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Franklin, [14]). Sylvester’s Theorem, a result that determines the representability of positive
integers as sums of consecutive integers, has been the foundation for numerous extensions,
including the representation of integers as sums of specific arithmetic progressions and powers
of such progressions. The recent works of Ho et al. [3] and Ho et al. [4] have further expanded
on Sylvester’s Theorem, offering a procedural approach to compute the representability of
positive integers in the context of arithmetic progressions. In this paper, efficient algorithms to
compute the number of ways to represent an odd positive integer as sums of powers of arithmetic
progressions are presented.
Keywords: Arithmetic progressions, Balancing, Fermat, Fibonacci, Geometric, Jacobsthal,
Leonardo, Lucas, Mersenne, Padovan, Pell, Perrin sequences.
2020 Mathematics Subject Classification: 11B39, 11A25.

1 Introduction

Since 1844, there has been an interest in representing numbers as the sum of a sequence of
consecutive integers. Initially, Sir Charles Wheatstone [15] represented certain powers of an
integer as sums of arithmetic progressions. Then, Sylvester and Franklin [14] published a result
to determine the number of ways a positive integer can be represented as the sum of a sequence of
consecutive integers; this result has since been called Sylvester’s Theorem, and there have been
many attempts to extend this theorem to sums of different types of sequences, such as sums of
certain arithmetic progressions (Munagi and de Vega [10], Munagi and Shonhiwa [9]) and sums
of powers of arithmetic progressions (Shiue et al. [12], Shiue et al.[13]).

Recently, the manuscript duology of Ho et al. [3] and Ho et al. [4] extended Sylvester’s
Theorem to describe a procedure to compute the number of ways a positive integer can be
represented as a sum of arithmetic progressions. They also extended Wheatstone’s original work
by studying certain relationships among the representations of different powers of an integer as
sums of arithmetic progressions; this is done by using the method delineated in Junaidu et al. [6].

Furthermore, Long et al. [7] studied six equations of the form n2 + (n+ a)x− (n+ a) = 0,

a = ∓r, ∓2r, corresponding to 6 permutations of 3 integers in arithmetic progressions with
common difference r > 0, depending on solutions of the Pell equation u2 − 5v2 = −4r2

(Nagell, [11]). These produced results which depended on Fibonacci and Lucas numbers. They
were generalizations of earlier work by Mahanthappa [8] with three similar equations, where
the coefficients were integers in arithmetic progression with common difference 1. Another link
between arithmetic progressions and the Fibonacci numbers was that of Atanassov et al. [1] who
considered the sequence a, a + f (1) , a + f (2) , . . . , a + f (k) , . . . , (f : N → R), as a pseudo
arithmetic progression from which one can generate an ordinary arithmetic progression and the
ordinary Fibonacci sequence, as well as auto-generations of extensions of the concept ‘arithmetic
progression’, linked to equalities in Hoggatt Jr [5]. Extensions with pairs of Fibonacci numbers
(Atanassov et al. [2]) had similar development in its use of the same section of Hoggatt Jr [5].

In this paper, we present theorems and algorithms that enable us to represent positive odd
integers m as arithmetic progressions of the form m = a + (a + d) + · · · + (a + (r − 1)d). In
Sections 2 and 3, we explore the case where r is odd and even, respectively. Two corollaries
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follow that outline how many ways powers of primes can be written as arithmetic progressions
under certain conditions. We provide computationally efficient algorithms corresponding to the
theorems and corollaries mentioned in their respective sections.

2 Main results for m odd and r odd

Let m > 1 be a positive odd integer represented as a sum of an arithmetic progression, i.e.,

m = a+ (a+ d) + · · ·+ (a+ (r − 1)d), (1)

where a, d ∈ N. In this section, we present algorithms for computing the number of ways that m
can be represented as (1) when r is an odd integer.

