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Abstract: Let ρ be an odd prime greater than or equal to 11. In a previous work, starting from
an M -cycle in a finite field Fρ, it has been established how the divisors of Mersenne, Fermat
and Lehmer numbers arise. The converse question has been taken up in a succeeding work and
starting with a factor of these numbers, a method has been provided to find an odd prime ρ
and the M -cycle in Fρ contributing the factor under consideration. Continuing the study of the
two previous works, a certain type of partition of a natural number is considered in the present
paper. Concerning the Mersenne, Fermat and even perfect numbers, the algebraic principle is
established.
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1 Introduction

Numbers of the forms 2n−1, 2n+1 and 22
n
+1 are referred to as Mersenne, Lehmer and Fermat

numbers, respectively. The main purpose of this study is to establish the algebraic principle
upon which the factors of these numbers arise. In [13], the author has introduced the polynomial
sequences {Fk(x)}, {Gk(x)} and {Hk(x)} over Z defined as follows:
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F1(x) = x, Fk+1(x) = (Fk(x))
2 − 2,∀ k ∈ N,

G0(x) = 1, G1(x) = x− 1, Gk+2(x) = xGk+1(x)−Gk(x) (k ≥ 0),

H0(x) = 1, H1(x) = x+ 1, Hk+2(x) = xHk+1(x)−Hk(x) (k ≥ 0).

In [13], it has been proved that the following statements are equivalent:

(a) 2j + 1 | 2m+ 1,

(b) Gj(x) | Gm(x),

(c) Hj(x) | Hm(x), ∀ j,m > 0.

The concept of satellite polynomial has been introduced.

(i) A polynomial p(x) ∈ Z[x] is said to be a satellite polynomial for Gj(x) if p(x) | Gj(x) but
p(x) ̸∈ {Gk(x)}.

(ii) A polynomial q(x) ∈ Z[x] is said to be a satellite polynomial for Hj(x) if q(x) | Hj(x) but
q(x) ̸∈ {Hk(x)}.

With ρ a prime, the values assumed by the sequences in the field Fρ have been considered, leading
to the sequences {M(t)}, {θt,k} and {ψt,k}, respectively.

Let ρ be an odd prime ≥ 11. Let M(t) ∈ Fρ − {0,±1,±2} such that M2
k ̸= 2, 3 for all k in

the cycle M(t) =M1 →M2 → · · · →Mn →Mn+1 =M1 → · · · where Mk =M(t+ k− 1) =

M2
k−1 − 2. Define ψt,0 = 1, ψt,1 =M(t) + 1, ψt,k =M(t)ψt,k−1 − ψt,k−2, ∀ k ≥ 2. Let ω be the

smallest positive integer such that ψt,ω = 0. Then it has been proved by the author in [13] that
ω ≥ n and 2ω + 1 | 2n − 1 or 2n + 1. It has also been proved that n | 1

2
Φ(2ω + 1).

In [13], starting from an M -cycle in Fρ, we have established how the divisors of Mersenne,
Fermat and Lehmer numbers arise. The converse question has been settled in the affirmative in
[14]. Starting with a factor of Mersenne, Fermat or Lehmer numbers, a method has been provided
in [14] to answer the question as to finding an odd prime ρ and theM -cycle in Fρ contributing that
factor. Leyendekkers and Shannon [12] have determined some significant aspects of Mersenne
and Fermat numbers. In the present study, the theory of partition of a natural number in relation
to the polynomial sequence {Hk(x)} is developed and applied in the derivation of the algebraic
principle of Mersenne, Fermat and even perfect numbers. The main results are contained in
Theorems 3.1, 3.3, 4.1, 4.2, Corollary 4.2, Theorems 4.3, 5.1, 5.2, 8.1, 9.3, 9.4, 10.3, 10.4 and
11.1. A summary is furnished in Section 12.

2 Partition of a natural number in relation to H(x)-sequence

Attainment of the roots of the H(x)-polynomials has been considered in [14, Section 5]. When
ρ is an odd prime ≥ 11, it has been proved in [14, Theorem 5.10] that a necessary condition for
Hω(x) to attain all its roots in the finite field Fρ is that 2ω+1 | δ(ρ−1) or δ(ρ+1). If ρ is an odd
prime ≥ 11 and if 2ω+1 | δ(ρ−1) or δ(ρ+1), then it has been proved in [14, Theorem 6.2] that the
polynomial Hω(x) attains all its roots in Fρ, thereby establishing the sufficiency of the condition.
The objective of the present study is to show how the case-by-case consideration in [14, Theorem
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6.2] leads to the fundamental theorem of partition of a natural number ω in Fρ. For the theory
of partitions, a standard reference is Andrews [1]. In general, a partition function refers to the
number of distinct ways of representing a given natural number ω as a sum of numbers less than
or equal to ω. In the present work we deal with a specific method of representation of ω related
to our theory, by giving a concrete shape to the result contained in [14, Theorem 6.2].

3 Derivation of partition

Let us recall the following results from [14, Theorems 3.2 and 3.3]:

(1) If 2ω + 1 is a prime and if Hω(x) splits into satellite polynomials in Fρ[x], then all the
resulting factors of Hω(x) are of equal degree.

(2) If ρ and ρ′ are two background primes for a prime 2ω + 1 and if Hω(x) is split-associated,
then the satellite polynomials of Hω(x) in Fρ[x] and F(ρ

′)[x] are of equal degree.

In order to develop the theory of partitions, a few definitions are needed.

Definition 3.1 (Standard polynomial factorization of H(x)-polynomial with respect to Fρ). Let ρ
be a given prime ≥ 11. In the pair (n, ω) with n, ω ∈ N , let n denote the length of an M -cycle in
a field Fρ and ω the pivotal position in C1(t) at which the ψt,k- sequence attains a zero in Fρ. By
the fundamental theorem of arithmetic, 2ω+ 1 can be uniquely expressed as a product of distinct
primes q1, . . . , qt as

2ω + 1 = q1
γ1 · · · qtγt . (3.1)

where γ1, . . . , γt ∈ N . By [13, Theorem 2.17] and [14, Theorems 3.2, 3.4 and Corollary 3.1],
the polynomial Hω(x) can be uniquely expressed as a product of a certain number of elements
of the sequence Hk(x) and a certain number of satellite polynomials (universal or local). This
expression is called the standard polynomial factorization of Hω(x) with respect to the field Fρ.

3.1 Constituent polynomials and their properties

Definition 3.2 (Constituent polynomials ofH(x)-polynomial with respect to Fρ). The polynomials
appearing in the standard polynomial factorization ofHω(x) with respect to the field Fρ are called
the constituent polynomials of Hω(x) with respect to Fρ and these polynomials together form the
set of constituent polynomials of Hω(x) with respect to Fρ.

Definition 3.3 (Leading constituent polynomial of H(x)-polynomial in relation to Fρ).
A constituent polynomial of Hω(x) of the largest degree with respect to Fρ is called a leading
constituent polynomial of Hω(x) in relation to Fρ.

3.2 Criterion for a partition

A necessary condition for a partition is that the numbers that would appear in the partition of ω
shall add to ω. We think of a partition of ω with a criterion that such a partition shall be based
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on the relationship between n and ω under consideration. The basic principle in the partition of
ω is provided by [13, Theorem 6.1] according to which every root of Hω(x) is an element of a
unique M -cycle in Fρ and, in the other direction, every element of an M -cycle in Fρ satisfies
some polynomial in the H(x)-sequence.

