Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2024, Volume 30, Number 4, 735-744 DOI: 10.7546/nntdm.2024.30.4.735-744

On (k, p) -Fibonacci numbers and matrices

Sinan Karakaya 1 , Halim Özdemir 2 and Tuğba Demirkol 3

 $¹$ Department of Mathematics, University of Sakarya</sup> 54187, Serdivan, Sakarya, Turkey e-mail: sinan_krky@hotmail.com

² Department of Mathematics, University of Sakarya 54187, Serdivan, Sakarya, Turkey e-mail: hozdemir@sakarya.edu.tr

³ Department of Mathematics, University of Sakarya 54187, Serdivan, Sakarya, Turkey e-mail: tpetik@sakarya.edu.tr

Received: 6 June 2024 **Revised: 28 October 2024** Revised: 28 October 2024 Accepted: 1 November 2024 **Online First: 8 November 2024**

Abstract: In this paper, some relations between the powers of any matrices X satisfying the equation $X^{k} - pX^{k-1} - (p-1)X - I = 0$ and (k, p) -Fibonacci numbers are established with $k \geq 2$. First, a result is obtained to find the powers of the matrices satisfying the condition above via (k, p) -Fibonacci numbers. Then, new properties related to (k, p) -Fibonacci numbers are given. Moreover, some relations between the sequence ${F_{3,s}(n)}$ and the generalized Fibonacci sequence $\{U_n(p,q)\}\$ are also examined.

Keywords: Generalized Fibonacci numbers, (k, p) -Fibonacci numbers, Matrices. 2020 Mathematics Subject Classification: 11B37, 11B39, 11B83.

1 Introduction and Preliminaries

The second-order homogeneous linear recurrence sequence $\{W_n(a, b; p, q)\}\$, or briefly $\{W_n\}$ defined by $W_n = pW_{n-1} + qW_{n-2}$ for all integers $n \ge 2$, with the initial conditions $W_0 = a$

Copyright © 2024 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

and $W_1 = b$ is called as Horadam sequence, where a, b, p, and q are arbitrary real numbers. The characteristic equation of the sequence $\{W_n\}$ is $x^2 - px - q = 0$. The relations between the roots of this equation and the terms of the sequence $\{W_n\}$ have been studied in literature (see, e.g., [1, 4, 5, 8, 15]).

The sequence $\{U_n(p,q)\}\$, or briefly $\{U_n\}\$, defined by the recurrence relation $U_n =$ $pU_{n-1} + qU_{n-2}$ for all integers $n \ge 2$, with the initial conditions $U_0 = 0$ and $U_1 = 1$ is called generalized Fibonacci sequence, where p and q are nonzero real numbers. The sequence $\{U_n\}$ is a well-known special case of the sequence $\{W_n\}$. Generalized Fibonacci numbers for negative subscript are defined as $U_{-n} = \frac{-U_n}{(-q)^n}$. The classical Fibonacci sequence $\{F_n\}$ is a special case of the sequence $\{U_n\}$ for $p = q = 1$ (see, e.g., [6, 12, 13]).

In recent years, some special number sequences have been introduced. One of them is the (k, p) -Fibonacci sequence. The sequence $\{F_{k,p}(n)\}\$ defined by the recurrence relation

$$
F_{k,p}(n) = pF_{k,p}(n-1) + (p-1)F_{k,p}(n-k+1) + F_{k,p}(n-k)
$$
\n(1)

for all integers $n \geq k$ with the initial conditions $F_{k,p}(0) = 0$ and $F_{k,p}(n) = p^{n-1}$ for $1 \leq n \leq k-1$ is called (k, p) -Fibonacci sequence, where $k \ge 2$, $n \ge 0$ are integers and $p \ge 1$ is a rational number. The sequence ${F_{k,p}(n)}$ contains some important sequences for some special values of k and p. For example, the Fibonacci sequence ${F_n}$ and the Pell sequence ${P_n}$ are obtained from ${F_{k,p}(n)}$ for $k = 2, p = 1$, and $k = 2, p = \frac{3}{2}$ $\frac{3}{2}$, respectively (see, e.g., [2, 11]).

