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Abstract: In this paper the operator A = u(z)% is considered, where w is an entire or
meromorphic function in the complex plane The expansion of A* (k > 1) with the help of the
powers of the differential operator ) = - is obtained, and it is shown that this expansion depends

on special numbers. Connections between these numbers and known combinatorial numbers are
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given. Some special cases of the operator A, corresponding to u(z) = z,u(z) = e*,u(z) =
are considered.
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1 Introduction

Let u : C — C be an entire or meromorphic function. We denote by A the operator

d
A= —.
u(z) 7
We shall consider the operator A over the set U, which is the union of the set of all entire functions

in C and the set of all rneromorphic functions in C. Particular cases of A are the operators:
Al A2 = e? Ag =

zdz
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The operator A; is well studied. In [12], p. 242, A, is called Cauchy—Euler operator, although
Euler first considered this operator. Thus we may call the operator A generalized Euler—Cauchy
operator. In [13], A; is called by Watson theta operator and is denoted by 6. In [8], p. 542, A; is
denoted by 6 and it is shown that 6(§ — 1) ... (6 —n+ 1) = 2"D™.

The operator Aj; is connected with the Bessel functions of the first kind J = J,(z), which
satisfy the differential equation

d\? d
2 [ @& a 2 2\ _
2 (dz) J+deJ+(z v?)J = 0.

In particular, for v = n + % andv = —n — % (n=0,1,2,...), we have:

2 smz
1 — = onts nAn
w3 (2) ﬁ (1) Ay

J

2 1 . COSZ
J 1 =4/ =22 A
—n—5(2> \/;Z 3 ~

(see [5] and [4, p. 178, p. 198)).
The operators A* and A belong to the class of the so-called hyper-Bessel differential operators

(Bessel type operators), i.e. operators of the form

B — Zaoizali...zamfli

dz dz dzz
where o;, ¢ = 0, ..., m, are arbitrary real numbers such that m > Z a; (see [6, pp. 99-101)).

i=0
Using the eigenfunctions of the operators A;, Ay, A3, one may obtain the following results:

Theorem 1.1. Let n be a natural number and P(w) = c¢o + ciw + cow? + -+ + c,w", where
¢ € C,t=0,1,...,n. Then for every \ € C the equalities:

P(A))2* = P(\)2?;
P(Ap)e™ " = P(\)e ™ 7
P(Ay)es = P(\)e2
hold.

Proof. The first equality is proved in [10, Problem 44, p. 8]. For the second equality, we verify
that

—de ? —Ade ?
Ase = de ,

hence
Af e = \e 7 +=0,1,2,3,...

and the second equality holds.
For the third equality, we verify that

A3€l>\z = \e2 ,
hence
A e22 = N2 +20,1,2,3,...
and the third equality holds. ]
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As a corollary of Theorem 1.1, we obtain the following proposition.

Proposition 1.1. For every two complex constants a and b, the following equalities hold:

P(a+bA))z* = P(a+b\)z*  (see [2, p. 551]);

Pla+bAy)e ™ = P(a+b\)e ™ ;
P(a+ bAg)e%’\Z2 = P(a+ b)\)e%)‘zz.

In the same way, one may establish the following result:

Theorem 1.2. Let A € C and y = y(z) satisfy the equality Ay = \y, where A is the operator
A = u(2)L. Then for every a,b € C the equality

P(a+bA)y = P(a+b\)y
holds.

Remark 1.1. From the condition of the Theorem 1.2, the differential equation u(2)y'(z) = \y(z)
holds and its solution is given by
R I o)
y(z) =ce’le u®,
where c,¢ € C are arbitrary constants. Let ¢ = 1. When A = Ay, we set ¢ = 1 and obtain
y(2) = 2*. When A = Ay, we set ¢ = oo and obtain y(z) = e ¢ . When A = A3, we set ¢ = 0
and obtain y(z) = e2**’
Let S(k,s) and o(k,s) be the Stirling numbers of the first and second kind, respectively
(for the definition and properties of these numbers see [1, p. 824-825]). Then the following

expansions are valid:

k s
AF =3 o(k, )= (i) (see [11, p. 218] and [8, p. 543]); (1

k s
At = Y0 (1) @

s=0
k s
2k—s—1\ 1 d
Af =D (1) (2k — 25 — D! — | — 3
’ 5:0( ) ( ’ ) < s—1 >22k_s (dZ) ’ ( )
where we define (—1)!! = 1.