Given ω ∈ N, consider Hω(x). Let ρ be the minimum background prime for 2ω + 1. In
[14, Theorem 5.10], it has been proved that a necessary condition for Hω(x) to attain all its roots
in Fρ is that 2ω + 1|δ(ρ − 1) or δ(ρ + 1) and in [14, Theorem 6.2] we have established that if
2ω+1 is any divisor of δ(ρ− 1) or δ(ρ+1), then the polynomial H(x) attains all its roots in Fρ.

We denote the partition of ω in Fρ by π(ω). Invoking [13, Theorem 2.17] and [14, Theorems
3.2, 3.4 and Corollary 3.1], the expression for π(ω) is derived by referring to the lengths of the
M -cycles in Fρ as described below:

Case (i): 2ω + 1 is a prime.
Sub-case (i) (A): ω is a prime. In this case, ω is a Sophie Germain prime. We see that
H(x) has no satellite polynomial and therefore all the roots of Hω(x) form a single
M -cycle of length ω in Fρ. Consequently, π(ω) is obtained as ω. Let us employ the notation
π(ω) = (ω).

Sub-case (i) (B): ω is a composite number.

• Sub-case (i) (B) (I): 2ω + 1 is a non-split-associated prime. In this case also Hω(x) has no
satellite polynomial and so the roots of Hω form a single M -cycle in Fρ. Thus we have
π(ω) = (ω).

• Sub-case (i) (B) (II): 2ω + 1 is a split-associated prime. As established in [14, Theorem
3.2] all the resulting factors of Hω(x) in Fρ[x] are of equal degree. By [14, Theorem 3.4],
the polynomialH(x) splits into local satellite polynomials in Fρ[x]. SupposeHω(x) factors
into s number of local satellite polynomials of degree n each so that ω = sn with s > 1.
Then correspondingly we have s number of M -cycles in Fρ each of length n. For all these
M -cycles, the pivotal position in the corresponding ψt,k-sequences is ω. Thus, while any
individual M -cycle can contribute only a part of the set of roots of Hω(x), all the M -cycles
collectively yield the full complement of the roots ofHω(x) in Fρ. Because of this property,
we say that the M -cycles are of sharing type. In this case the partition of ω is given by

π(ω) = (n+ · · ·+ n)︸ ︷︷ ︸
(s times)

with sn = ω and s > 1. The equality of numbers enclosed within parentheses in the
expression for π(ω) indicate that all the corresponding M -cycles have the same value of ω
in the concerned ψt,k-sequences. Further, each number within parentheses in π(ω) denotes
the length of the corresponding M -cycle in Fρ. Another interpretation is also in order.
Each number within parentheses in π(ω) indicates the degree of the polynomial dividing
Hω(x) wherein the roots form an M -cycle. The number of items within parentheses in
π(ω) denotes the number of such polynomials into which the roots of Hω(x) split in Fρ.
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Case (ii): 2ω + 1 is a composite number.
In this case the partition of ω depends on the nature of the prime factors of 2ω + 1, i.e., whether
they are split-associated primes or non-split-associated primes. The partition of ω is obtained in
various cases as described below.

Suppose 2ω + 1 is a product of two distinct primes 2q1 + 1 and 2q2 + 1. Then Hω(x) has a
satellite polynomial as a factor and two other factors from the H(x)-sequence. So we have in this
case

π

(
(2q1 + 1)(2q2 + 1)− 1

2

)
= π(2q1q2) + π(q1) + π(q2). (3.2)

The partition of 2q1q2 in (3.2) depends on whether or not the satellite polynomial Hω(x)
Hq1 (x)Hq2 (x)

of
Hω(x) is again a product of a certain number of satellite polynomials ofHω(x), universal or local.

If both 2q1 + 1 and 2q2 + 1 in (3.2) are non-split-associated primes, then we have π(ω) =

π(2q1q2) + (q1) + (q2) where π(2q1q2) has to be determined.
If one of 2q1 + 1 and 2q2 + 1 is a split-associated prime or both of them are of this type, we

have to continue the procedure by determining the parts of π(q1) or π(q2) as the case may be.
Next suppose 2ω + 1 = q2 where q is a prime. In this case we have

π

(
q2 − 1

2

)
= π

(
q(q − 1)

2

)
+ π

(
q − 1

2

)
. (3.3)

If q is a non-split-associated prime in (3.3), then we have π(ω) = π( q(q−1)
2

) + ( q−1
2
). If q is a

split-associated prime in (3.3), then we have π(q) = (n+ · · ·+ n)︸ ︷︷ ︸
(s times)

, where sn = q and s > 1. In

either case, π(2q1q2) has to be computed by considering the concerned satellite polynomials.

Generalizing the procedure outlined above, one is led to the following result.

Theorem 3.1 (Fundamental theorem of partition with respect to the finite field Fρ). Let ρ be a
given odd prime greater than or equal to 11 and ω ∈ N such that 2ω + 1 | δ(ρ− 1) or δ(ρ+ 1).
With respect to Fρ we have

π(ω) = (n1,1 + · · ·+ n1,s1) + · · ·+ (nr,1 + · · ·+ nr,sr) + (η1) + (η2) + · · ·+ (ηt) (3.4)

with n1,1 = · · ·= n1,s1 , n2,1 = · · ·= n2,s2 , . . . , nr,1 = · · · = nr,sr .

The numbers n1,1, . . . , n1,s1 , . . . , nr,1, . . . , nr,sr , η1, η2, . . . , ηt in the right side of (3.4) are
called the elements of the partition of ω. The largest number in π(ω) is written in the leftmost
position and the other numbers are written in the decreasing order from left to right. Sometimes
the expression for π(ω) may consist of just one number. The equality of numbers enclosed within
parentheses indicates that all the corresponding ψt,k-sequences have the same pivotal position.
A single element enclosed within parentheses gives rise to a divisor of Hω(x) which is either
an element of the H(x)-sequence or a satellite polynomial of Hω(x). A satellite polynomial
of Hω(x), along with other divisors of Hω(x), contributes the roots of a polynomial in the
H(x)-sequence. Each one of the numbers in the right side of (3.4) denotes the length of an
M -cycle in Fρ. Such of those elements of Fρ which occur in these M -cycles provide the full
complement of the roots of Hω(x).
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3.3 Interpretation of a partition

The term π(ω) in (3.4) is a representation with respect to Fρ of the splitting up of the polynomial
Hω(x) into a certain number of polynomials which are either in the H(x)-sequence or universal
or local satellite polynomials of Hω(x). Thus the numbers in π(ω) indicate the degrees of the
constituent polynomials in the standard polynomial factorization of Hω(x) with respect to Fρ.

Equivalently, the partition of a natural number ω in relation to the H(x)-sequence represents the
decomposition of the set of the full complement of the roots of Hω(x) into a certain number of
subsets each of which is composed of an M -cycle in Fρ and the numbers in π(ω) refer to the
lengths of such M -cycles.

Definition 3.4 (Part of a partition). Each set of numbers enclosed within parentheses in the right
side of (3.4) forms a part of π(ω).