The characteristic polynomial of $\{F_{k,p}(n)\}\)$ was given as

$$
f_{k,p}(x) = x^k - px^{k-1} - (p-1)x - 1
$$

in [14]. For detailed information about (k, p) -Fibonacci sequences, see, e.g, [2, 3, 11, 14].

There are important relations between some special number sequences and matrices. For example, the relation $Q^n = \begin{pmatrix} F_{n+1} & F_n \end{pmatrix}$ F_n F_{n-1} for all integers *n*, where $Q = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. The *Q*-matrix is a well-known matrix and termed as the Fibonacci Q -matrix [7,9]. It is a well-known fact that the characteristic equation of the Q-matrix is $x^2 - x - 1 = 0$. Since every square matrix satisfies its own characteristic equation, it is clear that $Q^2 - Q - I = 0$. Therefore, it is natural to question whether there are other matrices X that satisfy the equation $X^2 - X - I = 0$ and whose powers are related to Fibonacci numbers. In response to this question, a relation between the powers of square matrices X satisfying the condition $X^2 - X - I = 0$ and the Fibonacci sequence $\{F_n\}$ was shown in [7]. Inspired by the study just mentioned, a relation between the powers of the matrices X satisfying the condition $X^2 - pX - qI = 0$ with the generalized Fibonacci sequence ${U_n(p,q)}$ was established in [13]. Then, in Theorem 2.1 of [10], the authors obtained some relations between the positive powers of 3×3 matrices with eigenvalues

$$
\alpha = \frac{p + \sqrt{p^2 + 4q}}{2}, \quad \beta = \frac{p - \sqrt{p^2 + 4q}}{2},
$$

and r, and generalized Fibonacci sequence $\{U_n(p,q)\}\$, where r is any real number with $r^2 - rp - q \neq 0$. Moreover, it was pointed out that if $r \neq 0$, then the mentioned theorem is valid not only for positive powers of the matrices but also for all integer powers. So, we have the following theorem:

Theorem 1.1. If
$$
A = \begin{pmatrix} a & b & 0 \ \frac{ap-a^2+q}{b} & p-a & 0 \ \frac{br-ab-ap+a^2-q}{b} & r+a-b-p & r \end{pmatrix}
$$
, then
\n
$$
A^n = \begin{pmatrix} aU_n + qU_{n-1} & bU_n & 0 \ \frac{ap-a^2+q}{b}U_n & (p-a)U_n + qU_{n-1} & 0 \ \frac{-ab-ap+a^2-q}{b}U_n - qU_{n-1} + r^n & (a-b-p)U_n - qU_{n-1} + r^n & r^n \end{pmatrix}
$$

for all $n \in \mathbb{Z}$, where a *is any real number and* b, p, q, r *are any nonzero real numbers with* $p^2 + 4q > 0$ and $r^2 - rp - q \neq 0$.

Just like Fibonacci sequences, it is possible to talk about some relations between (k, p) -Fibonacci sequences and matrices. In [2], the author introduced the (k, p) -Fibonacci matrix Q_k as follows: $Q_k = [q_{ij}]_{k \times k}$, where for a fixed $1 \le i \le k$, an entry q_{i1} is equal to coefficient of $F_{k,p}(n-i)$ in the equality (1), and for $j \ge 2$, $q_{ij} =$ $\int 1$, if $j = i + 1$ $0,$ otherwise.

For $k = 2, 3, 4$, the matrices

$$
Q_2 = \left(\begin{array}{cc} 2p-1 & 1 \\ 1 & 0 \end{array}\right), \quad Q_3 = \left(\begin{array}{cc} p & 1 & 0 \\ p-1 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right), \quad Q_4 = \left(\begin{array}{cc} p & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ p-1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array}\right)
$$

are obtained.