We shall prove the last two representations in the Appendix. Here we note that one may use
the first two of the above equalities as defining equalities for introducing the Stirling numbers.

Just as every infinite sequence of numbers {a, } -, is connected with the generating function
f(z) = >.°  a,2™, it is interesting to know if the powers AF of A are generating operators for
some special sequences of numbers.

The mentioned above may motivate one to find an explicit representation for the operators
Ak k= 1,2,3,... . In this paper we show that the powers A" of A are generating operators
for different kinds of combinatorial numbers (in particular, for Stirling numbers of the first and
second kind). Also, several new identities for some combinatorial numbers are obtained.
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2 The main result

First, we want to express the operator A* with the help of (£)°, s =1,... k.

Theorem 2.1. There exist numbers C;)" k“ , for which the following representation:

k+1 s
k+1 __ E S
A PkJrl ( ) )
is valid, where:
k+1 _ o k+1.
Pk—i—l (u) =u™";

PR () = Z WP PR () s =1, ..k,

FEL () Zczlm k;—l( )m . (Zsu)as
77777 S ZS

and Z in (7) is over all nonnegative integers oy, ..., o for which:

S S
g Q; = m; E 10 = S.
i=1 =1

The numbers C3;" k“ satisfy the following recurrence relations:

m,s

k s+1

s+1lm,k+1 __ - sm 1,t smt
C‘n, Vs Ys+1 E: [(t+1 ) Y1—1,72,.. ms+§:%+1 V1o Yi—1,%i 7541 =142, 7’75]’

t=s+1

s+1 s+1
where: 1 <m < s+ 1; v511 =0; Z%:m; Ziwizs—i-l;s:l,...,k—l;

k
s+1,s+1,k+1 __ s,8,t
C’Ylvuw"/sa'}/s+l - Z ( )C’Yl 1y2,057s0
t=s+1
s+1 s+1
where: 511 = 0; E v =s+1; E vy =s+1;,s=1,...,k—1.
i=1 =1
Also, the relation
k
s+1,1,k+1 s,1,t
Ch 01 — § Co,...,o,l
\v/ Pyt

s times s — 1 times

holds, where s = 1,...,k — 1.

Remark 2.1. It is easy to see that (9) takes the form:

k
s+1,s+1,k+1 S,8,t
Cs+1,0,...,0 = E (t— )C 0>5—1 k=1
t—at1 \,—/

s times s — 1 times
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Proof of Theorem 2.1. Let f € U and

ARf(2) =) Pi(u) f9(2).

Since A™, n > 1, is a linear operator, then

k+1 k
Z Py (u = A f(z) = A(AF (Z P (u) {9z )

:u(dd Pl(u ) +Z (uPS o +udiPk( ))f<5>(z)+uP,§(u)f<k+1>(z).

Comparing the left-hand side and the right-hand side of the last equality, we obtain the

relations:
S s—1 d S
Pl(u) =uP  (u) +u—~F;(u), 1 <s<k+1;

Since P} (u) = u, then from (14) we obtain
PEE = oM e, ().
From (12) and (13) we obtain the equalities:

d
P,fH(U) = uP,f_l(u) + k:ukEu;

P (w) = uP7f (u) + (k — Du

5 d
P2 — Pl 92
F(u) = uPy (u) + 2u? o

We multiply the first equality by 1, the second equality by u, the third equality by u2,

equality by ©*~2, then by summing the received equalities we obtain

Pl (u) = b P () + ot 3

Since Pj (u) = u-tu, we obtain

dz
k
d k(k+1 d
Pl = (St )utdu = MEED L,

t=1

To calculate P,f;ll (u) we use the same approach as for obtaining (15).