Definition 3.5 (Atom). Each number appearing in the partition of ω is called an atom of ω
with respect to ρ. Thus an atom of ω is the degree of a constituent polynomial in the standard
polynomial factorization of Hω(x) with respect to Fρ.

Definition 3.6 (Atom-set). The numbers appearing in the partition of ω form the atom-set of ω
with respect to ρ.

Definition 3.7 (Types of parts of a partition). A part of π(ω) with just one atom is called a
uni-atom part. A part of π(ω) with two or more atoms is called a multi-atom part.

It is seen that the parts (n1,1+ · · ·+n1,s1), (n2,1+ · · ·+n2,s2), . . . , (nr,1+ · · ·+nr,sr) in (3.4)
are of multi-atom type while (η1), (η2), . . . , (ηt) are of uni-atom type.

3.4 Different kinds of M -cycles

From Theorem 3.1, we observe the following possibilities of different kinds of M -cycles in Fρ.

Definition 3.8 (Different kinds of M -cycles). An M -cycle is referred to as a uni-atom cycle
(respectively, multi-atom cycle) if the elements of the cycle give rise to a uni-atom part
(respectively, multi-atom part) of a partition of a natural number. An M -cycle is said to be
autonomous if the full complement of the roots of the corresponding H(x)-polynomial is
constituted by the atom(s) in the cycle. A multi-atom cycle is said to be of internal sharing type if
the elements of the cycle constitute the full complement of the roots of someH(x)-polynomial. An
M -cycle, whether uni-atom or multi-atom, is said to be of external sharing type if the elements
of the cycle together with the elements of some other M -cycle(s) form the full complement of
the roots of some H(x)-polynomial. Consequently, it is seen that π(ω) may be composed of the
elements which form one or several of the following:

(i) Uni-atom, autonomous cycle,

(ii) Uni-atom, external sharing type cycle,

(iii) Multi-atom, autonomous cycle,

(iv) Multi-atom, external sharing type cycle.
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3.5 Number-theoretic functions

It becomes necessary to introduce two number-theoretic functions.

Definition 3.9 (The Functions T and U associated with a partition). Define T : N → N and
U : N → N as follows: The largest atom in π(ω) is defined as the leading atom of ω with respect
to ρ and is denoted by T (ω). Thus T (ω) is the degree of a constituent polynomial of the largest
degree occurring in the expression of Hω(x) given by Theorem 3.1. The part of π(ω) containing
the leading atom of ω is defined as the leading part of π(ω).
The number of elements in a part in the partition of π(ω) is called the u-value of that part. The
number of elements in the leading part of π(ω) is denoted by U(ω). Thus U(ω) represents the
number of M -cycles contained in the leading part of π(ω).

Any finite field Fρ contains the cycle −1 → −1 → · · · contributing the root of H1(x). This
gives rise to the partition π(1) = (1). Hence T (1) = 1 and U(1) = 1. If the largest atom in π(ω)
is n and if the leading part of π(ω) is (n), then T (ω) = n and U(ω) = 1. If the leading part of
π(ω) is (n+ · · ·+ n)︸ ︷︷ ︸

(s times)

with s ∈ N and s > 1, then T (ω) = n and U(ω) = s.

Theorem 3.2. The number of parts of π(ω) is d(2ω + 1) − 1 where d is the number of divisors
function.

Proof. Each factor > 1 of 2ω + 1 contributes a part of π(ω). Hence the result follows.

Theorem 3.3. Every atom of ω is a divisor of T (ω).

Proof. First let us consider the case when 2ω + 1 is a prime p. This breaks into two cases.
Case (i): p is a non-split-associated prime. In this case we have π(p−1

2
) = (p−1

2
).

Case (ii): p is a split-associated prime. In this case we have π(p−1
2
) = (n+ · · ·+ n)︸ ︷︷ ︸

(s times)

where

sn = p−1
2

and s > 1. Thus the result holds in the above two cases.

Next let us consider the case when 2ω + 1 is a composite number. First let us suppose that
2ω + 1 is a product of two distinct primes p and q. We have in this case

π(
pq − 1

2
) = π(

(p− 1)(q − 1)

2
) + π(

p− 1

2
) + π(

q − 1

2
).

Both p−1
2

and q−1
2

are divisors of (p−1)(q−1)
2

. Therefore each atom in p−1
2

, as well as q−1
2

is a divisor
of (p−1)(q−1)

2
. From this observation it follows that each atom in p−1

2
(respectively, q−1

2
) divides

T ( (p−1)(q−1)
2

). A similar proof holds when 2ω + 1 is the square of a prime. The proof for the
remaining cases is completed by induction on the number of positive divisors of 2ω + 1.

Corollary 3.1. If 2j + 1 divides 2ω + 1, then every atom of j is a divisor of T (ω).

Corollary 3.2. If p is an odd prime and if p divides 2ω + 1, then T (p−1
2
) is a divisor of T(ω).

Corollary 3.3. If 2j + 1 divides 2ω + 1, then the expression for π(j) is completely contained in
that of π(ω).

Corollary 3.4. If T (ω) = n, then 2ω + 1 divides 2n + 1 or 2n − 1.

Proof. Follows from [13, Theorem 8.2].

761



4 Determination of the leading atom

We have the following facts:

• If p is a Sophie Germain prime, then T (p) = p.

• If p is a non-split-associated prime, then T (p−1
2
) = p−1

2
.

• If p is a split-associated prime and if π(p−1
2
) = (n+ · · ·+ n)︸ ︷︷ ︸

(s times)

where sn = p−1
2

and s > 1,

then T (p−1
2
) = n.

Extending these facts, we have the following result.

Theorem 4.1. Let ρ be an odd prime. Suppose p and q are distinct odd primes with pq dividing
δ(ρ− 1) or δ(ρ+ 1). Then

T

(
pq − 1

2

)
= j lcm

(
T (
p− 1

2
), T (

q − 1

2
)

)
, j ∈ {1, 2} with respect to ρ. (4.1)

Proof. Denote lcm
(
T
(
p−1
2

)
, T

(
q−1
2

))
by α. By Corollary 3.1, it follows that T

(
p−1
2

)
and

T
(
q−1
2

)
| T

(
pq−1
2

)
. Hence, p and q are divisors of 2α +1 or 2α − 1. If p and q divide 2α +1, then

j = 1. If neither of p, q divides 2α + 1, then both p and q divide 2α − 1 and so j = 1. When only
one among p, q divides 2α + 1, the other one divides 2α − 1, implying j = 2.

Theorem 4.2. Let ρ be an odd prime. If p and q are distinct odd primes with pq dividing δ(ρ− 1)

or δ(ρ+ 1), then U( (p−1)(q−1)
2

) is either equal to or an integral multiple of U(p−1
2
). U( q−1

2
).

Proof. We have π(pq−1
2

) = π( (p−1)(q−1)
2

) + π(p−1
2
) + π( q−1

2
). First consider the case when both

p and q are split-associated. In this case, π(p−1
2
) = (n+ · · ·+ n)︸ ︷︷ ︸

(s times)

where sn = p−1
2

and s > 1

and π( q−1
2
) = (m+ · · ·+m)︸ ︷︷ ︸

(r times)

where rm = q−1
2

and r > 1. We have π( (p−1)(q−1)
2

) = π(2mnrs).