Theorem 2.1. Let m > 1 be a positive odd integer, not a prime, and let

m = a+ (a+ d) + · · ·+ (a+ (r − 1)d), (2)

where a, d ∈ N and r is odd ≥ 3. Then,

(i). r | m, 1 ≤ d ≤
⌊
2(m−r)
r(r−1)

⌋
, and a = m

r
− r−1

2
d;

(ii). 3 ≤ r ≤
⌊
−1+

√
1+8m
2

⌋
≤

⌊√
2m

⌋
;

(iii). There are

S =
∑
r|m

⌊
2(m− r)

r(r − 1)

⌋
(3)

number of ways to write m as (2).

Proof. (i). By (2), we have m = r
(
a+

(
r−1
2

)
d
)
. Then, 2m = r(2a + (r − 1)d), or 2m

r
=

2a + (r − 1)d. Since r is odd, we have r | m and m
r

= a + r−1
2
d. Solving for a, then

a = m
r
− r−1

2
d. Since a ≥ 1, we have m

r
− r−1

2
d ≥ 1, which implies 1 ≤ d ≤

⌊
2(m−r)
r(r−1)

⌋
.

(ii). From 2(m−r)
r(r−1)

≥ 1, we have 2(m − r) ≥ r(r − 1). Then 2m − 2r ≥ r2 − r. Hence,

r2 + r − 2m < 0. Since r ≥ 3, we have 3 ≤ r ≤
⌊
−1+

√
1+8m
2

⌋
. Since m is positive,

4
√
2m ≥ 0. Then 4

√
2m + 8m + 1 =

(
2
√
2m+ 1

)2 ≥ 8m + 1. Then 2
√
2m + 1 ≥

√
8m+ 1. Simplifying this, we have

⌊
−1+

√
1+8m
2

⌋
≤

⌊√
2m

⌋
.

(iii). For each r | m, each d between 1 and
⌊
2(m−r)
r(r−1)

⌋
is a way to represent m as an arithmetic

progression. To find total number of ways, the sum is taken.

Note that if r = 1, we have the arithmetic progression reduced to m = a. Hence, r is assumed
to be odd and ≥ 3.

When m = p, where p is an odd prime number, we have the following corollary.

Corollary 2.1. Let m = pk, p ≥ 3 a prime number and k > 1 an integer, and let

pk = a+ (a+ d) + · · ·+ (a+ (r − 1)d), (4)

where a, d ∈ N, r ≥ 3 odd. Then,
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(i). r = pj , 1 ≤ j ≤
⌊
k
2

⌋
;

(ii). 1 ≤ d ≤ 2
⌊
pk−j−1
pj−1

⌋
and a = pk−j − 1

2
(pj − 1) d;

(iii). There are

S =

⌊ k
2⌋∑

j=1

2

⌊(
pk−j − 1

)
pj − 1

⌋
(5)

number of ways to write pk as (4).

Proof. Since m = pk, where p is a prime, then r | m means that r | pk. Hence, we have r = pj ,
1 ≤ j ≤

⌊
k
2

⌋
. Substitute m = pk into the results in Theorem 2.1, we obtain the results for this

corollary.

Another way of listing the ways that a positive odd number can be represented in the form of
(2) is as follows:

Remark 2.2. Theorem 2.1 (i) and (iii) can also be proved in the following manner.

Proof. Recall that m = a+ (a+ d) + · · ·+ (a+ (r − 1)d), where r is odd ≥ 3. We may set up

m =

(
m

r
− r − 1

2
d

)
+ · · ·+ m

r
+ (M + d) + · · ·+

(
m

r
+

r − 1

2
d

)
. (6)

Since m
r
− r−1

2
d ≥ 1, we have m

r
− 1 ≥ r−1

2
d. Since d ≥ 1, we have

1 ≤ d ≤
⌊
2(m− r)

r(r − 1)

⌋
.

Thus, we have

S =
∑
r|m

⌊
2(m− r)

r(r − 1)

⌋
.

We may use (6) to list all possible ways.

2.1 Algorithms

By using Theorem 2.1, we have the following Algorithm 1.