(12)

(13)
(14)

., the last

(15)

Continuing in the same way, one may also calculate P,f;f (u), P,f;f’ , etc., and observe that in

these particular cases (0) is true.
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Below we shall prove (6), using the principle of mathematical induction
Substituting in (13) s with £ + 1 — s, we obtain

d
PENT (W) = b () 4 u P (), s = 1k (16)
With the help of (16), we shall repeat the approach, realized for P} ;(u), but this time to
obtain Pkff{l) 1) (4). Let us assume that PEFT5(u) is given by (6). Then

S

d S
T

d < d
(u) mZ:l(k + 1=t ) mu Y ut T ()

From (16), using the above equality, we obtain

d i d
@ lfill (u> _ ’U,kdkaJrl(u)
d d
+ Z ( (k+2=m)F (u)—u+ szﬁ“(u))u’““m (17)
d
1— k:—SFk—‘rl .

+(k+ s)u T () U

Substituting in (17) k+ 1 with k, k

—1,k—2,..., and after that multiplying the first equality by
u, the second equality by u?, the third equality by u>, and so on, then by summing the received
equalities we obtain

k
A = (3 4
t

Using the representation of Pk(ﬁl) (s+1)

(u), given in (18), with the help of (6) and (7), we
conclude that the relations (8)—(11) hold. Indeed, (7) implies

du\ [ P\ TR
. s,m—1,t
e Lani(E) (@) (@) o
On the other side, we have
d
%Fm(u)

_ s.comit (U O @iy \ %t i\ T @ity \ St qi 2y \ G2 sy O
_Zz; Y6185\ dy )\ dei—1 dz q+ ) )
m,s 3=

dzs

(20)
Comparing (4), (6), (7) with (18)—(20), we obtain
61:Oél+1,...7 (Sj—].:Oéj, 6j+1+120éj+17 P 552065.
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Thus, we get (8). The relations (9) and (10) could be received analogically. To finish the proof
of Theorem 2.1, it remains to prove that each monomial in Zmﬁ 41 for example

d_u o d2_u Y2 Bu\ [ dou \
dz dz? dzs dzstl

with 7541 = 0, 1s contained in the right-hand side of (19). This fact can be proved in the same

way as in the proof of Lemma 3.2 from [9]. The theorem is proved. ]

Another approach for finding the expansion of A* is proposed below.

We set: A% = u(z); u(z) = v(lz). Thus A = df . Let [v(z) = ¢(z). Then A = d@( -
Therefore, Af(z) = #(Z)f(z). Substituting ¢(z) = t we have z = go‘l(t) (where 1 is the
inverse function of ¢). Therefore

Af(2) = Af(e7(0) = S Fe )t

Hence

k dk -1
246 = () £ Ol =123,

Now, for the right-hand side of the last equality Faa di Bruno’s formula (see [1, p. 823]) is
applicable and as a result we obtain

2) =Y M7 (8) Y Crla) [[De7 (O] - [DF ™ (O] ey, (2D

m=0
where o = (o, ag, ..., ax) and

k!

From the formula for derivatives of inverse functions we obtain:

Substituting in (21) the results of the above equalities, we obtain:

k

A f(z) =" f(z ch AR ), (23)

m=0
Thus (using (23)), we proved the following result:
Theorem 2.2. The operator A¥, k = 1,2, ..., could be given by:

chk AR ) (dii)m. (24)

m=0 m,k
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3 Applications of the obtained results

Corollary 3.1. It is valid:

k+1
C%’,lf.kf(l),lz( * ),821,...,k.

s — 1 times

k+1
2

> ()= ()
e s+1) \s+1)

Proof. For s = 1 we have Cll,l,kﬂ _ (

But the last identity follows immediately from the definition of the binomial coefficients:

(o) =

s+1,5+1,k+1
Cs+170 ..... 0 —O-(k+1,k_8)
Y
s times

Proof. For s = 0, (26) is true. Indeed, the left-hand side of (26) for s = 0 is:

Corollary 3.2. It is valid:

k+1
Cf?lv’f“:( ; ) (from (25) with s = 1).

But o(k+1,k) = (k;rl) (see [1, p. 825]). Thus,
O = ok + 1, k).