By Theorem 4.1, T
(
pq−1
2

)
= j lcm (n,m), j ∈ {1, 2}. Let us take 2ω + 1 = pq. Consider

the satellite polynomial Hω(x)

Hns(x) × Hmr(x)
of Hω(x). It attains all its roots in Fρ. The number of

elements of Fρ occurring as the roots of this polynomial is 2mnrs. Since T
(
pq−1
2

)
< 2mnrs,

these roots form more than one M -cycle. Consequently, by [14, Theorem 3.2], these roots split
into local satellite polynomials of equal degree. Hence, the number of M -cycles formed by them
is 2rs gcd(n,m)

j
, j ∈ {1, 2}. Thus U( (p−1)(q−1)

2
) is an integral multiple of U(p−1

2
).U( q−1

2
). A similar

proof applies if exactly one or none of p, q is split-associated.

Corollary 4.1. If 2ω + 1 = p2 where p is an odd prime, then U(p (p−1)
2

) is an integral multiple of
U(p−1

2
).

Corollary 4.2. The number of M -cycles in any part of π(ω) is a divisor of U(ω).

From Theorems 3.1, 3.3 and Corollary 4.2, we deduce the following result.
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Theorem 4.3. Given 2ω + 1 ∈ N and any background prime ρ of 2ω + 1, the roots of the
polynomial Hω(x) in Fρ split into a certain number of polynomials ∈ {Hk(x)} or satellite
polynomials (universal or local) such that

1. the degree of the leading constituent polynomial of Hω(x) with respect to Fρ is divisible by
the degree of any constituent polynomial of Hω(x) and

2. the number of M -cycles in the largest part of π(ω) is divisible by the number of M -cycles
in any part of π(ω).

5 Invariants of a natural number

A condition for the polynomialHω(x) to attain roots in two different fields was established in [14,
Theorem 5.6]. Now we take up the question of partitions in two such different fields. We have
the following result.

Theorem 5.1 (Invariance of the partition under a change of background prime). The partitions of
ω obtained with respect to any two distinct background primes for 2ω + 1 are the same.

Proof. Case (i): Let 2ω+1 be a given non-split-associated prime. Let ρ and ρ′ be two background
primes for 2ω + 1 . Suppose

π(ω) =

(n) w.r.t ρ and

(n′) w.r.t ρ′.
.

By [13, Theorem 6.1], there exist two M -cycles, one each in Fρ and Fρ′ of lengths n and n′

respectively such that the corresponding ψt,k-sequences attain zeros at ω in the respective finite
fields. Therefore 2ω + 1 | 2n − 1 and 2ω + 1 | 2n′ − 1 or 2ω + 1 | 2n + 1 and 2ω + 1 | 2n′

+ 1.
Since the divisibility by 2ω + 1 is associated with the smallest n occurring as a power in 2n − 1

or 2n + 1, it follows that n = n′. This implies that π(ω) remains invariant under a change of the
background prime for 2ω + 1.
Case (ii): Next suppose that 2ω + 1 is a split-associated prime. Suppose

π(ω) =

(n1,1 + · · ·+ n1,s1) w.r.t ρ and

(n′
1,1 + · · ·+ n′

1,t1) w.r.t ρ′

with n1,1 = · · · = n1,s1 and n′
1,1 = · · · = n′

1,t1
. Again by [13, Theorem 6.1], there exist

s1 > 1 number of M -cycles in Fρ, each of length n1,1 such that the corresponding ψt,k-sequences
attain zeros at ω and a similar situation holds in Fρ′ . Therefore we have 2ω + 1 | 2n1,1 − 1 and
2ω + 1 | 2n′

1,1 − 1 or 2ω + 1 | 2n1,1 + 1 and 2ω + 1 | 2n′
1,1 + 1. This implies that n1,1 = n′

1,1.

Since s1 =
ω

n1,1
and t1 =

ω
n′

1,1
, it follows that s1 = t1.

Case (iii): Next suppose that 2ω + 1 is a composite number. Following the line of argument in
cases (i) and (ii), we assert that T(ω) is unaltered by a change of the background prime for 2ω+1.
This implies that the number of elements in the largest part of π(ω) remains invariant under a
change of the background prime for 2ω + 1. Now suppose that 2j + 1 | 2ω + 1. If 2j + 1 is a
prime, we can determine π(j) by referring to case (i) or (ii). If 2j + 1 is composite, we have to
consider the divisors of 2j + 1 and continue the procedure. The proof follows by induction.
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Definition 5.1 (Invariants of a natural number). The numbers n1,1, . . . , n1,s1 , n2,1, . . . , n2,s2 ,
nr,1, . . . , nr,sr , η1, η2, . . . , ηt, s1, s2, . . . , sr in (3.4) are called the invariants of 2ω+1 with respect
to the polynomial sequences {Fk(x)}, {Gk(x)} and {Hk(x)}.

By Corollaries 3.1 and 4.2, the n′s and η′s, n1,1 and each si in (3.4) divides s1 for i = 2, . . . , r.
From Theorem 3.3, it is seen that the degree of any polynomial in the standard polynomial
factorization of Hω(x) depends on the degree of Hω(x) only and not on the particular field Fρ

where ρ is a background prime for 2ω + 1. From Theorem 5.1, we deduce the following result.

Theorem 5.2. The degrees of theH(x)-polynomials and the satellite polynomials in the standard
polynomial factorization of Hω(x) remain invariant whatever background prime ρ for 2ω + 1

may be considered for the attainment of the roots of Hω(x) in Fρ. Equivalently, the lengths of the
M -cycles into which the roots of Hω(x) in Fρ decompose remain invariant whatever background
prime ρ for 2ω + 1 may be considered.

Example 5.1. In this example we illustrate Theorem 5.1. Consider ω = 66. We see that 797 is a
background prime for 2ω + 1. The field F797 has the following M -cycles:

(I) 100 → 434 → 262 → 100 → · · ·
(II) 7 → 47 → 613 → 380 → 141 → 751 → 520 → 215 → 794 → 7 → · · ·

(III) 4 → 14 → 194 → 175 → 337 → 393 → 626 → 547 → 332 → 236 → 701 → 447 →
557 → 214 → 365 → 124 → 231 → 757 → 4 → · · ·

(IV) 9 → 79 → 660 → 436 → 408 → 686 → 364 → 192 → 200 → 148 → 383 → 39 →
722 → 44 → 340 → 33 → 290 → 413 → 9 → · · ·

(V) 34 → 357 → 724 → 545 → 539 → 411 → 752 → 429 → 729 → 637 → 94 → 67 →
502 → 150 → 182 → 445 → 367 → 791 → 34 → · · ·

For the M -cycles (I) through (V), we have (n, ω) = (3, 3), (9, 9), (18, 66), (18, 66) and (18, 66).
The 66 elements in these cycles are the roots of H66(x) in F797. The partition of 66 with respect
to F797 is got as

π(66) = (18 + 18 + 18) + (9) + (3).

This implies that the roots of Hω(x) in F797 constitute the roots of H3(x), H9(x) and 3 local
satellite polynomials of degree 18 each of H66(x).

