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Abstract: In this paper the operator A = u(z) d
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1 Introduction

Let u : C → C be an entire or meromorphic function. We denote by A the operator

A = u(z)
d

dz
.

We shall consider the operatorA over the set U , which is the union of the set of all entire functions
in C and the set of all meromorphic functions in C. Particular cases of A are the operators:
A1 = z d

dz
, A2 = ez d

dz
, A3 =

1
z

d
dz

.

Copyright © 2024 by the Author. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



The operator A1 is well studied. In [12], p. 242, A1 is called Cauchy–Euler operator, although
Euler first considered this operator. Thus we may call the operator A generalized Euler–Cauchy
operator. In [13], A1 is called by Watson theta operator and is denoted by θ. In [8], p. 542, A1 is
denoted by δ and it is shown that δ(δ − 1) . . . (δ − n+ 1) = znDn.

The operator A3 is connected with the Bessel functions of the first kind J = Jν(z), which
satisfy the differential equation

z2
(
d

dz

)2

J + z
d

dz
J + (z2 − ν2)J = 0.

In particular, for ν = n+ 1
2

and ν = −n− 1
2
(n = 0, 1, 2, . . . ), we have:

Jn+ 1
2
(z) =

√
2

π
zn+

1
2 (−1)nAn

3

sinz
z

;

J−n− 1
2
(z) =

√
2

π
zn+

1
2An

3

cosz
z

(see [5] and [4, p. 178, p. 198]).
The operatorsA1

k andA3
k belong to the class of the so-called hyper-Bessel differential operators

(Bessel type operators), i.e. operators of the form

B = zα0
d

dz
zα1

d

dz
· · · zαm−1

d

dz
zαm ,

where αi, i = 0, . . . ,m, are arbitrary real numbers such that m >
m∑
i=0

αi (see [6, pp. 99–101]).

Using the eigenfunctions of the operators A1, A2, A3, one may obtain the following results:

Theorem 1.1. Let n be a natural number and P (w) = c0 + c1w + c2w
2 + · · · + cnw

n, where
ct ∈ C, t = 0, 1, . . . , n. Then for every λ ∈ C the equalities:

P (A1)z
λ = P (λ)zλ;

P (A2)e
−λe−z

= P (λ)e−λe−z

;

P (A3)e
1
2
λz2 = P (λ)e

1
2
λz2

hold.

Proof. The first equality is proved in [10, Problem 44, p. 8]. For the second equality, we verify
that

A2e
−λe−z

= λe−λe−z

,

hence
A2

t e−λe−z

= λte−λe−z

, t = 0, 1, 2, 3, . . .

and the second equality holds.
For the third equality, we verify that

A3e
1
2
λz2 = λe

1
2
λz2 ,

hence
A3

t e
1
2
λz2 = λte

1
2
λz2 , t = 0, 1, 2, 3, . . .

and the third equality holds.
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As a corollary of Theorem 1.1, we obtain the following proposition.

Proposition 1.1. For every two complex constants a and b, the following equalities hold:

P (a+ bA1)z
λ = P (a+ bλ)zλ (see [2, p. 551]);

P (a+ bA2)e
−λe−z

= P (a+ bλ)e−λe−z

;

P (a+ bA3)e
1
2
λz2 = P (a+ bλ)e

1
2
λz2 .

In the same way, one may establish the following result:

Theorem 1.2. Let λ ∈ C and y = y(z) satisfy the equality Ay = λy, where A is the operator
A = u(z) d

dz
. Then for every a, b ∈ C the equality

P (a+ bA)y = P (a+ bλ)y

holds.

Remark 1.1. From the condition of the Theorem 1.2, the differential equation u(z)y′(z) = λy(z)

holds and its solution is given by
y(z) = c̃ eλ

∫ z
c

dt
u(t) ,

where c, c̃ ∈ C are arbitrary constants. Let c̃ = 1. When A = A1, we set c = 1 and obtain
y(z) = zλ. When A = A2, we set c = ∞ and obtain y(z) = e−λe−z

. When A = A3, we set c = 0

and obtain y(z) = e
1
2
λz2 .

Let S(k, s) and σ(k, s) be the Stirling numbers of the first and second kind, respectively
(for the definition and properties of these numbers see [1, p. 824–825]). Then the following
expansions are valid:

A1
k =

k∑
s=0

σ(k, s)zs
(
d

dz

)s

(see [11, p. 218] and [8, p. 543]); (1)

A2
k = ekz

k∑
s=0

(−1)k−sS(k, s)

(
d

dz

)s

; (2)

A3
k =

k∑
s=0

(−1)k−s(2k − 2s− 1)!!

(
2k − s− 1

s− 1

)
1

z2k−s

(
d

dz

)s

, (3)

where we define (−1)!! = 1.

We shall prove the last two representations in the Appendix. Here we note that one may use
the first two of the above equalities as defining equalities for introducing the Stirling numbers.

Just as every infinite sequence of numbers {an}∞n=0 is connected with the generating function
f(z) =

∑∞
n=0 anz

n, it is interesting to know if the powers Ak of A are generating operators for
some special sequences of numbers.