Further, we shall prove (26), using PMI. Let us denote

criigit = alk+1L,k—s), s=0,1,2,....k k>0.
——

s times

Then, from (9),

k
alk+1,k—s)= Z (t —s).a(t,t —s).
t=s+1
Let k — s = 5. Then the above equality yields
k
ak+1,8)= > (t+35—k).alt,t+5—k),
t=k+1-5

§=0,1,....k k>0,
To prove that a(k, 5) = o(k, 5), it is enough to establish that:

a(k+1,5) =a(k,5—1) + 5.a(k, 3)

a(k+1,k) = (kgl)

) . Then, to prove (25), we must verify that

(25)

(26)

(27)

(28)

(29)

(30)

since the same recurrence relations are satisfied by the Stirling numbers of the second kind (see

[1, p. 825]).
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From the definition of a(k + 1,k — s) we obtain that a(k + 1, 5) = C’,]jill j 'BTI‘ . 7501@+1
N~

k — 5 times
For § = F, the above equality yields a(k + 1,k) = C{""**! = (*1") and (30) is proved.
With the help of (28), the validity of (29) is a matter of direct check.
Thus, we not only proved (26), but also obtained the following recurrence relation for the
Stirling numbers of the second kind:
k

olk+1,k—s)= Z (t—s)o(t,t—s), (31)

t=s+1

s=0,....k o(k,k—1)= ().
One may use (31) as another defintion for the Stirling numbers of the second kind.

Since o(k, m) has the explicit representation (see [1, p. 824]):

= %g—l)’“ (T)z’“

. 1,s+1,k+1 . s e
then we obtain the numbers C7 "4 """ in explicit form:
——

s times

k—s

Ls+1k+1 _ -8

Corolh ke t( )tk“. 2

""" ' t
“"’ t:O

s times

From (4), if we change k + 1 with k and define that P?(u) = 0, we obtain

k d s
=S P (@ . (32)
s=0

If we put k£ — s instead of s in (32), we obtain

k d k—s
AP =" Pl (u) (E) . (33)

s=0
Now we replace in (33) Pf~*(u) with the right-hand side of (6) with k instead k + 1. As a

result, we obtain:
du\*\ [ d\"*
. — ) 34
<d25> > (dz) (34)

k S du aq
_ k—m s,m,k
(S g (2)

Using that a; + - - - + s = m, one may rewrite (34) in the form:

Ak:u’“g(ZZCmﬁf ( )a(“;)>a> <dilz)k_s_ (35)

m=1 m,s

The representation (35) gives the possibility to express the powers of the operator B = ¢9(*) %
with the help of the complete n-th Bell polynomial B, (g1, ..., g,), where g; = Dig,i =1,...,n

and D = L. Namely, setting in (35) u(z) = €9(*), we obtain

k s s
= (@)Y (Z pReon || (eg<Z>Dneg<z>)a“> Dk, (36)



Thus, we proved
Proposition 3.1. The operator BY, k> 1, admits the representation

p e s (LTt oo (£) 7 o

m=1 m,s n=1

Indeed, we have B, (g1, ..., gn) = e 93 D9 (see [7]).

Now, we shall use (34) to obtain some corollaries.

Corollary 3.3. The identity

YOy ot = (=1)S(k,k—s), s=0,... .k (38)

.....

holds.

Proof. First we put in (2) k — s instead of s to obtain:

k d k—s
Af =€ (=1)*S(k, k — s) (E) . (39)

s=0

Second, we put u(z) = e in (34) and using that oy + ay + - - - + @ = m, we obtain

k—s
Z(ZZCST.’T ><d) - (40)
Now we compare (39) and (40) and thus (38) is proved. [l

Corollary 3.4. The identity

SIS e, = es- (YY) @)

m=1 m,s

holds.

Proof. In (3) we put £ — s instead of s and obtain

b k+s—1\ 1 [d\**
af =y ees-on(" TN o (4) @)

s=0

Let us put u(z) = L in (34). Then we obtain

dz=1\ ™ Az NN\ [ d\"F
Smk o« .. —
f g (5 ()
smk 1)1 “ S‘(_l)s “ d b
,,,,, 22 st dz

-----

A

Il
> |l Mw
o

I
M-
N?T‘
3

o

Il
||
l\z
??‘
3
§
o B
Y
~.
N
&
Q
<‘n
S
o~
2
I
/s\>—‘
+
=
N~
7N
&~
~_
el
.

i
o)
@
»—\



S S
Since: E oy = S; E o; = m, we have:
i=1 =1
S

Z(H—l)ai :iai+iiai =m+ s.
i=1 i=1

i=1

Therefore,

w=Ye (SEMorert.) & (1)

s=0 m=1 m,s i=1

Comparing the last equality with (42), we obtain (41).