Next we consider the background prime 1063 for 2ω + 1. The following M -cycles exist in
F1063:

(I) 510 → 726 → 889 → 510 → · · ·
(II) 42 → 699 → 682 → 591 → 615 → 858 → 566 → 391 → 870 → 42 → · · ·

(III) 81 → 181 → 869 → 429 → 140 → 464 → 568 → 533 → 266 → 596 → 172 → 881 →
169 → 921 → 1028 → 160 → 86 → 1016 → 81 → · · ·

(IV) 103 → 1040 → 527 → 284 → 929 → 946 → 931 → 414 → 251 → 282 → 860 →
813 → 844 → 124 → 492 → 761 → 847 → 945 → 103 → · · ·

(V) 192 → 720 → 717 → 658 → 321 → 991 → 930 → 679 → 760 → 389 → 373 → 937 →
992 → 787 → 701 → 293 → 807 → 691 → 192 → · · ·
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For theM -cycles (I) through (V), we have (n, ω) = (3, 3), (9, 9), (18, 66), (18, 66) and (18, 66).
The elements in these cycles constitute the roots of H66(x) in F1063. The partition of 66 with

respect to F1063 is got as

π(66) = (18 + 18 + 18) + (9) + (3).

This indicates that the roots of Hω(x) in F1063 constitute the roots of H3(x), H9(x) and 3 local
satellite polynomials of degree 18 each of H66(x).

Thus we see that π(66) is the same with respect to F797, as well as F1063.

6 Procedure for obtaining partitions

The phenomenon of invariance offers a procedure for the evaluation of the partition of a natural
number in relation to H-sequence with respect to the concerned background prime. Consider the
case when 2ω + 1 = p1p2 where p1 and p2 are distinct primes. Let ρ1 and ρ2 be background
primes for p1 and p2, respectively. Determine π(p1−1

2
) and π(p2−1

2
) with respect to Fρ1 and

Fρ2 , respectively. Let ρ be a background prime for 2ω + 1. One can directly evaluate π(p1−1
2

)

and π(p2−1
2

) with respect to Fρ. However by Theorem 5.1, π(p1
2
) with respect to Fρ1 and Fρ

are equal and similarly for π(p2−1
2

) with respect to Fρ2 and Fρ. Consequently, it is enough if
π( (p1−1)(p2−1)

2
) is evaluated with respect to Fρ. Then one obtains π(ω) using the relation (3.2).

A similar procedure applies if 2ω + 1 = p2 where p is a prime.

7 Examples of partitions

To illustrate the procedure specified in the preceding section, two examples are furnished below.

Example 7.1. Consider ω = 104. We have 2ω + 1 = 209. A background prime is 419. The
following M -cycles exist in F419:

(1) 50 → 403 → 254 → 407 → 142 → 50 → · · ·
(2) 45 → 347 → 154 → 250 → 67 → 297 → 217 → 159 → 139 → 45 → · · ·
(3) 3 → 7 → 47 → 112 → 391 → 363 → 201 → 175 → 36 → 37 → 110 → 366 → 293 →

371 → 207 → 109 → 147 → 238 → 77 → 61 → 367 → 188 → 146 → 364 → 90 →
137 → 331 → 200 → 193 → 375 → 258 → 360 → 127 → 205 → 123 → 43 → 171 →
328 → 318 → 143 → 335 → 350 → 150 → 291 → 41 → 3 → · · ·

(4) 5 → 23 → 108 → 349 → 289 → 138 → 187 → 190 → 64 → 323 → 415 → 14 →
194 → 343 → 327 → 82 → 18 → 322 → 189 → 104 → 339 → 113 → 197 → 259 →
39 → 262 → 345 → 27 → 308 → 168 → 149 → 411 → 62 → 71 → 11 → 119 →
332 → 25 → 204 → 133 → 89 → 377 → 86 → 271 → 114 → 5 → · · ·

For the above M -cycles, we have (n, ω) = (5, 5), (9, 9), (45, 104) and (45, 104), respectively.
Therefore the partition for 104 is obtained as

π(104) = (45 + 45) + (9) + (5).

It is seen that 11 and 19 are divisors of 209 which in turn is a divisor of 245 + 1 .
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Example 7.2. Consider the background prime ρ = 677. The field F677 contains the following
M -cycles:

(I) 124 → 480 → 218 → 132 → 497 → 579 → 124 → · · ·

(II) 8 → 62 → 457 → 331 → 562 → 360 → 291 → 54 → 206 → 460 → 374 → 412 →
492 → 373 → 342 → 518 → 230 → 92 → 338 → 506 → 128 → 134 → 352 → 11 →
119 → 619 → 654 → 527 → 157 → 275 → 476 → 456 → 95 → 222 → 538 → 363 →
429 → 572 → 191 → 598 → 146 → 327 → 638 → 165 → 143 → 137 → 488 → 515 →
516 → 193 → 12 → 142 → 529 → 238 → 451 → 299 → 35 → 546 → 234 → 594 →
117 → 147 → 620 → 539 → 86 → 624 → 99 → 321 → 135 → 621 → 426 → 38 →
88 → 295 → 367 → 641 → 617 → 213 → 8 → · · ·

For the above M -cycles, we have respectively n = ω = 6 and n = 78, ω = 84. The elements
in the two M -cycles are the roots of H6(x) and H84(x) in F677. Consequently, we obtain the
partition

π(84) = (78) + (6).

This relation yields the factor 132 of 278 + 1.

8 Partitions of prime factors of Mersenne numbers
with prime exponents and Fermat numbers

The principle of partitions of natural numbers leads us to the following result.

Theorem 8.1 (Partitions of prime factors of Mersenne numbers with prime exponents and Fermat
numbers). The following properties hold:

1. If 2ω + 1 is a prime factor of 2q − 1 with q a prime, then π(ω) = (q) or (q + · · ·+ q)︸ ︷︷ ︸
(s times)

with

s ∈ N and s > 1.

2. If 2ω + 1 is a prime factor of Fm (m ≥ 2), then π(ω) = (2m + · · ·+ 2m)︸ ︷︷ ︸
(s times)

with s ∈ N and

s > 1.

Proof. Let q be a prime. Then 2q − 1 is either a prime or composite. Consider the case when
2q − 1 is composite. Let 2ω + 1 be a prime factor of 2q − 1. By Corollary 3.1, T (ω) | q. Since
q is a prime, it follows that q occurs as an element of π(ω). If 2ω + 1 is a non-split-associated
prime, then π(ω) = (q). In case 2ω + 1 is a split-associated prime we have π(ω) = (q + · · ·+ q)︸ ︷︷ ︸

(s times)

with s ∈ N and s > 1. Next consider the Fermat numbers Fm = 22
m
+ 1. These numbers have

the property

Fm = F0F1 · · ·Fm−1 + 2.
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From this relation, it follows that any two distinct Fermat numbers are relatively prime. Hence
any Fermat number is either a prime or has a prime factor which does not divide any other Fermat
number. Let 2ω + 1 be a prime factor of Fm (m ≥ 2). For the cases 2ω + 1 = 17 and 257, the
partitions of ω are respectively given by π(8) = (22 + 22) and π(128) = (23 + · · ·+ 23)︸ ︷︷ ︸

(16 times)

. Let

2ω + 1 be a prime factor of Fm (m ≥ 2). The relation T (ω) | 2m implies that 2m occurs as an
element of π(ω). The partition has to be of sharing type and the elements of the partition have to
be equal. Consequently, we have π(ω) = (2m + · · ·+ 2m)︸ ︷︷ ︸

(s times)

for some s ∈ N and s > 1.

