α ∈ K∞ such that |F (α)| ≥ δP̂ , where δ is a positive number
with P̂−ν/2 < δ ≤ 1. It follows from Lemma 3 of [8], that for all α ∈ T, there exist unique a and
g in A, where (a, g) = 1, g is monic, ⟨a⟩ < ⟨g⟩ ≤ P̂ k−3/4 and ⟨gα− a⟩ < P̂−k+3/4.

Suppose that ⟨g⟩ > P̂ 3/4. Thus, α ∈ n∗, and |F (α)| ≪ P̂ 1−ν . Taking P sufficiently large,

|F (α)| < 1

2
P̂ 1−ν/2 ≤ 1

2
δP̂ .

This contradicts our assumption on the size of |F (α)|; thus we assume that ⟨g⟩ ≤ P̂ 3/4.

By Lemma 4.1 of [10], there exists a positive constant c such that

F (α) ≤ c1/kP̂ (⟨g⟩+ P̂ k⟨gα− a⟩)−1/k.

By assumption, we have that |F (α)| ≥ δP̂ , thus

⟨g⟩+ P̂ k⟨gα− a⟩ ≤ cδ−k.

The result follows.

The following are Lemma 3.2 and Lemma 3.3 of [11], respectively.

Lemma 2.2. Suppose that S is a fixed real number with 0 < S < τ̂−1. Then one has

lim
P→∞

sup
S≤⟨α⟩<τ̂−1

|F1(α)F2(α)| = 0.
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Lemma 2.3. Suppose that S(P ) is a function on (0,∞) that increases monotonically to infinity
and satisfies 1 ≤ S(P ) ≤ P̂ . Then there exists a function T (P ) on (0,∞) depending only on λ1,
λ2, k, q, τ , and S(P ), that increases monotonically to infinity, satisfies 1 ≤ T (P ) ≤ S(P ) and
satisfies the property that

sup
S(P )P̂−k≤⟨α⟩<τ̂−1

|F1(α)F2(α)| ≪ P̂ 2T (P )−ν/(2k).

We have now established a Weyl-type estimate that can provide our desired bound on the
minor arc.

Lemma 2.4. Suppose that u > 2k − 2 is accessible to the exponent k and that s ≥ u + 5. One
has ∫

m

F1(α)F2(α)f3(α) · · · fs(α)e(−αγ)χτ (α)dα = o(P̂ s−k).

Proof. Let v = ⌊s/2⌋ − 2. By the triangle inequality,∫
m

F1(α)F2(α)f3(α) · · · fs(α)e(−αγ)χτ (α)dα ≪
∫
m

|F1(α)F2(α)f3(α) · · · fs(α)|χτ (α)dα,

so the result follows from the proof of Lemma 4.2 of [11].

2.3 The major arc

First, define
F(α) = F1(α)F2(α)f3(α) · · · fs(α)

and
G(α) = F1(α) · · ·Fs(α).

For the major arcs, we want to compare

τ̂

∫
M

F(α)e(−αγ)dα

to the singular integral

Js,k =

∫
⟨α⟩<P̂ s−k

G(α)e(−αγ)dα.

The following lemma uses the Dickman function, ρ(u), which is the continuous function on
the real numbers that is uniquely defined by the differential equation uρ′(u) = −ρ(u − 1), with
the initial condition that ρ(u) = 1 for u ∈ [0, 1].

Lemma 2.5. Suppose that s ≥ k + 1. One has∫
M

F(α)e(−αγ)dα− ρ(P/R)s−2Js,k ≪ P̂ s−k(Log P̂ )−1/(8k).
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Proof. Set P ≥ 1 large enough so that 2P/ log(2P ) < R < P − log(P ). From [10] and [11], we
have that

F(α)e(−αγ)− ρ(P/R)G(α)e(−αγ) ≪ P̂ (Log P̂ )−3/8

for α ∈ M. It follows by the triangle inequality that∫
M

F(α)e(−αγ)dα− ρ(P/R)s−2

∫
M

G(α)e(−αγ)dα ≪ P̂ s−k(Log P̂ )−1/4.

Furthermore, Lemma 4.1 in [10] provides the bound

Fi(α) ≪ P̂ (1 + P̂ k⟨α⟩)−1/k.