In general, for $k > 2$, we have

$$
Q_k = \begin{pmatrix} p & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p-1 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}_{k \times k}
$$

,

,

which is called a (k, p) - Fibonacci matrix. In [2], the author also gave the matrix

$$
A_{k} = \begin{pmatrix} F_{k,p}(2k-2) & F_{k,p}(2k-3) & \cdots & F_{k,p}(k-1) \\ F_{k,p}(2k-3) & F_{k,p}(2k-4) & \cdots & F_{k,p}(k-2) \\ \vdots & \vdots & \ddots & \vdots \\ F_{k,p}(k-1) & F_{k,p}(k-2) & \cdots & F_{k,p}(0) \end{pmatrix}_{k \times k}
$$

which is the matrix of initial conditions of (k, p) -Fibonacci sequences. And then, the author showed that

$$
A_k Q_k^n = \begin{pmatrix} F_{k,p}(n+2k-2) & F_{k,p}(n+2k-3) & \cdots & F_{k,p}(n+k-1) \\ F_{k,p}(n+2k-3) & F_{k,p}(n+2k-4) & \cdots & F_{k,p}(n+k-2) \\ \vdots & \vdots & \ddots & \vdots \\ F_{k,p}(n+k-1) & F_{k,p}(n+k-2) & \cdots & F_{k,p}(n) \end{pmatrix}_{k \times k}
$$

for all the integers $n \geq 1$, where $k \geq 2$ is any integer and $p \geq 1$ is a rational number.

In this study, we establish some relations between the powers of any square matrices X satisfying the condition $X^{k} - pX^{k-1} - (p-1)X - I = 0$ and the sequence $\{F_{k,p}(n)\}\$. Then some relations between $\{F_{3,s}(n)\}\$ and $\{U_n(p,q)\}\$ are obtained.

2 Results

In this section, we deal with the problem of finding the powers of the matrices X satisfying the condition $X^{k} - pX^{k-1} - (p-1)X - I = 0$ via (k, p) -Fibonacci numbers. To do so, we examine the main result separately for $k = 2$ and $k \ge 3$. Now, we give the result for $k = 2$.

Theorem 2.1. *If* X *is a square matrix with* $X^2 = (2p - 1)X + I$ *, then*

$$
X^m = F_{2,p}(m)X + F_{2,p}(m-1)I
$$
\n(2)

for all integers $m \geq 2$ *.*

Proof. First of all, if we use the relation (1) for $k = 2$, then we get

$$
F_{2,p}(m) = (2p - 1)F_{2,p}(m - 1) + F_{2,p}(m - 2).
$$
\n(3)

Now, we will use mathematical induction to prove the theorem. First, we will show that the equality (2) is true for $m = 2$. Then, assuming that the assertion is true for some integers $m \ge 2$, we will show that it is also true for $m + 1$. It is clear that $F_{2,p}(1) = 1$ and $F_{2,p}(2) = 2p - 1$. So, we get

$$
X^2 = (2p - 1)X + I = F_{2,p}(2)X + F_{2,p}(1)I,
$$

as desired. Now, assume that the relation (2) is true for some integers $m \geq 2$. We have to show that the relation (2) is true for $m + 1$, too. It is obvious that

$$
X^{m+1} = F_{2,p}(m)X^2 + F_{2,p}(m-1)X
$$
\n(4)

since $X^m = F_{2,p}(m)X + F_{2,p}(m-1)I$.

If we use the equalities $X^2 = (2p - 1)X + I$ and (3) in (4), then

$$
X^{m+1} = F_{2,p}(m+1)X + F_{2,p}(m)I
$$

is obtained and the proof is completed.

Now, we give the general result for the integers $k \geq 3$.

Theorem 2.2. *If* X *is a square matrix satisfying* $X^k - pX^{k-1} - (p-1)X - I = 0$ *for an integer* $k \geq 3$, then

$$
X^{m} = F_{k,p}(m-k+2)X^{k-1} + F_{k,p}(m-k+1)I
$$

+
$$
\sum_{i=1}^{k-2} [(p-1)F_{k,p}(m-k+2-i) + F_{k,p}(m-k+1-i)]X^{i}
$$

for all integers $m \geq k$ *, provided that* $F_{k,p}(a) = 0$ *for all negative integers* a.