9 Characterization of Mersenne primes

Certain results on harmonic numbers have been furnished by Cohen and Sorly [7]. These results
have been employed by Brent, Crandall, Dilcher and van Halewyn [2] in the determination of the
factors of Fermat numbers. One may refer to Bressoud [3], Brillhart and Johnson [5], Brillhart [4],
Brillhart, Tonascia and Weinberger [6], Gostin [8], Kang [10], Karst [11] and Ribenboim [15] for
several results on the factors of Mersenne and Fermat numbers.

Mersenne numbers are associated with even perfect numbers. Our objective is to establish
the algebraic principle behind the factorization of Mersenne and Fermat numbers. This is
accomplished by means of the theory of partitions developed in our study. We apply the results
contained in the previous sections to understand the nature of even perfect numbers. We will
consider the role played by the roots of H(x)-polynomials in the phenomenon of even perfect
numbers.

It is well known (see for e.g., Hardy and Wright [9]) that a necessary condition for the
primality of the Mersenne number 2q − 1 is that q be a prime. However, this condition is not
sufficient. A question arises: When q is a prime, what makes 2q − 1 a prime and what makes it
a composite? In the sequel we establish a sufficient condition for the primality of 2q − 1 when q
is an odd prime. To illustrate the principle involved, one may consider the two particular cases
27 − 1 and 211 − 1. The following questions arise: Why is that 27 − 1 is a prime number? What
is the reason for 211 − 1 being a composite number? The answers are obtained below.

Theorem 9.1. Let q be an odd prime such that the Mersenne number 2q − 1 is composite. Then
π(2q−1 − 1) is of the form

(q + · · ·+ q) + (q + · · ·+ q) + · · ·+ (q + · · ·+ q) + (q) (9.1)

or
(q + · · ·+ q) + (q + · · ·+ q) + · · ·+ (q + · · ·+ q). (9.2)

Proof. Let us take 2ω + 1 = 2q − 1 so that ω = 2q−1 − 1. Since 2q − 1 is composite, π(ω) has at
least two parts with respect to any background prime ρ of 2ω + 1. As 2ω + 1 | 2q − 1, it follows
that T (ω) is q. Therefore the leading part of π(ω) is of the form (q + · · · + q). By Theorem 3.3,
every element in π(ω) is a divisor of T (ω). Since q is a prime, every element in π(ω) has to be q
only. Consequently, any part of π(ω) other than the leading part is of the form (q) or (q+ · · ·+q).
Hence the theorem.
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From Theorem 9.1 we are able to deduce the following result of Fermat.

Theorem 9.2. If q is an odd prime such that 2q − 1 is composite, then every prime factor p of
2q − 1 is of the form 2λq + 1 for some λ ∈ N .

Theorem 9.3 (Test of primality of a Mersenne number). Let q be an odd prime. Then 2q − 1 is a
prime if and only if π(2q−1 − 1) = (q + · · ·+ q)︸ ︷︷ ︸

(s times)

where sq = 2q−1 − 1 and s > 1.

Proof. When q is a prime, by Fermat’s theorem, 2q−1−1
q

is an integer. Let us take 2ω+1 = 2q−1.
If 2q − 1 is a prime, then π(ω) has only one part and consequently π(2q−1 − 1) has the stated
form. For the converse, we observe that whenever 2q − 1 is composite, there exists a part of π(ω)
with the form (q) or (q + · · ·+ q)︸ ︷︷ ︸

(r times)

where r ∈ N and r < U(ω).

From Theorems 9.1 and 9.3 we are led to the following result.

Theorem 9.4 (Algebraic principle of Mersenne primes and Mersenne numbers with prime
exponents). Let q be an odd prime and ρ a background prime for 2q−1. The following properties
hold.

(i) 2q − 1 is a prime if and only if all the constituent polynomials of H(2q−1−1)(x) in Fρ are of
equal degree q and the zeros of all the ψt,k-sequences corresponding to the M -cycles occur
at the same pivotal position in all the associated first components.

(ii) 2q − 1 is composite if and only if all the constituent polynomials of H(2q−1−1)(x) in Fρ are
of equal degree q and at least two M -cycles formed by the roots of these polynomials have
different ω values in the corresponding ψt,k-sequences.

Example 9.1. The nature of the number 27 − 1.

We consider the nature of the number 27−1 from the theory of partitions. For 27−1, a background
prime is 509. The following M -cycles in the field F509 are of length 7 each:

(1) 3 → 7 → 47 → 171 → 226 → 174 → 243 → 3 → · · ·

(2) 18 → 322 → 355 → 300 → 414 → 370 → 486 → 18 → · · ·

(3) 19 → 359 → 102 → 222 → 418 → 135 → 408 → 19 → · · ·

(4) 22 → 482 → 218 → 185 → 120 → 146 → 445 → 22 → · · ·

(5) 41 → 152 → 197 → 123 → 366 → 87 → 441 → 41 → · · ·

(6) 66 → 282 → 118 → 179 → 481 → 273 → 213 → 66 → · · ·

(7) 83 → 270 → 111 → 103 → 427 → 105 → 334 → 83 → · · ·

(8) 94 → 181 → 183 → 402 → 249 → 410 → 128 → 94 → · · ·

(9) 104 → 125 → 353 → 411 → 440 → 178 → 124 → 104 → · · ·
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Corresponding to all these M -cycles, each one of the ψ-sequences attains the value of zero at
ω = 63. Since each one of theM -cycles is of length 7, each one of them contributes 7 roots of the
polynomial H63(x) in the field F509. There are 9 such cycles. The elements of all the M -cycles
together constitute the full complement of the roots of the polynomial H63(x) in the field F509.
The partition of 63 is therefore obtained as

π(63) = (7 + · · ·+ 7)︸ ︷︷ ︸
(9 times)

.

The elements of this partition are of sharing type with equal values of ω for the associated
ψ-sequences, i.e., the ψ-sequences have the same pivotal position in the associated first
components of the matrices a(x). We have 2ω + 1 = 127. By [13, Theorem 8.2], it follows
that 127 divides 27 − 1 or 27 + 1. It is checked that 27 − 1 = 127. The fact that the ψ-sequences
have the same pivotal position implies that 27−1 is a prime. Thus we have obtained the algebraic
principle explaining the primality of the Mersenne number 27 − 1.

Example 9.2. The factorization of 211 − 1.