Corollary 3.5. The identity

holds.

Proof. The relation

k' k—s
Y jma e = (CDS

s,k

is well-known (see [1, p. 823]). From Corollary 3 (see (38)):

ZZCS”}f = (=1)°S(k,k—s), s=0,... k.

Z Z Chosmk = (~1)F*S(k,s), s=0,....k.

Comparing the last equality with (45), we prove (44).

4 A correspondence between the operators
A1_A1m—w andA Az—U(Z)d
Let the substitution = = ¢(z) transform A, , into A,. Then

p(z) (s
o(z) (=)

The equation (48) has the solution ¢(z) = ele G

k s
d
ko_ s ) K =
Thus, ¢ transforms A, ," = 5_0 o(k,s)x (dx) into A, Zpk ( z) kE=1,2,.

(43)

(44)

(45)

(46)

(47)

(48)

c u(®  where c is an arbitrary complex constant.

(see (1) and (32)). Now, for an_arbitrary function f, on which the operator A’ acts, we apply Faa

di Bruno’s formula:
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<%)8 f(2(x)) = Z F™(z(2)A(s,m), s =1,2,3,..., (49)

where

A(s,m) = ; Cy(a) (%4@) h . ((%) s z(x)) h (see (22)).

S m
. d
Thus, the operator D® transforms into the operator E A(s,m) (d_> and moreover we have
z
m=1

the identities:

N

—S

o(k,s+1)A(s+1,8)(p(2) " = Pi(u), (50)

@
Il
=)

s=1,...,k.
One may rewrite the above identities in the form:

o(k,s)V(s,8)x*+o(k,s+1)V(s+1,8)z - Aok, k)V(k, s)z* = P} (u(p7'(2)), (5D

s=1,....,k —1; PF(u) = u* (p=1(x)), where ¢~ is the inverse function of ¢ and
Vins =36l (Lo @) o (L) o)
’ — " dx o\ \dr '
Let s = 1in (51). Sincea; +ag + -+, = s =1,thena; = ag = -+ = a1 = 0;

a, = 1; C,,(a) = 1. Hence

V(n,s)=V(n,1) = (%)n o Hx).

Therefore, (51) yields:
Corollary 4.1. The identity

> (ki) ((%) 90‘1(90)> #'= Py (u(p7(2))) (52)

i=1

holds, where k is an arbitrary natural number. 0
It is obvious that the function ¢)(z) = ¢~ (x) satisfies the differential equation

2 (x) = u(y(x)). (53)

For the case u(2) = 1, (53) yields ¢/(z) = \/In(22). From (52) and (3) (for s = 1) it follows:

Corollary 4.2. For an arbitrary natural number k the identity

o) (5 m<x2>)x+a<k,2><(;‘;)2 ln($2)>x2+--~+0(k,k)((Cldx)k mua))xk:

1-2k

:(—1)k‘1(2k—3)!!( ln(x2)) :
holds, where we set (—1)!! = 1. O
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The following lemma is the key for finding (%)"zp(x), n = 1,2,3,..., where 1 is the

solution of (53).

Lemma 4.1. Let T1(2) = u(z) and T41(2) = w(2) LT, (2) — nT,(z), n > 1. Then

(i) = (&) v - G

Proof. Since z = ¢~ '(x) = ¢(x), then

iz d 1) — L from@8) u(z):Tl(z)
o a? UTE T e o)

which proves the lemma for n = 1.
Let the assertion of the lemma be true for some n > 1. Then

i n+1Z B i i nz froIn_PMIi Tn(Z) .
dx ~ dx \dx  dx(e(2))r

(p(2))" (£Tu(2)) gz — nTu(2) (p(2)" " fp(2)

(p())™"
()" ()£ Tu(2) ~ nT(e) (p() 2] _
(p(2))™"
Tn+1 (Z)
(p(2))™"

and the lemma is proved.

