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Abstract: In this paper, some relations between the powers of any matrices X satisfying the
equation X* — pX*=! — (p — 1)X — I = 0 and (k, p)-Fibonacci numbers are established with
k > 2. First, a result is obtained to find the powers of the matrices satisfying the condition
above via (k, p)-Fibonacci numbers. Then, new properties related to (k, p)-Fibonacci numbers are
given. Moreover, some relations between the sequence {F; ;(n)} and the generalized Fibonacci
sequence {U,(p, q)} are also examined.
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1 Introduction and Preliminaries

The second-order homogeneous linear recurrence sequence {W,(a,b;p,q)}, or briefly {W,}
defined by W,, = pW,,_1 + q¢W,,_5 for all integers n > 2, with the initial conditions W, = a
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and W, = b is called as Horadam sequence, where a, b, p, and ¢ are arbitrary real numbers. The
characteristic equation of the sequence {W,,} is 2> — pr — ¢ = 0. The relations between the
roots of this equation and the terms of the sequence {I¥,,} have been studied in literature (see,
e.g.,[1,4,5,8,15]).

The sequence {U,(p,q)}, or briefly {U,}, defined by the recurrence relation U, =
pU,—1 + qU,_- for all integers n > 2, with the initial conditions Uy = 0 and U; = 1 is called
generalized Fibonacci sequence, where p and ¢ are nonzero real numbers. The sequence {U,, } is
a well-known special case of the sequence {W,,}. Generalized Fibonacci numbers for negative
subscript are defined as U_,, = %. The classical Fibonacci sequence { F},} is a special case of
the sequence {U,,} for p = ¢ = 1 (see, e.g., [6,12,13]).

In recent years, some special number sequences have been introduced. One of them is the
(k, p)-Fibonacci sequence. The sequence { F}, ,(n)} defined by the recurrence relation

Fip(n) =pFip(n—1)+ (p— 1) Fp(n —k+ 1)+ Fyp(n — k) (1)

for all integers n > k with the initial conditions F}, ,(0) = O and F}, ,(n) = p" ' for1 <n < k—1
is called (k, p)-Fibonacci sequence, where k& > 2, n > 0 are integers and p > 1 is a rational
number. The sequence {F} ,(n)} contains some important sequences for some special values of
k and p. For example, the Fibonacci sequence {F),} and the Pell sequence {P,} are obtained
from {F} ,(n)} fork=2,p=1,andk =2,p = %, respectively (see, e.g., [2, 11]).

The characteristic polynomial of { F}, ,(n)} was given as

feplx) =a% —pah=t — (p— 1)z —1

in [14]. For detailed information about (k, p)-Fibonacci sequences, see, e.g, [2,3, 11, 14].

There are important relations between some special number sequences and matrices. For
example, the relation Q" = (" ;1:1 FI: " for all integers n, where ) = i (1) . The Q)-matrix is
a well-known matrix and termed as the Fibonacci ()-matrix [7,9]. It is a well-known fact that the
characteristic equation of the (Q-matrix is 2 — x — 1 = (. Since every square matrix satisfies its
own characteristic equation, it is clear that Q> — ) — I = 0. Therefore, it is natural to question
whether there are other matrices X that satisfy the equation X? — X — I = 0 and whose powers
are related to Fibonacci numbers. In response to this question, a relation between the powers of
square matrices X satisfying the condition X? — X — I = 0 and the Fibonacci sequence {F,}
was shown in [7]. Inspired by the study just mentioned, a relation between the powers of the
matrices X satisfying the condition X? — pX — ¢gI = 0 with the generalized Fibonacci sequence
{Un(p,q)} was established in [13]. Then, in Theorem 2.1 of [10], the authors obtained some
relations between the positive powers of 3 x 3 matrices with eigenvalues

oo P VP Hg g_P= VP +4q

2 ’ 2 ’
and r, and generalized Fibonacci sequence {U,(p,q)}, where r is any real number with
r?> —rp — q # 0. Moreover, it was pointed out that if 7 # 0, then the mentioned theorem is

valid not only for positive powers of the matrices but also for all integer powers. So, we have the
following theorem:
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a b 0

Theorem 1.1. If A = ap+:2+q p—a 0|, then

br—ab—ap+a—q
b

CLUn -+ CIUn_l bUn 0
Ar = wa’teyy (p— a)Un + qUy 1 0
—dbepra’=agy U, 41" (a—b—p)U, — qUy_y + 17 1"

r+a—b—p r

for all n € 7, where a is any real number and b, p,q,r are any nonzero real numbers with
p? +4q > 0andr®> —rp —q #0.