 \Box

Proof. We will use mathematical induction on m to prove the theorem. First, we will show that the assertion is true for $m = k$. It is clear that

$$
\sum_{i=1}^{k-2} [(p-1)F_{k,p}(2-i) + F_{k,p}(1-i)]X^i = (p-1)X,\tag{5}
$$

because $F_{k,p}(0) = F_{k,p}(-1) = F_{k,p}(-2) = \cdots = 0$. Taking into account the equalities (5) and $m = k$, we get

$$
X^{m} = pX^{k-1} + I + (p - 1)X
$$

= $F_{k,p}(2)X^{k-1} + F_{k,p}(1)I + \sum_{i=1}^{k-2} [(p - 1)F_{k,p}(2 - i) + F_{k,p}(1 - i)]X^{i}$
= $F_{k,p}(m - k + 2)X^{k-1} + F_{k,p}(m - k + 1)I$
+ $\sum_{i=1}^{k-2} [(p - 1)F_{k,p}(m - k + 2 - i) + F_{k,p}(m - k + 1 - i)]X^{i}$.

So, the assertion is true for $m = k$. Now assume that the assertion is true for some integers $m \geq k$. We will show that it is true for $m + 1$, too. Considering the equality $X^k = pX^{k-1} + (p-1)X + I$ together with the induction hypothesis, after simplification, we get

$$
X^{m+1} = pF_{k,p}(m-k+2)X^{k-1} + [(p-1)F_{k,p}(m-k+2) + F_{k,p}(m-k+1)]X
$$

+ $F_{k,p}(m-k+2)I + \sum_{i=1}^{k-2} [(p-1)F_{k,p}(m-k+2-i) + F_{k,p}(m-k+1-i)]X^{i+1},$

or, equivalently,

$$
X^{m+1} = pF_{k,p}(m-k+2)X^{k-1} + F_{k,p}(m-k+2)I
$$

+
$$
\sum_{i=0}^{k-2} [(p-1)F_{k,p}(m-k+2-i) + F_{k,p}(m-k+1-i)]X^{i+1}.
$$
 (6)

On the other hand, there are two different cases by the definition of the (k, p) -Fibonacci sequence. If $m \geq 2k - 3$, then it is seen that

$$
F_{k,p}(m-k+3) = pF_{k,p}(m-k+2) + (p-1)F_{k,p}(m-2k+4) + F_{k,p}(m-2k+3). \tag{7}
$$

If (7) is used in (6) , then

$$
X^{m+1} = F_{k,p}(m-k+3)X^{k-1} + [-(p-1)F_{k,p}(m-2k+4) - F_{k,p}(m-2k+3)]X^{k-1}
$$

+ $F_{k,p}(m-k+2)I + \sum_{i=0}^{k-2} [(p-1)F_{k,p}(m-k+2-i) + F_{k,p}(m-k+1-i)]X^{i+1}$

is obtained. Also, since

$$
\sum_{i=0}^{k-2} [(p-1)F_{k,p}(m-k+2-i) + F_{k,p}(m-k+1-i)]X^{i+1}
$$

– [(p-1)F_{k,p}(m-2k+4) + F_{k,p}(m-2k+3)]X^{k-1}
=
$$
\sum_{i=0}^{k-3} [(p-1)F_{k,p}(m-k+2-i) + F_{k,p}(m-k+1-i)]X^{i+1}
$$

=
$$
\sum_{i=1}^{k-2} [(p-1)F_{k,p}(m-k+3-i) + F_{k,p}(m-k+2-i)]X^i,
$$

we get

$$
X^{m+1} = F_{k,p}(m-k+3)X^{k-1} + F_{k,p}(m-k+2)I
$$

+
$$
\sum_{i=1}^{k-2} [(p-1)F_{k,p}(m-k+3-i) + F_{k,p}(m-k+2-i)]X^i.
$$

So, the assertion is true for $m + 1$ in case $m \ge 2k - 3$.