The mentioned above may motivate one to find an explicit representation for the operators
Ak, k = 1, 2, 3, . . . . In this paper we show that the powers Ak of A are generating operators
for different kinds of combinatorial numbers (in particular, for Stirling numbers of the first and
second kind). Also, several new identities for some combinatorial numbers are obtained.
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2 The main result

First, we want to express the operator Ak with the help of
(

d
dz

)s, s = 1, . . . , k.

Theorem 2.1. There exist numbers Cs,m,k+1
α1,...,αs

, for which the following representation:

Ak+1 =
k+1∑
s=1

P s
k+1(u)

(
d

dz

)s

, (4)

is valid, where:

P k+1
k+1 (u) = uk+1; (5)

P k+1−s
k+1 (u) =

s∑
m=1

uk+1−mF k+1
m (u), s = 1, . . . , k, (6)

F k+1
m (u) =

∑
m,s

Cs,m,k+1
α1,...,αs

(
du

dz

)α1

· · ·
(
dsu

dzs

)αs

(7)

and
∑
m,s

in (7) is over all nonnegative integers α1, . . . , αs for which:

s∑
i=1

αi = m;
s∑

i=1

iαi = s.

The numbers Cs,m,k+1
α1,...,αs

satisfy the following recurrence relations:

Cs+1,m,k+1
γ1,...,γs,γs+1

=

k∑
t=s+1

[
(t+ 1−m)Cs,m−1,t

γ1−1,γ2,...,γs
+

s+1∑
j=1

(γj + 1)Cs,m,t
γ1,...,γj−1,γj+1,γj+1−1,γj+2,...,γs

]
, (8)

where: 1 < m < s+ 1; γs+1 = 0;
s+1∑
i=1

γi = m;
s+1∑
i=1

iγi = s+ 1; s = 1, . . . , k − 1;

Cs+1,s+1,k+1
γ1,...,γs,γs+1

=
k∑

t=s+1

(t− s)Cs,s,t
γ1−1,γ2,...,γs

, (9)

where: γs+1 = 0;
s+1∑
i=1

γi = s+ 1;
s+1∑
i=1

iγi = s+ 1; s = 1, . . . , k − 1.

Also, the relation

Cs+1,1,k+1
0, . . . , 0︸ ︷︷ ︸
s times

,1 =
k∑

t=s+1

Cs,1,t
0, . . . , 0︸ ︷︷ ︸
s − 1 times

,1 (10)

holds, where s = 1, . . . , k − 1.

Remark 2.1. It is easy to see that (9) takes the form:

Cs+1,s+1,k+1
s+1, 0, . . . , 0︸ ︷︷ ︸

s times

=
k∑

t=s+1

(t− s)Cs,s,t
s, 0, . . . , 0︸ ︷︷ ︸

s − 1 times

, s = 1, . . . , k − 1. (11)
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Proof of Theorem 2.1. Let f ∈ U and

Akf(z) =
k∑

s=1

P s
k (u)f

(s)(z).

Since An, n ≥ 1, is a linear operator, then

k+1∑
s=1

P s
k+1(u)f

(s)(z) = Ak+1f(z) = A
(
Akf(z)

)
= A

( k∑
s=1

P s
k (u)f

(s)(z)

)

= u

(
d

dz
P 1
k (u)

)
f (1)(z) +

k∑
s=2

(
uP s−1

k (u) + u
d

dz
P s
k (u)

)
f (s)(z) + uP k

k (u)f
(k+1)(z).

Comparing the left-hand side and the right-hand side of the last equality, we obtain the
relations:

P 1
k+1(u) = u

d

dz
P 1
k (u); (12)

P s
k+1(u) = uP s−1

k (u) + u
d

dz
P s
k (u), 1 < s < k + 1; (13)

P k+1
k+1 (u) = uP k

k (u). (14)

Since P 1
1 (u) = u, then from (14) we obtain

P k+1
k+1 = uk+1 (i.e. (5)).

From (12) and (13) we obtain the equalities:

P k
k+1(u) = uP k−1

k (u) + kuk
d

dz
u;

P k−1
k (u) = uP k−2

k−1 (u) + (k − 1)uk−1 d

dz
u;

...

P 2
3 (u) = uP 1

2 (u) + 2u2
d

dz
u.

We multiply the first equality by 1, the second equality by u, the third equality by u2, . . . , the last
equality by uk−2, then by summing the received equalities we obtain

P k
k+1(u) = uk−1P 1

2 (u) + uk
d

dz
u

k∑
t=2

t.

Since P 1
2 (u) = u d

dz
u, we obtain

P k
k+1(u) =

( k∑
t=1

t

)
uk

d

dz
u =

k(k + 1)

2
uk

d

dz
u. (15)

To calculate P k−1
k+1 (u) we use the same approach as for obtaining (15).