Consider the background prime ρ = 4093. There exist ninety three M -cycles in the field Fρ of
length 11 each. Among them, there is a unique M -cycle, viz.
888 → 2686 → 2728 → 908 → 1769 → 2307 → 1347 → 1208 → 2154 → 2345 → 2124 →
888 → · · · for which the ψ sequences attain the value of zero at ω = 11. So this M -cycle
contributes 11 roots of the polynomial H1023(x).
Corresponding to each one of the following four M -cycles
25 → 623 → 3385 → 1916 → 3726 → 3711 → 2667 → 3346 → 1359 → 936 → 192 → 25 →
· · · ,
73 → 1234 → 158 → 404 → 3587 → 2268 → 3014 → 1827 → 2132 → 2192 → 3773 →
73 → · · · ,
337 → 3056 → 3001 → 1399 → 745 → 2468 → 638 → 1835 → 2777 → 515 → 3271 →
337 → · · · ,
364 → 1518 → 4056 → 1367 → 2279 → 3915 → 3031 → 2267 → 2572 → 894 → 1099 →
364 → · · · ,
the ψ-sequences attain the value of zero at ω = 44. Each one of these M -cycles contributes 11
roots of the polynomial H1023(x). Thus they contribute 4 × 11 = 44 roots.

In the case of each one of the remaining eighty eight M -cycles, the ψ-sequences attain the
value of zero at ω = 1023. Each one of these M -cycles contributes 11 roots of the polynomial
H1023(x). Thus they contribute 88 × 11 = 968 roots.

Hence, the total number of roots of the polynomial H1023(x) contributed by the above ninety
three M -cycles is 11+44+968 = 1023. Therefore the elements of all the ninety three M -cycles
put together constitute the full complement of the roots of the polynomial H1023(x) in the field
Fρ. The partition of 1023 with respect to the H(x)-sequence is thus obtained as

π(1023) = (11 + · · ·+ 11)︸ ︷︷ ︸
(88 times)

+(11 + · · ·+ 11)︸ ︷︷ ︸
(4 times)

+(11).
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Hence, the elements of the partition are of sharing type with unequal values of ω for the associated
ψ-sequences, i.e., the ψ-sequences have different pivotal positions in the associated first
components of the matrices a(x). It follows that each one of the numbers 2 × 11 + 1 and
8 × 11+1 divides 211− 1 or 211+1. It is checked that 23 and 89 divide 211− 1. Thus we obtain
the factorization 211 − 1 = 23 × 89.

That the ψ-sequences have different pivotal positions in the associated first components of the
matrices a(x) brings out the reason for the composite nature of the Mersenne number 211 − 1.

10 Characterization of Fermat primes

Theorem 10.1. Suppose m ≥ 5 ∈ N with 22
m
+ 1 composite. Then π(22

m−1) is of the form
(2m + · · ·+ 2m) + (2m + · · ·+ 2m) + · · ·+ (2m + · · ·+ 2m).

From Theorem 10.1 we are able to deduce the following result of Euler.

Theorem 10.2. If 22
m
+1 is composite, then each prime factor of 22

m
+1 is of the form 2m+1λ+1

for some λ ∈ N .

Theorem 10.3 (Test of primality of a Fermat number). 22m + 1 is a prime if and only if

π(22
m−1) = (2m + · · ·+ 2m)︸ ︷︷ ︸

(s times)

,

where s = 22
m−m−1.

Proof. If 22m + 1 is a prime, then π(22m−1) has only one part and consequently π(22m−1) has the
stated form. If 22m+1 is composite, then there is a part of π(22m−1) with the form (2m + · · ·+ 2m)︸ ︷︷ ︸

(r times)

where r ∈ N and r < U(22
m−1).

Theorem 10.4 (Algebraic principle of Fermat primes and Fermat numbers). Let ρ be a background
prime for 22

m
+ 1. The following properties hold.

(i) 22
m
+ 1 is a prime if and only if all the constituent polynomials of H(22m−1)(x) in Fρ are

of equal degree 2m and the zeros of all the ψt,k-sequences corresponding to the M -cycles
occur at the same pivotal position in all the associated first components.

(ii) 22
m
+ 1 is composite if and only if all the constituent polynomials of H(22m−1)(x) in Fρ are

of equal degree 2m and at least two M -cycles formed by the roots of these polynomials
have different ω values in the corresponding ψt,k-sequences.

Example 10.1 (Euler’s result on the fifth Fermat’s number). Euler proved that the fifth Fermat’s
number is composite. We establish this result by means of the theory developed so far. Consider
the field Fρ with ρ = 1283. The following M -cycles in Fρ are of length 32:
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(1) 11 → 119 → 46 → 831 → 305 → 647 → 349 → 1197 → 979 → 38 → 159 → 902 →
180 → 323 → 404 → 273 → 113 → 1220 → 118 → 1092 → 555 → 103 → 343 →
894 → 1208 → 491 → 1158 → 227 → 207 → 508 → 179 → 1247 → 11 → · · ·

(2) 12 → 142 → 917 → 522 → 486 → 122 → 769 → 1179 → 550 → 993 → 703 → 252 →
635 → 361 → 736 → 268 → 1257 → 674 → 92 → 764 → 1212 → 1190 → 949 →
1216 → 638 → 331 → 504 → 1263 → 398 → 593 → 105 → 759 → 12 → · · ·

(3) 14 → 194 → 427 → 141 → 634 → 375 → 776 → 447 → 942 → 809 → 149 → 388 →
431 → 1007 → 477 → 436 → 210 → 476 → 766 → 423 → 590 → 405 → 1082 →
626 → 559 → 710 → 1162 → 526 → 829 → 834 → 168 → 1279 → 14 → · · ·

(4) 15 → 223 → 973 → 1156 → 731 → 631 → 429 → 570 → 299 → 872 → 846 →
1083 → 225 → 586 → 833 → 1067 → 466 → 327 → 438 → 675 → 158 → 585 →
945 → 55 → 457 → 1001 → 1259 → 574 → 1026 → 614 → 1075 → 923 → 15 → · · ·

(5) 27 → 727 → 1214 → 910 → 563 → 66 → 505 → 989 → 473 → 485 → 434 → 1036 →
706 → 630 → 451 → 685 → 928 → 289 → 124 → 1261 → 482 → 99 → 818 → 679 →
442 → 346 → 395 → 780 → 256 → 101 → 1218 → 374 → 27 → · · ·

(6) 29 → 839 → 835 → 554 → 277 → 1030 → 1140 → 1202 → 144 → 206 → 95 → 42 →
479 → 1065 → 51 → 33 → 1087 → 1207 → 642 → 319 → 402 → 1227 → 568 →
589 → 509 → 1196 → 1152 → 480 → 741 → 1238 → 740 → 1040 → 29 → · · ·

(7) 31 → 959 → 1051 → 1219 → 245 → 1005 → 302 → 109 → 332 → 1167 → 624 →
625 → 591 → 303 → 714 → 443 → 1231 → 136 → 532 → 762 → 726 → 1044 →
667 → 969 → 1086 → 317 → 413 → 1211 → 50 → 1215 → 773 → 932 → 31 → · · ·

(8) 35 → 1223 → 1032 → 132 → 743 → 357 → 430 → 146 → 786 → 671 → 1189 →
1136 → 1079 → 558 → 876 → 140 → 353 → 156 → 1240 → 564 → 1193 → 400 →
906 → 997 → 965 → 1048 → 54 → 348 → 500 → 1096 → 326 → 1068 → 35 → · · ·

(9) 37 → 84 → 639 → 325 → 417 → 682 → 676 → 226 → 1037 → 213 → 462 → 464 →
1033 → 914 → 161 → 259 → 363 → 901 → 943 → 128 → 986 → 963 → 1041 →
827 → 88 → 44 → 651 → 409 → 489 → 481 → 419 → 1071 → 37 → · · ·