Remark 4.1. It is obvious that

(2) . _ulz)
az) " T L)

since ¢'(z) =

Let u(z) = e*. Then
To(2) = r(n,n) ()" +r(n,n—1) ()" "+ +7r(n,1) ()",
where the numbers 7(n, k) satisfy the recurrence relations:

r(n+1,n+1) =nr(n,n) =nl;
r(n+1,1) = —nr(n,1) = (=1)"nl;
r(n+1,k)=(k—1)r(n,k—1) —nr(n,k), k=2,...,n

Now we use the lemma (for u(z) = €*) to obtain:

s

(54)

(55)

= N S Tn(z) an: ~ —(a1+ 200+ +n0m) o e
;CS( )E{w(z))"} (o(2)) SO [T T

m,s n=1
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Hence, from (54):

A(&m)Z(so(Z))_SZCs(a)Hl 7“(W’)(ez)1 : (56)

because a; + 2ap + - - - + Sa, = S.
From (50) and (56) we obtain:

Pi(e*) = Za (k,s+1) Z Cypi(a H (Z'r(n,j) (ez)j> :

=0 S,5+1 n=1

On the other hand, from (2), we have:
Py (e") = (=1)***S(k, s)e*

where S(k, s), as before, are the Stirling numbers of the first kind.
The last two equalities yield:

k—s s+1 n Qn
(=1)¥+*5(k, s) Zo (k,s+1) Z Cori(a) H <Z r(n,j) (62>j> _ (57)

s,5+1 n=1 \j=1

We set z = 0 in (57) to obtain

N

s+1

(—DFS(k,s) = > olk,s+i) Y Copila) [ [ Ba™, (58)
] n=1

S,5+1

»

@
Il
=)

n

where R,, = Zr(n,j) = T,(0).
j=1
Let us remind that (—1)***S(k, 1) = (k — 1)! (see [1], p. 824). Therefore, setting s = 1 in
(57), we obtain:

Za (k,i+1) > Ciale) ] (Z r(n, j) <€Z)j> =Pl(e). (59

1,i+1

Since 2 = (p(2))",i = 1,2, ..., k, then the lemma and (52) yield:

=2 ok )Ti(). (60)

From (54), (59) and (60) we obtain:

(2

k
= ZO’(k‘, 7) Zr(i, v) (e

v=1
Since o(k, k) = 1 and r(k, k) = (k — 1)! (see (55)), then for k& > 2 one may rewrite the above
equality in the form:

Z r(n,n)+o(k,n+1)r(n+1,n)+ -+ ok, k)r(k,n)] ()" =0.  (61)

n=1

From (61) we obtain:
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Corollary 4.3. For k > 2 the relations for orthogonality:
o(k,n)r(n,n)+o(k,n+ )r(n+1,n)+---+ ok, k)r(k,n) =0, (62)
n=1,...,k—1, hold. U
Let r(n, k) = dpS(n,k) (where again S(n, k) are the Stirling numbers of the first kind).
Replacing this equality in (55) we obtain that d; = 1 and dj, = (k — 1)dg_1, k& > 2. Therefore
dr = (k —1)!. Hence,
r(n, k) =(k—1)!1S(n, k), k=1,...,n. (63)
For k > 2, from (62) and (63) the well-known relations for orthogonality between the Stirling
numbers of the first and of the second kind hold immediately:
o(k,n)S(n,n)+o(k,n+1)S(n+1,n)+---+0o(k,k)S(k,n) =0, (64)
n=1,...,k—1.

Using (63), we obtain R,, = Z(V — 1)!1S(n, v) and then (58) yields
v=1
Corollary 4.4. The identity

n

k—s s+1 Qn
(=15 (k, s) = Za (k,s+1) Y Conila) ][ (Z(j — 1)!S(n,j)>

s,5+1 n=1 j=1
holds. ]

14 Obviously, A; = 2-%. Hence,

AfHl — gk i o
dz? '

(A k-i-l(\/g)) f — 2k+1f(k+1)(\/§).