Continuing in the same way, one may also calculate P k−2
k+1 (u), P

k−3
k+1 , etc., and observe that in

these particular cases (6) is true.
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Below we shall prove (6), using the principle of mathematical induction.
Substituting in (13) s with k + 1− s, we obtain:

P k+1−s
k+1 (u) = uP k−s

k (u) + u
d

dz
P k+s+1
k (u), s = 1, . . . , k. (16)

With the help of (16), we shall repeat the approach, realized for P k
k+1(u), but this time to

obtain P (k+1)−(s+1)
k+1 (u). Let us assume that P k+1−s

k+1 (u) is given by (6). Then

d

dz
P k+1−s
k+1 (u) =

s∑
m=1

(k + 1−m)uk−mF k+1
m (u)

d

dz
u+

s∑
m=1

uk+1−m d

dz
F k+1
m (u).

From (16), using the above equality, we obtain

d

dz
P k+1−s
k+1 (u) = uk

d

dz
F k+1
1 (u)

+
s∑

m=2

(
(k + 2−m)F k+1

m−1(u)
d

dz
u+

d

dz
F k+1
m (u)

)
uk+1−m (17)

+ (k + 1− s)uk−sF k+1
s (u)

d

dz
u.

Substituting in (17) k+1 with k, k− 1, k− 2, . . . , and after that multiplying the first equality by
u, the second equality by u2, the third equality by u3, and so on, then by summing the received
equalities we obtain

P
(k+1)−(s+1)
k+1 (u) =

( k∑
t=s+1

d

dz
F t
1(u)

)
uk

+
s∑

m=2

( k∑
t=s+1

(t+ 1−m)F t
m−1(u)

d

dz
u+

d

dz
F t
m(u)

)
uk+1−m (18)

+

( k∑
t=s+1

(t− s)F t
s(u)

d

dz
u

)
uk−s.

Using the representation of P (k+1)−(s+1)
k+1 (u), given in (18), with the help of (6) and (7), we

conclude that the relations (8)–(11) hold. Indeed, (7) implies:

F t
m−1(u)

d

dz
u =

∑
m−1, s

Cs,m−1,t
α1,...,αs

(
du

dz

)α1+1(
d2u

dz2

)α2

· · ·
(
dsu

dzs

)αs

. (19)

On the other side, we have

d

dz
F t
m(u)

=
∑
m,s

s∑
j=1

δjC
s,m,t
δ1,...,δs

(
du

dz

)δ1

· · ·
(
dj−1u

dzj−1

)δj−1
(
dju

dzj

)δj−1(dj+1u

dzj+1

)δj+1+1(dj+2u

dzj+2

)δj+2

· · ·
(
dsu

dzs

)δs

.

(20)

Comparing (4), (6), (7) with (18)–(20), we obtain:

δ1 = α1 + 1, . . . , δj − 1 = αj, δj+1 + 1 = αj+1, . . . , δs = αs.
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Thus, we get (8). The relations (9) and (10) could be received analogically. To finish the proof
of Theorem 2.1, it remains to prove that each monomial in

∑
m,s+1, for example(

du

dz

)γ1(d2u
dz2

)γ2

· · ·
(
dsu

dzs

)γs( dsu

dzs+1

)γs+1

with γs+1 = 0, is contained in the right-hand side of (19). This fact can be proved in the same
way as in the proof of Lemma 3.2 from [9]. The theorem is proved.

Another approach for finding the expansion of Ak is proposed below.

We set: A0 = u(z); u(z) = 1
v(z)

. Thus A = d
d
∫
v(z)

. Let
∫
v(z) = φ(z). Then A = d

dφ(z)
.

Therefore, Af(z) = d
dφ(z)

f(z). Substituting φ(z) = t, we have z = φ−1(t) (where φ−1 is the
inverse function of φ). Therefore

Af(z) = Af(φ−1(t)) =
d

dt
f(φ−1(t))|t=φ(z).

Hence

Akf(z) =

(
d

dt

)k

f(φ−1(t))|t=φ(z), k = 1, 2, 3, . . .

Now, for the right-hand side of the last equality Faà di Bruno’s formula (see [1, p. 823]) is
applicable and as a result we obtain

Akf(z) =
k∑

m=0

f (m)(φ−1(t))
∑
m,k

Ck(α)
[
[Dφ−1(t)]α1 · · · [Dkφ−1(t)]αk

]
|t=φ(z), (21)

where α = (α1, α2, . . . , αk) and

Ck(α) =
k!

(1!)α1 · · · (k!)αkα1! · · ·αk!
. (22)

From the formula for derivatives of inverse functions we obtain:

(φ−1(t))′ =
1

φ′(z)
= u(z) = A0u;

(φ−1(t))′′ = u′(z)(φ−1(t))′ = u(z)u′(z) = A1u; . . . ;

(φ−1(t))(k) = Ak−1u.