Just like Fibonacci sequences, it is possible to talk about some relations between (k,p)-
Fibonacci sequences and matrices. In [2], the author introduced the (k, p)-Fibonacci matrix Q)
as follows: Q) = [¢i;]kxk. Where for a fixed 1 < i < k, an entry ¢;; is equal to coefficient of
Lifj=i+1
0, otherwise

Fy p(n — 1) in the equality (1), and for j > 2, ¢;; = {

For k = 2, 3, 4, the matrices

P 1 00
-1 1 po L0 0 010
Q2 = , Q3= p—1 0 1 ;o Qu=
( 1 0) 100 p—1 0 0 1
1 000
are obtained.
In general, for £ > 2, we have
P 10
0 01 0
Qr = : o Tl ;
p—1 00 --- 1
1 00 --- 0

kxk

which is called a (k, p)- Fibonacci matrix. In [2], the author also gave the matrix

Fk’p(Qk —2) Fk7p(2/{; —-3) - Fk,p(/{; -1)
Fpp(2k —3) Fpp(2k—4) -+ Fyp(k—2)

k= . . . . )
Fep(k—=1)  Frp(k—=2) -+ Fip(0)

kxk

which is the matrix of initial conditions of (k,p)-Fibonacci sequences. And then, the author
showed that

Fk,p(n—l—Qk—S) Fk,p(n+2k—4) Fk7p(n+k—2)
AnQp = : : . :
ka(n + k — 1) Fk,p(n + k — 2) cee Fk,p(n)

kxk

for all the integers n > 1, where k£ > 2 is any integer and p > 1 is a rational number.
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In this study, we establish some relations between the powers of any square matrices X
satisfying the condition X* — pX*~! — (p — 1)X — I = 0 and the sequence {F} ,(n)}. Then
some relations between {F3 ;(n)} and {U,(p, ¢)} are obtained.

2 Results

In this section, we deal with the problem of finding the powers of the matrices X satisfying the
condition X* —pX*~1 — (p —1)X — I = 0 via (k, p)-Fibonacci numbers. To do so, we examine
the main result separately for £ = 2 and k£ > 3. Now, we give the result for k = 2.

Theorem 2.1. If X is a square matrix with X* = (2p — 1) X + I, then
X" =Fp,(m)X + Fy,(m—1)1 (2)
for all integers m > 2.
Proof. First of all, if we use the relation (1) for £ = 2, then we get
Fyp(m) = (2p = 1) Fpp(m — 1) + Fp(m — 2). 3)

Now, we will use mathematical induction to prove the theorem. First, we will show that the
equality (2) is true for m = 2. Then, assuming that the assertion is true for some integers m > 2,
we will show that it is also true for m + 1. It is clear that F; ,(1) = 1 and F5,(2) = 2p — 1. So,
we get

X2=2p—-1)X+1=F,2)X+ F,(1)I,

as desired. Now, assume that the relation (2) is true for some integers m > 2. We have to show
that the relation (2) is true for m + 1, too. It is obvious that

X" = By (m) X2+ Fyp(m—1)X 4)

since X" = F,,(m)X + Fy,(m — 1)1.
If we use the equalities X2 = (2p — 1) X + I and (3) in (4), then

Xerl = F27p(m + 1)X + F27p(m)l
is obtained and the proof is completed. ]

Now, we give the general result for the integers k£ > 3.

Theorem 2.2. If X is a square matrix satisfying X* — pX*=t — (p — 1) X — I = 0 for an integer
k>3, then

XM= ka(m —k+ )X L Fo(m—k+ 1)1
+Z p—DF,(m—k+2—1i)+ F(m—k+1-i)]X’

for all integers m > k, provided that F}, ,,(a) = 0 for all negative integers a.
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Proof. We will use mathematical induction on m to prove the theorem. First, we will show that
the assertion is true for m = k. It is clear that

k—2
> (p— DFep(2 — i) + Fip(1— )X = (p— D)X, (5)
=1

because £}, ,(0) = Fj,,(—1) = F;,(—2) = --- = 0. Taking into account the equalities (5) and

m = k, we get
X" =pX" 14T+ (p-1)X
k—2
= Frp@)X* "+ Fip(DI + ) [(p— D) Fip(2 — i) + Fip(1 — )] X
i=1
= ka(m —k+ )X+ Fm—k+ 1)1

+Z p—DFp(m—k+2—i)+ Fpp(m—k+1—14)]X".