Thus, ∫
M

G(α)e(−αγ)dα− Js,k ≪
∫
T

∣∣∣G(α)∣∣∣∣∣∣e(−αγ)∣∣∣dα
≪ P̂ s

∫
T

(1 + P̂ k⟨α⟩)−s/kdα,

where T = {α ∈ K∞ : S1(P )P̂
−k ≤ ⟨α⟩}. The remaining details follow from the proof of

Lemma 5.1 in [11].

Lemma 2.6. Let s ≥ k+1, and suppose that the equation λ1zk1 + · · ·+λszks = 0 has a non-trivial
solution z in Ks

∞. For sufficiently large values of P , one has Js,k ≫ P̂ s−k.

Proof. By Lemma 1 of [8], we have

Js,k =

∫
⟨α⟩<P̂ 1−k

G(α)e(αγ)dα = P̂ 1−kW, (4)

where W denotes the number of s-tuples (x1, . . . , xs) ∈ As with

⟨λ1xk1 + · · ·+ λsx
k
s − γ⟩ < P̂ k−1 (5)

and ⟨xi⟩ ≤ P̂ for 1 ≤ i ≤ s. As in [11], choose r such that ⟨λrzkr ⟩ is maximal. Let d = ordλr
and w = leadλr. For 1 ≤ i ≤ s, we define ai by

ai =

lead zi, when ⟨λizki ⟩ = ⟨λrzkr ⟩,
0, otherwise,

and mi as

mi =

⌊
d− ordλi + k · ord zr

k

⌋
.

Let n = ⌊P ⌋ − max
1≤i≤s

mi − max

{
0,

⌈
d

k − 1

⌉}
, and suppose that P is large enough so that

n + mi > 0 for 1 ≤ i ≤ s and d + k(n + mr) > ord γ. For 1 ≤ i ≤ s, write xi ∈ A as
xi = ait

n+mi + yi, where yi ∈ A and ord yi < n+mi. Let

xr = art
n+mr + bn+mr−1t

n+mr−1 + · · ·+ b0,
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where each bi ∈ Fq. We define cl ∈ Fq via the relation

λ1x
k
1 + · · ·+ λsx

k
s − γ =

∞∑
l=−∞

clt
l.

Thus, (5) holds when cl = 0 for all l ≥ (k − 1)P . We note that cl = 0 for all l > d+ k(n+mr)

via the relation
ordλi + k(n+mi) ≤ d+ k(n+mr).

Also, the coefficient cd+k(n+mr) = 0 by the definition for ai, the construction of the xi, and our
hypothesis.

We consider what occurs when

d+ (k − 1)(n+mr) ≤ l < d+ k(n+mr).

From our construction of the xi, we have

cl = kwak−1
r bl−d−(k−1)(n+mr) + hl,

where hl is an element of Fq depending at most on λ, a, γ, bi with i > l − d− (k − 1)(n+mr),
and yj with j ̸= r.

For j ̸= r, let yj be arbitrarily selected. Note that kwak−1
r ̸= 0. We can choose bn+mr−1

so that cd+k(n+mr)−1 = 0, and similarly we can then select bn+mr−2 so that cd+k(n+mr)−2 = 0.
Continuing in this manner, we can choose xr such that cl = 0 for all l ≥ d + (k − 1)(n +mr).
From our construction of n,

d+ (k − 1)(n+mr) ≤ (k − 1)(⌊P ⌋ − max
1≤i≤s

mi +mr)

≤ (k − 1)P.

Then, due to the yj being arbitrarily selected for j ̸= r, W ≫ P̂ s−1 for P sufficiently large. In
summary, by (4), Js,k ≫ P̂ s−k.

Combining the results of the previous lemmas gives us the following:

Lemma 2.7. Let s ≥ k+1, and suppose that the equation λ1zk1 + · · ·+λszks = 0 has a non-trivial
solution z in Ks

∞. For sufficiently large values of P , one has∫
M

F1(α)F2(α)f3(α) · · · fs(α)e(−γα)χτ (α)dα ≫ P̂ s−k.

Theorem 2.1 now follows by Lemma 2.4 and Lemma 2.7.
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