Substituting in (21) the results of the above equalities, we obtain:

Akf(z) =
k∑

m=0

f (m)(z)
∑
m,k

Ck(α)[A
0u]α1 · · · [Ak−1u]αk . (23)

Thus (using (23)), we proved the following result:

Theorem 2.2. The operator Ak, k = 1, 2, . . . , could be given by:

Ak =
k∑

m=0

∑
m,k

Ck(α)[A
0u]α1 . . . [Ak−1u]αk

(
d

dz

)m

. (24)
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3 Applications of the obtained results

Corollary 3.1. It is valid:

Cs,1,k+1
0, . . . , 0︸ ︷︷ ︸
s − 1 times

,1 =

(
k + 1

s+ 1

)
, s = 1, . . . , k. (25)

Proof. For s = 1 we have C1,1,k+1
1 =

(
k + 1

2

)
. Then, to prove (25), we must verify that

k∑
t=s+1

(
t

s+ 1

)
=

(
k + 1

s+ 1

)
.

But the last identity follows immediately from the definition of the binomial coefficients:(
p

q

)
=

p!

q!(p− q)!
·

Corollary 3.2. It is valid:
Cs+1,s+1,k+1

s+1, 0, . . . , 0︸ ︷︷ ︸
s times

= σ(k + 1, k − s). (26)

Proof. For s = 0, (26) is true. Indeed, the left-hand side of (26) for s = 0 is:

C1,1,k+1
1 =

(
k + 1

2

)
(from (25) with s = 1).

But σ(k + 1, k) =
(
k+1
2

)
(see [1, p. 825]). Thus,

C1,1,k+1
1 = σ(k + 1, k).

Further, we shall prove (26), using PMI. Let us denote

Cs+1,s+1,k+1
s+1, 0, . . . , 0︸ ︷︷ ︸

s times

= a(k + 1, k − s), s = 0, 1, 2, . . . , k; k ≥ 0. (27)

Then, from (9),

a(k + 1, k − s) =
k∑

t=s+1

(t− s).a(t, t− s).

Let k − s = s̃. Then the above equality yields

a(k + 1, s̃) =
k∑

t=k+1−s̃

(t+ s̃− k) .a(t, t+ s̃− k), (28)

s̃ = 0, 1, . . . , k, k ≥ 0.
To prove that a(k, s̃) = σ(k, s̃), it is enough to establish that:

a(k + 1, s̃) = a(k, s̃− 1) + s̃.a(k, s̃) (29)

a(k + 1, k) =

(
k + 1

2

)
, (30)

since the same recurrence relations are satisfied by the Stirling numbers of the second kind (see
[1, p. 825]).
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From the definition of a(k + 1, k − s) we obtain that a(k + 1, s̃) = Ck+1−s̃, k+1−s̃, k+1
k+1−s̃, 0, . . . , 0︸ ︷︷ ︸

k − s̃ times

.

For s̃ = k, the above equality yields a(k + 1, k) = C1, 1, k+1
1 =

(
k+1
2

)
and (30) is proved.

With the help of (28), the validity of (29) is a matter of direct check.
Thus, we not only proved (26), but also obtained the following recurrence relation for the

Stirling numbers of the second kind:

σ(k + 1, k − s) =
k∑

t=s+1

(t− s)σ(t, t− s), (31)

s = 0, . . . , k; σ(k, k − 1) =
(
k
2

)
.

One may use (31) as another defintion for the Stirling numbers of the second kind.
Since σ(k,m) has the explicit representation (see [1, p. 824]):

σ(k,m) =
1

m!

m∑
i=0

(−1)m−i

(
m

i

)
ik,

then we obtain the numbers Cs+1,s+1,k+1
s+1, 0, . . . , 0︸ ︷︷ ︸

s times

in explicit form:

Cs+1,s+1,k+1
s+1, 0, . . . , 0︸ ︷︷ ︸

s times

=
1

(k − s)!

k−s∑
t=0

(−1)k−s−t

(
k − s

t

)
tk+1.

From (4), if we change k + 1 with k and define that P 0
k (u) = 0, we obtain

Ak =
k∑

s=0

P s
k (u)

(
d

dz

)s

. (32)

If we put k − s instead of s in (32), we obtain

Ak =
k∑

s=0

P k−s
k (u)

(
d

dz

)k−s

. (33)

Now we replace in (33) P k−s
k (u) with the right-hand side of (6) with k instead k + 1. As a

result, we obtain:

Ak =
k∑

s=0

(
s∑

m=1

uk−m
∑
m,s

Cs,m,k
α1,...,αs

(
du

dz

)α1

· · ·
(
dsu

dzs

)αs
)(

d

dz

)k−s

. (34)

Using that α1 + · · ·+ αs = m, one may rewrite (34) in the form:

Ak = uk
k∑

s=0

(
s∑

m=1

∑
m,s

Cs,m,k
α1,...,αs

(
u′

u

)α1

· · ·
(
u(s)

u

)αs
)(

d

dz

)k−s

. (35)

The representation (35) gives the possibility to express the powers of the operatorB = eg(z) d
dz

with the help of the complete n-th Bell polynomialBn(g1, . . . , gn), where gi = Dig, i = 1, . . . , n,
and D = d

dz
. Namely, setting in (35) u(z) = eg(z), we obtain

Bk =
(
eg(z)

)k k∑
s=0

(
s∑

m=1

∑
m,s

Cs,m,k
α1,...,αs

s∏
n=1

(
e−g(z)Dneg(z)

)αn

)
Dk−s. (36)
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Thus, we proved

Proposition 3.1. The operator Bk, k ≥ 1, admits the representation

Bk =
(
eg(z)

)k k∑
s=0

(
s∑

m=1

∑
m,s

Cs,m,k
α1,...,αs

s∏
n=1

(Bn(g1, . . . , gn))
αn

)(
d

dz

)k−s

. (37)

Indeed, we have Bn(g1, . . . , gn) = e−g(z)Dneg(z) (see [7]).