So, the assertion is true for m = k. Now assume that the assertion is true for some integers m > k.
We will show that it is true for m + 1, too. Considering the equality X* = pX* 1+ (p—1)X +1
together with the induction hypothesis, after simplification, we get

Xl = pEy(m —k+ Q)Xk_1 +(p— 1) Fpp(m—k+2)+ Frp(m—k+1)|X

k—2
+ Fipm =k + 2T+ [(p— DFep(m —k+2 =) + Fyp(m — k+ 1 — )] X"
=1

or, equivalently,

Xm“:ka (m—k+2)X’ffl+Fk,p(m—k+2)I
- (6)
+Z p—1D)Fp(m—k+2—1i)+ Fplm —k+1—4)] X

On the other hand, there are two different cases by the definition of the (&, p)-Fibonacci sequence.
If m > 2k — 3, then it is seen that

Fipm —k+3)=pF,(m —k+2)+ (p—1)Fyp(m — 2k +4) + Fyp(m —2k+3). (7)
If (7) is used in (6), then

X" = Fo(m—k+3) X 4 [—(p— 1) Fypp(m — 2k +4) — Fy,p(m — 2k + 3)] X 1
k—2
+ Fop(m —k+2) I+ [(p— D) Fip(m —k+2— i)+ Fop(m — k+1— )] X
=0

is obtained. Also, since
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[\e}

[(p— 1) Fyplm —k+2—1i) + Fyp(m — k+1—4)] X!

-
I

(p — 1) Frp(m — 2k +4) + Fy.,(m — 2k + 3)] X"

|
w — ©

il

[(p— V) Eyp(m —k+2—1i)+ Fyp(m—k+1—)] X"

¥

T
|
N O

[(p— 1) Fyp(m —k +3—1i) + Fp(m — k42— )] X7,
1

1

we get
Xmtl = ka(m —k+3)X N+ F(m —k+2)1

+Z D Epp(m —k+3—14)+ Fp,(m —k+2—14)] X"

So, the assertion is true for m + 1 in case m > 2k — 3.
If m < 2k — 3, then it is clear that

Fypp(m —k+3) =pFy,(m —k+2)

by the definition of (k, p)-Fibonacci sequence. If we use the last equality in (6), then we get
Xt = ka(m —k+ )X L B (m—k+2)1

+Z p—1D)Fip(m—k+2—i)+ Fpp(m—k+1—i) X"

Also, we have Fj, ,(m — 2k +4) = Fj, ,(m — 2k + 3) = 0 because m < 2k — 3. So,

T
[\o}

[(p— V) Fpp(m—k+2—i)+ Frp(m—k+1—14)] X"

T
|
- o

D||1

EE
(Ll
[N

[(p— 1) Frp(m —k+3—i)+ Fp,(m—k+2—1i)]X",
1

.
I

that is
Xt = ka(m —k+3) X"+ Fy(m —k+2)1

+Z — V) Fp(m—k+3—1i)+ Fpp(m—k+2—14)] X
is obtained in the case when m < 2k — 3. Thus, the proof is completed.
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2p—1+4/(2p—1)2+4

Corollary 2.2.1. If A € {\, Ao} with \| = : and \y = 2p—1—+/ (22p—1)2+4
p > 1is a rational number, then \™ = F5 ,(m)\ + F,,(m — 1) for all the integers m > 2.

, where

Proof. Notice that ) is a root of the equation 2? — (2p — 1)z — 1 = 0. So, the matrix A = (3 2)

satisfies the equation A? = (2p — 1)A + I.
Hence, from Theorem 2.1, A = [}, ,(m) A+ F5 ,(m — 1)1, and therefore the desired result is
obtained. [

Corollary 2.2.2. If \ is a root of the equation z* — pz*~' — (p — 1)x — 1 = 0, then

P ka(m —k+ 2N R, (m—k+1)

+Z p—DF,(m—k+2—14)+ F,(m—k+1—i)]\

for all integers m > k, where k > 3 is an integer, p > 1 is a rational number, and Fy, ,(a) = 0
for all negative integers a.

Proof. Let
A0 - 0
0 X - 0
B =
00 --- \
kxk
If we use Theorem 2.2 for matrix B, the desired result is obtained. ]
Corollary 2.2.3. If
P 10 0
0 0 1 0
Qk = )
p—1 0 0 1
1 0 0 0

then

Qk—ka(m k+2)QF ! + Frp(m—k+1)I

+Z DFyp(m—k+2—i) + Fyp(m —k+1—14)]Q5

for all integers m > k, where k > 3 is an integer, p > 1 is a rational number, and Fy, ,(a) = 0

for all negative integers a.
Proof. It is easily seen that the characteristic polynomial of the matrix () is
det(Qp — x1) = (—=1)k[2F — paF~t — (p— D)z —1].