If $m < 2k - 3$, then it is clear that

$$
F_{k,p}(m-k+3) = pF_{k,p}(m-k+2)
$$

by the definition of (k, p) -Fibonacci sequence. If we use the last equality in (6), then we get

$$
X^{m+1} = F_{k,p}(m-k+3)X^{k-1} + F_{k,p}(m-k+2)I
$$

+
$$
\sum_{i=0}^{k-2} [(p-1)F_{k,p}(m-k+2-i) + F_{k,p}(m-k+1-i)]X^{i+1}.
$$

Also, we have $F_{k,p}(m - 2k + 4) = F_{k,p}(m - 2k + 3) = 0$ because $m < 2k - 3$. So,

$$
\sum_{i=0}^{k-2} [(p-1)F_{k,p}(m-k+2-i) + F_{k,p}(m-k+1-i)]X^{i+1}
$$

=
$$
\sum_{i=1}^{k-1} [(p-1)F_{k,p}(m-k+3-i) + F_{k,p}(m-k+2-i)]X^i
$$

=
$$
\sum_{i=1}^{k-2} [(p-1)F_{k,p}(m-k+3-i) + F_{k,p}(m-k+2-i)]X^i,
$$

that is

$$
X^{m+1} = F_{k,p}(m-k+3)X^{k-1} + F_{k,p}(m-k+2)I
$$

+
$$
\sum_{i=1}^{k-2} [(p-1)F_{k,p}(m-k+3-i) + F_{k,p}(m-k+2-i)]X^i
$$

is obtained in the case when $m < 2k - 3$. Thus, the proof is completed.

 \Box

Corollary 2.2.1. *If* $\lambda \in \{\lambda_1, \lambda_2\}$ *with* $\lambda_1 =$ $2p-1+\sqrt{(2p-1)^2+4}$ $\frac{(2p-1)^2+4}{2}$ and $\lambda_2 = \frac{2p-1-\sqrt{(2p-1)^2+4}}{2}$ $\frac{(2p-1)$ ⁺⁴, where $p \ge 1$ is a rational number, then $\lambda^m = F_{2,p}(m)\lambda + F_{2,p}(m-1)$ for all the integers $m \ge 2$.

Proof. Notice that λ is a root of the equation $x^2 - (2p - 1)x - 1 = 0$. So, the matrix $A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ 0λ λ satisfies the equation $A^2 = (2p - 1)A + I$.

Hence, from Theorem 2.1, $A^m = F_{2,p}(m)A + F_{2,p}(m-1)I$, and therefore the desired result is obtained. \Box

Corollary 2.2.2. If λ is a root of the equation $x^k - px^{k-1} - (p-1)x - 1 = 0$, then

$$
\lambda^{m} = F_{k,p}(m-k+2)\lambda^{k-1} + F_{k,p}(m-k+1) + \sum_{i=1}^{k-2} [(p-1)F_{k,p}(m-k+2-i) + F_{k,p}(m-k+1-i)]\lambda^{i}
$$

for all integers $m \geq k$ *, where* $k \geq 3$ *is an integer,* $p \geq 1$ *is a rational number, and* $F_{k,p}(a) = 0$ *for all negative integers* a*.*

Proof. Let

$$
B = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{pmatrix}_{k \times k}
$$

.

If we use Theorem 2.2 for matrix B , the desired result is obtained.

Corollary 2.2.3. *If*

$$
Q_k = \begin{pmatrix} p & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p-1 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}_{k \times k},
$$

then

$$
Q_k^m = F_{k,p}(m-k+2)Q_k^{k-1} + F_{k,p}(m-k+1)I
$$

+
$$
\sum_{i=1}^{k-2} [(p-1)F_{k,p}(m-k+2-i) + F_{k,p}(m-k+1-i)]Q_k^i
$$

for all integers $m \geq k$ *, where* $k \geq 3$ *is an integer,* $p \geq 1$ *is a rational number, and* $F_{k,p}(a) = 0$ *for all negative integers* a*.*

Proof. It is easily seen that the characteristic polynomial of the matrix Q_k is

$$
\det(Q_k - xI) = (-1)^k [x^k - px^{k-1} - (p-1)x - 1].
$$

We can write $Q_k^k - pQ_k^{k-1} - (p-1)Q_k - I = 0$ by the Cayley–Hamilton theorem. So, the matrix Q_k satisfies the condition in Theorem 2.2 and the desired result is obtained. \Box

 \Box

In Corollary 2.2.3, it has been obtained a relation between the powers of Q_k and the (k, p) -Fibonacci numbers. Notice that the powers of Q_k for $m \geq k$ are a linear combination of the matrices Q_k^{k-1} $k^{k-1}, Q_k^{k-2}, \ldots, Q_k$, and I.