Now, we shall use (34) to obtain some corollaries.

Corollary 3.3. The identity

s∑
m=1

∑
m,s

Cs,m,k
α1,...,αs

= (−1)sS(k, k − s), s = 0, . . . , k, (38)

holds.

Proof. First we put in (2) k − s instead of s to obtain:

A2
k = ekz

k∑
s=0

(−1)sS(k, k − s)

(
d

dz

)k−s

. (39)

Second, we put u(z) = ez in (34) and using that α1 + α2 + · · ·+ αs = m, we obtain

A2
k = ekz

k∑
s=0

(
s∑

m=1

∑
m,s

Cs,m,k
α1,...,αs

)(
d

dz

)k−s

. (40)

Now we compare (39) and (40) and thus (38) is proved.

Corollary 3.4. The identity
s∑

m=1

∑
m,s

(1!)α1 · · · (s!)αsCs,m,k
α1,...,αs

= (2s− 1)!!

(
k + s− 1

2s

)
(41)

holds.

Proof. In (3) we put k − s instead of s and obtain

A3
k =

k∑
s=0

(−1)s(2s− 1)!!

(
k + s− 1

2s

)
1

zk+s

(
d

dz

)k−s

. (42)

Let us put u(z) = 1
z

in (34). Then we obtain

A3
k =

k∑
s=0

(
s∑

m=1

1

zk−m

∑
m,s

Cs,m,k
α1,...,αs

(
dz−1

dz

)α1

· · ·
(
dsz−1

dzs

)αs
)(

d

dz

)k−s

=
k∑

s=0

(
s∑

m=1

1

zk−m

∑
m,s

Cs,m,k
α1,...,αs

(
1!(−1)1

z2

)α1

· · ·
(
s!(−1)s

zs+1

)αs
)(

d

dz

)k−s

=
k∑

s=0

(
s∑

m=1

1

zk−m

∑
m,s

(−1)
∑s

i=1 iαi

s∏
i=1

(i!)αiCs,m,k
α1,...,αs

1

z
∑s

i=1(i+1)αi

)(
d

dz

)k−s

.
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Since:
s∑

i=1

iαi = s;
s∑

i=1

αi = m, we have:

s∑
i=1

(i+ 1)αi =
s∑

i=1

αi +
s∑

i=1

iαi = m+ s.

Therefore,

A3
k =

k∑
s=0

(−1)s

(
s∑

m=1

∑
m,s

s∏
i=1

(i!)αiCs,m,k
α1,...,αs

)
1

zk+s

(
d

dz

)k−s

. (43)

Comparing the last equality with (42), we obtain (41).

Corollary 3.5. The identity

∑
s,k

k!

1α1α1! · · · kαk .αk!
=

k−s∑
m=1

∑
m,k−s

Ck−s,m,k
α1,...,αk−s

(44)

holds.

Proof. The relation ∑
s,k

k!

1α1α1! · · · kαk .αk!
= (−1)k−sS(k, s) (45)

is well-known (see [1, p. 823]). From Corollary 3 (see (38)):
s∑

m=1

∑
m,s

Cs,m,k
α1,...,αs

= (−1)sS(k, k − s), s = 0, . . . , k. (46)

In (46) we put k − s instead of s to obtain:

k−s∑
m=1

∑
m,k−s

Ck−s,m,k
α1,...,αk−s

= (−1)k−sS(k, s), s = 0, . . . , k. (47)

Comparing the last equality with (45), we prove (44).

4 A correspondence between the operators
A1 = A1,x = x d

dx
and A = Az = u(z) d

dz

Let the substitution x = φ(z) transform A1,x into Az. Then

φ(z)

φ′(z)
= u(z). (48)

The equation (48) has the solution φ(z) = e
∫ z
c

dt
u(t) , where c is an arbitrary complex constant.

Thus, φ transforms A1,x
k =

k∑
s=0

σ(k, s)xs
(
d

dx

)s

into Az
k =

k∑
s=0

P s
k (u)

(
d

dz

)s

, k = 1, 2, . . .

(see (1) and (32)). Now, for an arbitrary function f , on which the operator Az
s acts, we apply Faà

di Bruno’s formula:
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(
d

dx

)s

f(z(x)) =
s∑

m=0

f (m)(z(x))∆(s,m), s = 1, 2, 3, . . . , (49)

where

∆(s,m) =
∑
m,s

Cs(α)

(
d

dx
z(x)

)α1

. . .