We can write Q¥ — pQZ’l — (p—1)Qr — I = 0 by the Cayley—Hamilton theorem. So, the matrix
() satisfies the condition in Theorem 2.2 and the desired result is obtained. [
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In Corollary 2.2.3, it has been obtained a relation between the powers of (), and the (k, p)-
Fibonacci numbers. Notice that the powers of (), for m > k are a linear combination of the
matrices Q¥ 1, QF 2 ..., Qy, and I.

Now, we give a special result for £ = 3.

Corollary 2.24. If

P 10

Q= |p—1 01

1 0 0

with p > 1 being a rational number, then
ngp(m + 1) Fg’p<m> F37p(m — 1)
(p—1)Fsp(m—1) (p—1)F5,(m—2)
o= —1)F3,(m) + F3,(m —1 ’ ’

Q?) (p ) 3,17( ) 3,p( ) +F37p(m _ 2) +F37p(m _ 3)
F3,(m) F3,(m—1) F3,(m —2)

for all integers m > 3.
Proof. If we use Corollary 2.2.3 for k£ = 3, then we get
Q' = Fyp(m = 1)Q3 + [(p — 1) Fyp(m — 2) + Fsp(m — 3)]Qs + Fp(m —2)I. (8
Also, it is clear that
Fyp(m) = pFsp(m — 1)+ (p — 1) Fp(m — 2) + Fyp(m = 3) 9)
by definition of (k, p)-Fibonacci numbers. From (8) and (9), the desired result is obtained. O

Corollary 2.2.5. For any integers a,b > 3 and a rational number p > 1, the relation F ,(a+b) =
F3’p(a + 1)F3’p(b) + (p - 1)F37p(a)F3,p(b — 1) + Fg,p(CL)Fg’p(b - 2) + F37p(CL - 1>F37p(b - 1) holds.

Proof. If we use Corollary 2.2.4, then we can calculate the matrices Q%, Q4 and Q3"°, easily.
In view of the equality Q5™ = Q%Q5, the desired result is obtained from the equality of the
(1, 2)-entries of the matrices. [l

Some relations between {F}, ,(n)} and other sequences for some special values of k can be
examined. We will find some relations between the sequences { F; s(n)} and {U,(p, q)}.

2
. s .. 1
Theorem 2.3. Let p,q and r be nonzero real numbers satisfying the conditions p = %
q—
1

r= 7 p?+4q > 0and r?> —rp—q # 0. Let s > 1 be a rational number satisfying the condition

)

P4 P+

TR Then, there are following identities for the integers m > 3:

S

(i) qF5s(m — 1)+ F34(m —2) = qU,,—1;

(ii) pF5s(m — 1)+ (s — 1) F55(m — 2) + F5 s(m — 3) = U,,.
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Proof. Let

0 1 0
B = q P 0
r—q r—p—1r
. P Hqg+1 1 . . . . .
with p = =—-—— andr = — ~. The matrix B is a special case of the matrix A in Theorem 1.1

q— q
fora =0and b = 1. So, we get

qu—l Um 0
B™ = qUsn Uit 0 (10)
_qu - qu,1 + Tm _Um — Um+1 + rm rm

for all m € Z. Also, it is seen that
B —(r+p)B*—(—rp+q)B+qrl =0
or, equivalently,
B — (LECH)B? — (CEEL _ )B— [ =0,
So, we get
B3—sB?—(s—1)B—1=0.

Thus, we can use Theorem 2.2 for £k = 3. By doing so,
B™ = F34(m —1)B* +[(s — 1) Fss(m — 2) + Fy,(m — 3)|B + F3,(m —2)I  (11)

is obtained for m > 3. The desired results are obtained from the equality of the two matrices by
considering (10) together with (11). [l

Example 2.4. Consider the sequences {Fg%s(m)} and {U,,(7,2)}. For q = 2, it is clear that
¢ +q+1 13 _ ¢ +¢+1

=——ands = — = ————

q—1 2 q(g = 1)

2F37§(m — 1) + F&%s(m — 2) = 2Um,1(7, 2)

. If we use the item (i) of Theorem 2.3, then we get

form > 3.

The (k, p)-Fibonacci sequence is a sequence of numbers defined quite recently. Many of the
problems dealt with in other sequences can be worked out for this sequence as well. For example,
as in [10], the problem of obtaining new matrices related to (k, p)-Fibonacci numbers can also be
addressed.
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