(10) 107 → 1183 → 1017 → 189 → 1078 → 967 → 1063 → 927 → 1000 → 541 → 155 →
929 → 863 → 627 → 529 → 145 → 495 → 1253 → 898 → 678 → 368 → 707 →
760 → 248 → 1201 → 307 → 588 → 615 → 1021 → 643 → 321 → 399 → 107 → · · ·

Corresponding to all these M -cycles, each one of the ψ-sequences attains the value of zero at
ω = 320. Each one of the M -cycles contributes 32 roots of the polynomial H320(x). There are
10 such cycles. The elements of all the M -cycles together constitute the full complement of the
roots of the polynomial H320(x) in the field Fρ. Consequently, the partition of 320 with respect
to the H(x)-sequence is got as π(320) = (32 + · · ·+ 32)︸ ︷︷ ︸

(10 times)

. Thus the elements of the partition
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are of sharing type with equal values of ω for the associated ψ-sequences, i.e., the ψ-sequences
have the same pivotal position in the associated first compartments of the matrices a(x). We have
2ω + 1 = 641. So 641 divides 232 − 1 or 232 + 1. It is checked that 641 divides 232 + 1. Thus we
have obtained a proof for Euler’s result on the composite nature of the Fermat’s number F5.

Next consider the background prime ρ′ = 4398046512127. We have δ(ρ′
+1) = 641×6700417

where δ is the arithmetic function used to denote the odd part of a natural number [14, Definition
4.1]. One can check that

π(2147483648) = (32 + · · ·+ 32)︸ ︷︷ ︸
(67004160 times)

+(32 + · · ·+ 32)︸ ︷︷ ︸
(104694 times)

+(32 + · · ·+ 32)︸ ︷︷ ︸
(10 times)

.

So the polynomial H2147483648(x)
H3350208(x) × H320(x)

splits into 67004160 local satellite polynomials of degree
32 each in Fρ′ while H3350208(x) and H320(x) split into 104694 and 10 local satellite polynomials,
respectively, of degree 32 each. Thus one gets the factorization of F5 as 225 +1 = 641×6700417.
That the corresponding ψt,k-sequences have different pivotal positions in the associated first
compartments of the matrices a(x) is the reason why 22

5
+ 1 is rendered composite.

11 Algebraic principle of even perfect numbers

Now we consider the question: What makes a number perfect? We obtain the following answer.
A natural number is said to be perfect if all its positive divisors, excluding itself, add up to itself.
This is the traditional meaning of a perfect number. Euler proved that any even perfect number is
of the form 2p−1(2p−1),where p is a prime (see for e.g., Hardy and Wright [9] and Roberts [16]).

11.1 Reasoning for the occurrence of even perfect numbers

‘Being perfect’ in the set of all natural numbers connotes a new meaning as has been brought out
in our analysis. It is well known that an odd prime p gives rise to an even perfect number if and
only if the Mersenne number 2p − 1 is a prime. The theory presented in this study throws a new
light into an even perfect number. From Theorem 9.4, we are led to the following result.

Theorem 11.1 (Characterization of even perfect numbers). Let p be any given odd prime and ρ
any background prime for 2p − 1. If all the M(t)-cycles constituting the roots of the polynomial
H(2p−1−1)(x) in Fρ have the same pivotal position in all the associated first components in the
matrices a(M(t)), then 2p−1(2p − 1) is an even perfect number. If the zeros occur in different
positions, then 2p−1(2p − 1) is not perfect.

From Theorem 11.1, Examples 9.1 and 9.2, it follows that 26(27−1) is an even perfect number
while 210(211 − 1) is not perfect.

12 Conclusion

The method of cyclic sequences leads one to the concept of constituent polynomials of an
H(x)-polynomial and the partition of a natural number. The fundamental theorem of partition of
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a given natural number with respect to the finite field Fρ has been established. The partition of a
natural number ω leads to a representation with respect to Fρ of the splitting up of the polynomial
Hω(x) into a certain number of polynomials which are either in the H(x)-sequence or universal
or local satellite polynomials of Hω(x).

Given 2ω + 1 ∈ N and any background prime ρ of 2ω + 1, we have proved that the roots
of the polynomial Hω(x) in Fρ split into a certain number of polynomials ∈ {Hk(x)} or satellite
polynomials (universal or local) such that:

(1) the degree of the leading constituent polynomial of Hω(x) with respect to Fρ is divisible by
the degree of any constituent polynomial of Hω(x), and

(2) the number of M -cycles in the largest part of π(ω) is divisible by the number of M -cycles
in any part of π(ω).

We have proved the following invariance property: The partitions of ω with respect to any two
distinct background primes for 2ω + 1 are the same. We have deduced the following property:
The degrees of the H(x)-polynomials and the satellite polynomials in the standard polynomial
factorization ofHω(x) remain invariant whatever background prime ρ of 2ω+1 may be considered
for the attainment of the roots of Hω(x) in Fρ. Equivalently, whatever background prime ρ for
2ω + 1 may be considered, the lengths of the M -cycles into which the roots of Hω(x) in Fρ

decompose remain invariant.
The algebraic principle behind the factorization of Mersenne and Fermat numbers has been

established. We have proved the following results:

(i) If 2ω + 1 is a prime factor of 2q − 1 with q a prime, then π(ω) = (q) or (q + · · ·+ q)︸ ︷︷ ︸
(s times)

with

s ∈ N and s > 1.

(ii) If 2ω + 1 is a prime factor of Fm (m ≥ 2), then π(ω) = (2m + · · ·+ 2m)︸ ︷︷ ︸
(s times)

with s ∈ N and

s > 1.

If q is an odd prime and ρ is a background prime for 2q −1, we have proved the following results:

(i) 2q − 1 is a prime if and only if all the constituent polynomials H(2q−1−1)(x) in Fρ are of
equal degree q and the zeros of all the ψt,k-sequences corresponding to the M -cycles occur
at the same pivotal position in all the associated first components.

(ii) 2q − 1 is composite if and only if all the constituent polynomials H(2q−1−1)(x) in Fρ are of
equal degree q and at least two M -cycles formed by the roots of these polynomials have
different ω values in the corresponding ψt,k-sequences.

When ρ is a background prime for 22m + 1, we have proved:

(i) 22
m
+ 1 is a prime if and only if all the constituent polynomials of H(22m−1)(x) in Fρ are

of equal degree 2m and the zeros of all the ψt,k-sequences corresponding to the M -cycles
occur at the same pivotal position in all the associated first components.
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(ii) 22
m
+ 1 is composite if and only if all the constituent polynomials of H(22m−1)(x) in Fρ

are of equal degree 2m and at least two M -cycles formed by the roots of these polynomials
have different ω values in the corresponding ψt,k-sequences.

The theory in this study throws a new light into the phenomenon of even perfect numbers. Let p
be any given odd prime and ρ any background prime for 2p − 1. Then 2p−1(2p − 1) is an even
perfect number if all the roots of the polynomial H(2p−1−1)(x) occur in the same position in the
ψ-sequences. In case the zeros occur in different positions, 2p − 1 splits into a product of primes
in Fρ and we do not get a perfect number. Thus the method of cyclic sequences in a finite field
provides an algebraic interpretation of the phenomenon of even perfect numbers.
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