((
d

dx

)s

z(x)

)αs

(see (22)).

Thus, the operator Ds transforms into the operator
s∑

m=1

∆(s,m)

(
d

dz

)m

and moreover we have

the identities:
k−s∑
i=0

σ(k, s+ i)∆(s+ i, s)(φ(z))s+i = P s
k (u), (50)

s = 1, . . . , k.
One may rewrite the above identities in the form:

σ(k, s)V (s, s)xs+σ(k, s+1)V (s+1, s)xs+1+· · ·+σ(k, k)V (k, s)xk = P s
k

(
u
(
φ−1(x)

))
, (51)

s = 1, . . . , k − 1; P k
k (u) = uk (φ−1(x)), where φ−1 is the inverse function of φ and

V (n, s) =
∑
s,n

Cn(α)

(
d

dx
φ−1(x)

)α1

. . .

((
d

dx

)n

φ−1(x)

)αn

.

Let s = 1 in (51). Since α1 + α2 + · · · + αn = s = 1, then α1 = α2 = · · · = αn−1 = 0;
αn = 1; Cn(α) = 1. Hence

V (n, s) = V (n, 1) =

(
d

dx

)n

φ−1(x).

Therefore, (51) yields:

Corollary 4.1. The identity

k∑
i=1

σ(k, i)

((
d

dx

)i

φ−1(x)

)
xi = P 1

k

(
u
(
φ−1(x)

))
(52)

holds, where k is an arbitrary natural number. □

It is obvious that the function ψ(x) = φ−1(x) satisfies the differential equation

xψ′(x) = u(ψ(x)). (53)

For the case u(z) = 1
z
, (53) yields ψ(x) =

√
ln(x2). From (52) and (3) (for s = 1) it follows:

Corollary 4.2. For an arbitrary natural number k the identity

σ(k, 1)

(
d

dx

√
ln(x2)

)
x+ σ(k, 2)

((
d

dx

)2√
ln(x2)

)
x2 + · · ·+ σ(k, k)

((
d

dx

)k√
ln(x2)

)
xk =

= (−1)k−1(2k − 3)!!
(√

ln(x2)
)1−2k

,

holds, where we set (−1)!! = 1. □
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The following lemma is the key for finding
(

d
dx

)n
ψ(x), n = 1, 2, 3, . . . , where ψ is the

solution of (53).

Lemma 4.1. Let T1(z) = u(z) and Tn+1(z) = u(z) d
dz
Tn(z)− nTn(z), n ≥ 1. Then(

d

dx

)n

z =

(
d

dx

)n

ψ(x) =
Tn(z)

(φ(z))n
.

Proof. Since z = φ−1(x) = ψ(x), then

d

dx
z =

d

dx
φ−1(x) =

1

φ′(z)

from (48)
=

u(z)

φ(z)
=
T1(z)

φ(z)
,

which proves the lemma for n = 1.
Let the assertion of the lemma be true for some n ≥ 1. Then(

d

dx

)n+1

z =
d

dx

(
d

dx

)n

z
from PMI
=

d

dx

Tn(z)

(φ(z))n
=

=
(φ(z))n

(
d
dz
Tn(z)

)
d
dx
z − nTn(z) (φ(z))

n−1 d
dx
φ(z)

(φ(z))2n
=

=
(φ(z))n−1 [u(z) d

dz
Tn(z)− nTn(z)

(
d
dz
φ(z)

)
d
dx
z
]

(φ(z))2n
=

=
Tn+1(z)

(φ(z))n+1

and the lemma is proved.

Remark 4.1. It is obvious that (
d

dz
φ(z)

)
d

dx
z = 1,

since φ′(z) =
φ(z)

u(z)
and

d

dx
z =

u(z)

φ(z)
.

Let u(z) = ez. Then

Tn(z) = r(n, n) (ez)n + r(n, n− 1) (ez)n−1 + · · ·+ r(n, 1) (ez)1 , (54)

where the numbers r(n, k) satisfy the recurrence relations:

r(n+ 1, n+ 1) = nr(n, n) = n!;

r(n+ 1, 1) = −nr(n, 1) = (−1)nn!; (55)

r(n+ 1, k) = (k − 1)r(n, k − 1)− nr(n, k), k = 2, . . . , n.

Now we use the lemma (for u(z) = ez ) to obtain:

∆(s,m) =
∑
m,s

Cs(α)
s∏

n=1

[
Tn(z)

(φ(z))n

]αn

= (φ(z))−(α1+2α2+···+nαn)
∑
m,s

Cs(α)
s∏

n=1

[Tn(z)]
αn .
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Hence, from (54):

∆(s,m) = (φ(z))−s
∑
m,s

Cs(α)
s∏

n=1

[
n∑

i=1

r(n, i) (ez)i
]αn

, (56)

because α1 + 2α2 + · · ·+ sαs = s.
From (50) and (56) we obtain:

P s
k (e

z) =
k−s∑
i=0

σ(k, s+ i)
∑
s,s+i

Cs+i(α)
s+i∏
n=1

(
n∑

j=1

r(n, j) (ez)j
)αn

.