Now, we give a special result for $k = 3$.

Corollary 2.2.4. *If*

$$
Q_3 = \begin{pmatrix} p & 1 & 0 \\ p - 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}
$$

with $p \geq 1$ *being a rational number, then*

$$
Q_3^m = \begin{pmatrix} F_{3,p}(m+1) & F_{3,p}(m) & F_{3,p}(m-1) \ (p-1)F_{3,p}(m-1) & (p-1)F_{3,p}(m-2) \ +F_{3,p}(m-2) & +F_{3,p}(m-1) & F_{3,p}(m-3) \ F_{3,p}(m) & F_{3,p}(m-1) & F_{3,p}(m-2) \end{pmatrix}
$$

for all integers $m \geq 3$ *.*

Proof. If we use Corollary 2.2.3 for $k = 3$, then we get

$$
Q_3^m = F_{3,p}(m-1)Q_3^2 + [(p-1)F_{3,p}(m-2) + F_{3,p}(m-3)]Q_3 + F_{3,p}(m-2)I.
$$
 (8)

Also, it is clear that

$$
F_{3,p}(m) = pF_{3,p}(m-1) + (p-1)F_{3,p}(m-2) + F_{3,p}(m-3)
$$
\n(9)

by definition of (k, p) -Fibonacci numbers. From (8) and (9), the desired result is obtained. \Box

Corollary 2.2.5. *For any integers* $a, b \geq 3$ *and a rational number* $p \geq 1$ *, the relation* $F_{3,p}(a+b) =$ $F_{3,p}(a+1)F_{3,p}(b)+(p-1)F_{3,p}(a)F_{3,p}(b-1)+F_{3,p}(a)F_{3,p}(b-2)+F_{3,p}(a-1)F_{3,p}(b-1)$ holds.

Proof. If we use Corollary 2.2.4, then we can calculate the matrices Q_3^a , Q_3^b and Q_3^{a+b} , easily. In view of the equality $Q_3^{a+b} = Q_3^a Q_3^b$, the desired result is obtained from the equality of the (1, 2)-entries of the matrices. \Box

Some relations between ${F_{k,p}(n)}$ and other sequences for some special values of k can be examined. We will find some relations between the sequences $\{F_{3,s}(n)\}\$ and $\{U_n(p,q)\}.$

Theorem 2.3. Let p, q and r be nonzero real numbers satisfying the conditions $p = \frac{q^2 + q + 1}{q}$ $\frac{q+1}{q-1}$, $r = -\frac{1}{n}$ $\frac{1}{q}$, $p^2+4q>0$ and $r^2-rp-q\neq 0$. Let $s\geq 1$ be a rational number satisfying the condition $s = \frac{q^3+q^2+1}{q(q-1)}$. Then, there are following identities for the integers $m \geq 3$: *(i)* qF_3 , $(m-1) + F_3$, $(m-2) = qU_{m-1}$; (ii) $pF_{3,s}(m-1) + (s-1)F_{3,s}(m-2) + F_{3,s}(m-3) = U_m$.

Proof. Let

$$
B = \begin{pmatrix} 0 & 1 & 0 \\ q & p & 0 \\ r - q & r - p - 1 & r \end{pmatrix}
$$

with $p = \frac{q^2 + q + 1}{q}$ $\frac{+q+1}{q-1}$ and $r=-\frac{1}{q}$ $\frac{1}{q}$. The matrix *B* is a special case of the matrix *A* in Theorem 1.1 for $a = 0$ and $b = 1$. So, we get

$$
B^{m} = \begin{pmatrix} qU_{m-1} & U_{m} & 0\\ qU_{m} & U_{m+1} & 0\\ -qU_{m} - qU_{m-1} + r^{m} & -U_{m} - U_{m+1} + r^{m} & r^{m} \end{pmatrix}
$$
(10)

for all $m \in \mathbb{Z}$. Also, it is seen that

$$
B^3 - (r+p)B^2 - (-rp+q)B + qrI = \mathbf{0}
$$

or, equivalently,

$$
B^3 - \left(\frac{q^3 + q^2 + 1}{q(q-1)}\right)B^2 - \left(\frac{q^3 + q^2 + 1}{q(q-1)} - 1\right)B - I = \mathbf{0}.
$$