Further, we apply Faa di Bruno’s formula for calculating f(*+1) (\/@ to obtain:

Let us consider the operator A3 =

We set z = /y to obtain

k+1 k41
(AST () £ =20 () > Crala) TT ((V)9)™

k+1
After further calculation of the product H (( (s ) and after changing ,/y with z, we finally
s=1

k k+1 1\ v d k+1—s
At =2t Z z’““ . (Z Cloy1(a H e (Z) ) (£> : (65)

s=0 s,k+1

obtain:

After replacing k£ + 1 with £ in (42) and comparing with (65), we obtain:

) = cves-m(*),

s =1,...,k, hold, where we set (—1)!! = 1. O

Corollary 4.5. The identities:

D SECY ) (COR

s,k+1 v=1

T NI
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Conclusion

The present investigation could be extended in many directions. For example, to obtain new

relations for Bernoulli and Euler numbers, just as for Eulerian numbers (see [3]).
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Appendix

Theorem 5.1. For k = 1,2,3, ..., the following representation is valid:
k d s
k _ kz k—s
A2 =€ 821(—1) S(k’, 8) (%) .

Proof. We shall prove the theorem using PMI. It is easy to see that there exist coefficients
b(k,s) € Z such that for k = 1,2,3,4

k s
d

A2k = €kz E b(l{}, 8) <d—> .
z

s=1
Let the above equality be true for some k. Then:

k s k
AFH = Ay Af = D= [ Eb(k, 1) d + Z(kb(k s)+b(k,s —1)) 4 + b(k, k) 4 " :
R d ) ’ d ’ dz

z = z
From the above equality we obtain the following three recurrence relations for b(k, s):

bk +1,1) = kb(k, 1) = kl;
bk + 1,k +1) = bk, k) = 1;
b(k+1,s) = kb(k,s)+blk,s—1),

s=2,...,k.
Let b(k,s) = (—=1)*sS(k, s). Then, from the recurrence relations for b(k, s), we obtain the

recurrence relations for the numbers S (k,s):

Sk,k)=1; Sk, 1) = (=)' k=11 Sk+1,s)=08ks—1)—kS(k,s).

But the Stirling numbers of the first kind S(k, s) satisfy the same relations (see [1, p. 824]).

Thus S(k, s) = S(k, s) and the assertion of the theorem follows from PMI. O
Theorem 5.2. For k =1,2,3, ..., the following representation is valid:
k 3s
2k —s—1 1 d
AL =) (1) 52k — 25 — 1)!! —
F= e (7 e ()

where we define (—1)!! = 1.

Proof. Let f € U. Then, with the help of PMI, one may establish that for £ > 1:

where af € Zand a =0, ai = 1,af = 1.
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Furthermore, we have

(Dl

~2(k+1)—1 Zz(kﬂ

k+1

- Ajyq (s)
o Z 22(k+1)— f ( )
s=1

Then the following relations hold:
D agy=(0)02k—1ay; ai =1, k=1,2,...;
af=ai=1, k=12,
3)aj ., =a; ' —(2k —s)a}, s=2,3,...,k
With the help of 3) in (66), for s = k, we obtain

k

k(k+1
g =ay— (2+3+ +k):_¥-

2
For s = k — 1 we obtain

a],jﬁ = a3 — (4a; + 5aj + -+ (k + 1)a],§_1),

1.e.,

T (k= Dk(k+1)(k +2)
Ur1 = 5 Y (s=Ds(s+1) = 5 :

1 1
Uppy = g = 5 Z (s = 2)(s)(s +1)(s +2)

= 2423—2 (s —1)(s)(s +1)(s+2)
(b =2)(k = Dk(k+1)(k+2)(k+3)

2.4.6
The previous calculations lead us to the conjecture:

e _ (_qyplbm st (k= Dk ts),
h 2.4.6---(2s)
We rewrite the last expression in the form:

—s s k—l-S
a7 = (1) (25—1)!!( N >

After substituting s with £ + 1 — s in the above equality, we obtain

s—1

2%k +1—
a;H:(—1)’f+1—8(2k—2s+1)!!( * 8),5=1,...,k;k:1,2,3,...
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Now, to prove strictly that the above representation of aj_ , holds, it is enough to verify with
its help that 1) and 3) are satisfied.
The proof of 1) is trivial, while 3) follows after the substitution 2k — s = n and checking the

=0, 15l ) =or-a L5 ) +e(02))

with the help of the relation:

(n+1—s)(n+?_s):n(2:2). O

equality:
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