On the other hand, from (2), we have:

P s
k (e

z) = (−1)k+sS(k, s)ekz,

where S(k, s), as before, are the Stirling numbers of the first kind.
The last two equalities yield:

(−1)k+sS(k, s)ekz =
k−s∑
i=0

σ(k, s+ i)
∑
s,s+i

Cs+i(α)
s+i∏
n=1

(
n∑

j=1

r(n, j) (ez)j
)αn

. (57)

We set z = 0 in (57) to obtain

(−1)k+sS(k, s) =
k−s∑
i=0

σ(k, s+ i)
∑
s,s+i

Cs+i(α)
s+i∏
n=1

Rn
αn , (58)

where Rn =
n∑

j=1

r(n, j) = Tn(0).

Let us remind that (−1)k+1S(k, 1) = (k − 1)! (see [1], p. 824). Therefore, setting s = 1 in
(57), we obtain:

(k − 1)!ekz =
k−1∑
i=0

σ(k, i+ 1)
∑
1,i+1

Ci+1(α)
i+1∏
n=1

(
n∑

j=1

r(n, j) (ez)j
)αn

= P 1
k (e

z) . (59)

Since xi = (φ(z))i, i = 1, 2, . . . , k, then the lemma and (52) yield:

P 1
k (e

z) =
k∑

i=1

σ(k, i)Ti(z). (60)

From (54), (59) and (60) we obtain:

(k − 1)!ekz =
k∑

i=1

σ(k, i)
i∑

ν=1

r(i, ν) (ez)ν .

Since σ(k, k) = 1 and r(k, k) = (k − 1)! (see (55)), then for k ≥ 2 one may rewrite the above
equality in the form:

k−1∑
n=1

[σ(k, n)r(n, n) + σ(k, n+ 1)r(n+ 1, n) + · · ·+ σ(k, k)r(k, n)] (ez)n = 0. (61)

From (61) we obtain:
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Corollary 4.3. For k ≥ 2 the relations for orthogonality:

σ(k, n)r(n, n) + σ(k, n+ 1)r(n+ 1, n) + · · ·+ σ(k, k)r(k, n) = 0, (62)

n = 1, . . . , k − 1, hold. □

Let r(n, k) = dkS(n, k) (where again S(n, k) are the Stirling numbers of the first kind).
Replacing this equality in (55) we obtain that d1 = 1 and dk = (k − 1)dk−1, k ≥ 2. Therefore
dk = (k − 1)!. Hence,

r(n, k) = (k − 1)!S(n, k), k = 1, . . . , n. (63)

For k ≥ 2, from (62) and (63) the well-known relations for orthogonality between the Stirling
numbers of the first and of the second kind hold immediately:

σ(k, n)S(n, n) + σ(k, n+ 1)S(n+ 1, n) + · · ·+ σ(k, k)S(k, n) = 0, (64)

n = 1, . . . , k − 1.

Using (63), we obtain Rn =
n∑

ν=1

(ν − 1)!S(n, ν) and then (58) yields

Corollary 4.4. The identity

(−1)k+sS(k, s) =
k−s∑
i=0

σ(k, s+ i)
∑
s,s+i

Cs+i(α)
s+i∏
n=1

(
n∑

j=1

(j − 1)!S(n, j)

)αn

holds. □

Let us consider the operator A3 =
1
z

d
dz

. Obviously, A3 = 2 d
dz2

. Hence,

A3
k+1 = 2k+1

(
d

dz2

)k+1

.

We set z =
√
y to obtain (

A3
k+1(

√
y)
)
f = 2k+1f (k+1)(

√
y).

Further, we apply Faà di Bruno’s formula for calculating f (k+1)(
√
y) to obtain:

(
A3

k+1(
√
y)
)
f = 2k+1

k+1∑
m=0

f (m)(
√
y)
∑

m,k+1

Ck+1(α)
k+1∏
s=1

(
(
√
y)(s)

)αs
.

After further calculation of the product
k+1∏
s=1

(
(
√
y)(s)

)αs and after changing
√
y with z, we finally

obtain:

A3
k+1 = 2k+1

k∑
s=0

1

zk+1−s

(∑
s,k+1

Ck+1(α)
k+1∏
ν=1

(ν!)αν

(
1
2

ν

)αν
)(

d

dz

)k+1−s

. (65)

After replacing k + 1 with k in (42) and comparing with (65), we obtain:

Corollary 4.5. The identities:

2k+1
∑
s,k+1

Ck+1(α)
k+1∏
ν=1

(ν!)αν

(
1
2

ν

)αν

= (−1)s(2s− 1)!!

(
k + s

2s

)
,

s = 1, . . . , k, hold, where we set (−1)!! = 1. □
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5 Conclusion

The present investigation could be extended in many directions. For example, to obtain new
relations for Bernoulli and Euler numbers, just as for Eulerian numbers (see [3]).
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Appendix

Theorem 5.1. For k = 1, 2, 3, . . . , the following representation is valid:

A2
k = ekz

k∑
s=1

(−1)k−sS(k, s)

(
d

dz

)s

.