So, we get

$$
B^3 - sB^2 - (s - 1)B - I = 0.
$$

Thus, we can use Theorem 2.2 for $k = 3$. By doing so,

$$
Bm = F3,s(m-1)B2 + [(s-1)F3,s(m-2) + F3,s(m-3)]B + F3,s(m-2)I
$$
 (11)

is obtained for $m \geq 3$. The desired results are obtained from the equality of the two matrices by considering (10) together with (11). \Box

Example 2.4. Consider the sequences
$$
\{F_{3, \frac{13}{2}}(m)\}\
$$
 and $\{U_m(7, 2)\}\$. For $q = 2$, it is clear that $p = 7 = \frac{q^2 + q + 1}{q - 1}$ and $s = \frac{13}{2} = \frac{q^3 + q^2 + 1}{q(q - 1)}$. If we use the item (i) of Theorem 2.3, then we get $2F_{3, \frac{13}{2}}(m - 1) + F_{3, \frac{13}{2}}(m - 2) = 2U_{m-1}(7, 2)$

for $m \geq 3$ *.*

The (k, p) -Fibonacci sequence is a sequence of numbers defined quite recently. Many of the problems dealt with in other sequences can be worked out for this sequence as well. For example, as in [10], the problem of obtaining new matrices related to (k, p) -Fibonacci numbers can also be addressed.

Acknowledgements

The authors thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

References

- [1] Andelic, M., da Fonseca, C. M., & Yılmaz, F. (2022). The bi-periodic Horadam sequence and some perturbed tridiagonal 2-Toeplitz matrices: A unified approach. *Heliyon*, 8(2), Article ID e08863.
- [2] Bednarz, N. (2021). On (k, p)-Fibonacci numbers. *Mathematics*, 9(7), Article ID 727.
- [3] Du, Z., & da Fonseca, C. M. (2023). Root location for the characteristic polynomial of a Fibonacci type sequence. *Czechoslovak Mathematical Journal*, 73, 189–195.
- [4] Horadam, A. F. (1965). Generating functions for powers of a certain generalized sequence of numbers. *Duke Mathematical Journal*, 32(3), 437–446.
- [5] Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers. *The Fibonacci Quarterly*, 3(3), 161–176.
- [6] Kalman, D., & Mena, R. (2003). The Fibonacci numbers—exposed. *Mathematics Magazine*, 76(3), 167–181.
- [7] Keskin, R., & Demirtürk, B. (2010). Some new Fibonacci and Lucas identities by matrix methods. *International Journal of Mathematical Education in Science and Technology*, 41(3), 379–387.
- [8] Keskin, R., & Şiar, Z. (2019). Some new identities concerning the Horadam sequence and its companion sequence. *Communications of the Korean Mathematical Society*, 34(1), 1–16.
- [9] King, C. H. (1960). *Some Properties of the Fibonacci Numbers*. Master's Thesis. San Jose State College.
- [10] Özdemir, H., Karakaya, S., & Petik, T. (2021). On some 3×3 dimensional matrices associated with generalized Fibonacci numbers. *Notes on Number Theory and Discrete Mathematics*, 27(3), 63–72.
- [11] Paja, N., & Włoch, I. (2021). Some interpretations of the (k, p) -Fibonacci numbers. *Commentationes Mathematicae Universitatis Carolinae*, 62(3), 297–307.
- [12] Ribenboim, P. (2000). *My Numbers, My Friend: Popular Lectures on Number Theory*. Springer-Verlag Inc., New York.
- [13] Şiar, Z., & Keskin, R. (2013). Some new identities concerning generalized Fibonacci and Lucas numbers. *Hacettepe Journal of Mathematics and Statistics*, 42(3), 211–222.
- [14] Trojovský, P. (2021). On the characteristic polynomial of (k, p) -Fibonacci sequence. *Advances in Difference Equations*, 28, Article ID 2021:28.
- [15] Udrea, G. (1996). A note on the sequence $(W_n)_{n\geq 0}$ of A. F. Horadam. *Portugaliae Mathematica*, 53(2), 143–155.