Proof. We shall prove the theorem using PMI. It is easy to see that there exist coefficients
b(k, s) ∈ Z such that for k = 1, 2, 3, 4

A2
k = ekz

k∑
s=1

b(k, s)

(
d

dz

)s

.

Let the above equality be true for some k. Then:

A2
k+1 = A2A2

k = e(k+1)z

(
kb(k, 1)

d

dz
+

k∑
s=2

(kb(k, s) + b(k, s− 1))

(
d

dz

)s

+ b(k, k)

(
d

dz

)k+1
)
.

From the above equality we obtain the following three recurrence relations for b(k, s):

b(k + 1, 1) = kb(k, 1) = k!;

b(k + 1, k + 1) = b(k, k) = 1;

b(k + 1, s) = kb(k, s) + b(k, s− 1),

s = 2, . . . , k.
Let b(k, s) = (−1)k+sS̃(k, s). Then, from the recurrence relations for b(k, s), we obtain the

recurrence relations for the numbers S̃(k, s):

S̃(k, k) = 1; S̃(k, 1) = (−1)k−1(k − 1)!; S̃(k + 1, s) = S̃(k, s− 1)− kS̃(k, s).

But the Stirling numbers of the first kind S(k, s) satisfy the same relations (see [1, p. 824]).
Thus S̃(k, s) = S(k, s) and the assertion of the theorem follows from PMI.

Theorem 5.2. For k = 1, 2, 3, . . . , the following representation is valid:

A3
k =

k∑
s=0

(−1)k−s(2k − 2s− 1)!!

(
2k − s− 1

s− 1

)
1

z2k−s

(
d

dz

)3s

,

where we define (−1)!! = 1.

Proof. Let f ∈ U . Then, with the help of PMI, one may establish that for k ≥ 1:(
1

z

d

dz

)k

f(z) =
k∑

s=1

ask
z2k−s

f (s)(z),

where ask ∈ Z and a0k = 0, a11 = 1, akk = 1.
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Furthermore, we have(
1

z

d

dz

)k+1

f(z) =

(
1

z

d

dz

)[(
1

z

d

dz

)k

f(z)

]

=
(−1)(2k − 1)a1k

z2(k+1)−1
f (1)(z) +

k∑
s=2

as−1
k − (2k − s)ask

z2(k+1)−s
f (s)(z) +

akk
zk+1

f (s+1)

=
k+1∑
s=1

ask+1

z2(k+1)−s
f (s)(z).

Then the following relations hold:

1) a1k+1 = (−1)(2k − 1)a1k; a
1
1 = 1, k = 1, 2, . . . ;

2) ak+1
k+1 = akk = 1, k = 1, 2, . . . ; (66)

3) ask+1 = as−1
k − (2k − s)ask, s = 2, 3, . . . , k.

With the help of 3) in (66), for s = k, we obtain

akk+1 = a12 − (2 + 3 + · · ·+ k) = −k(k + 1)

2
.

For s = k − 1 we obtain

ak−1
k+1 = a3 − (4a23 + 5a34 + · · ·+ (k + 1)ak−1

k ),

i.e.,

ak−1
k+1 =

1

2

k∑
s=2

(s− 1)s(s+ 1) =
(k − 1)k(k + 1)(k + 2)

2.4
.

For s = k − 2 we obtain

ak−2
k+1 = a14 −

1

2
· 1
4

k∑
s=4

(s− 2)(s)(s+ 1)(s+ 2)

= − 1

2.4

k∑
s=3

(s− 2)(s− 1)(s)(s+ 1)(s+ 2)

= −(k − 2)(k − 1)k(k + 1)(k + 2)(k + 3)

2.4.6
·

The previous calculations lead us to the conjecture:

a
(k+1)−s
k+1 = (−1)s

(k − s+ 1) · · · (k − 1)k · · · (k + s)

2.4.6 · · · (2s)
·

We rewrite the last expression in the form:

a
(k+1)−s
k+1 = (−1)s(2s− 1)!!

(
k + s

2s

)
.

After substituting s with k + 1− s in the above equality, we obtain

ask+1 = (−1)k+1−s(2k − 2s+ 1)!!

(
2k + 1− s

s− 1

)
, s = 1, . . . , k; k = 1, 2, 3, . . .
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Now, to prove strictly that the above representation of ask+1 holds, it is enough to verify with
its help that 1) and 3) are satisfied.

The proof of 1) is trivial, while 3) follows after the substitution 2k − s = n and checking the
equality:

(n+ 1− s)

(
n+ 1

n+ 2− s

)
= (n+ 1− s)

(
n

n+ 2− s

)
+ n

(
n− 1

n− s

)
,

with the help of the relation:

(n+ 1− s)

(
n

n+ 1− s

)
= n

(
n− 1

n− s

)
.
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