Algorithm 1 Finding the number of ways S to write m as a sum of arithmetic progression when
r is odd and 3 ≤ r ≤

⌊√
2m

⌋
Input: Positive odd integer m (not prime)
Output: S

1: Define integers q =
⌊√

2m
⌋
, r = 3, S = 0

2: while r ≤ q do
3: if m ≡ 0 (mod r) then
4: g =

⌊
2(m−r)
r(r−1)

⌋
5: S = S + g

6: end if
7: r = r + 2

8: end while
9: There are S number of ways to write the given m as the form (2) when r ≥ 3 is odd.
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The overall time complexity of this algorithm is determined by the number of iterations of
the while loop. In the worst case, the while loop iterates until r exceeds q. Therefore, the time
complexity is O( q

2
) = O(q).

The next algorithm computes the number of ways an integer m = pk can be represented as a
sum of arithmetic progressions based on Corollary 2.1.

Algorithm 2 Finding the number of ways S to write m = pk as a sum of arithmetic progression
when r ≥ 3 is odd

Input: Positive odd integer m = pk, p prime, and k > 1 integer
Output: S

1: Define integers q =
⌊
k
2

⌋
, j = 1, S = 0

2: while j ≤ q do
3: g = 2

⌊
pk−j−1
pj−1

⌋
4: S = S + g

5: j = j + 1

6: end while
7: There are S number of ways to write the given m as the form (2) when r ≥ 3 is odd and

m = pk, where p is a prime and k > 1 integer.

The next algorithm lists all possible ways to write m as sums of arithmetic progressions for a
given m and r from Algorithm 1.

Algorithm 3 Listing the possible ways to write m as a sum of arithmetic progressions
Input: Positive odd integer m not prime.
Output: Prints all S ways

1: Define integers q =
⌊√

2m
⌋
, r = 3

2: while r ≤ q do
3: g =

⌊
2(m−r)
r(r−1)

⌋
4: if m ≡ 0 (mod r) and g ̸= 0 then
5: for d = 1, . . . , g do
6: a = m

r
− (r−1)

2
d

7: Print ‘m = a+ (a+ d) + · · ·+ (a+ (r − 1)d)’
8: end for
9: end if

10: r = r + 2

11: end while

Similarly, this algorithm also has the time complexity O(q · g) = O(q). Although there is a
for loop inside the while loop, since the operations take O(1) and g is a constant factor, we can
factor it out of the big-O notation.
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2.2 Examples

Example 2.1. Let m = 65. In how many ways can we write m as a sum of arithmetic progressions
when r ≥ 3 odd?

We use Algorithm 1. First, q =
⌊√

2m
⌋
=

⌊√
130

⌋
= 11 and 3 ≤ r ≤ 11. Because m = 65,

then r = 5. Computing the quantity
∑

r|m

⌊
2(m−r)
r(r−1)

⌋
for r = 5, we have S = 6. Thus, there are 6

ways to write m = 65 as a sum of arithmetic progressions when r ≥ 3 is odd.
To list the possible ways, we use Algorithm 3. For r = 5, g(r) =

⌊
2(65−5)
5(5−1)

⌋
= 6. We iterate

over each d from 1 to 6. Then

d = 1 gives a = 11

d = 2 gives a = 9

d = 3 gives a = 7

d = 4 gives a = 5

d = 5 gives a = 3

d = 6 gives a = 1

Then, we have the following list:

65 = 11 + 12 + · · ·+ 15

65 = 9 + 11 + · · ·+ 17

65 = 7 + 10 + · · ·+ 19

65 = 5 + 9 + · · ·+ 21

65 = 3 + 8 + · · ·+ 23

65 = 1 + 7 + · · ·+ 25

Example 2.2. Let m = 1125. In how many many ways can we write m as a sum of arithmetic
progressions when r ≥ 3 odd?

We use Algorithm 1. First, q=
⌊√

2m
⌋
=
⌊√

2250
⌋
= 47. Then, 3 ≤ r ≤ 47. Since m=1125,

r = 3, 5, 9, 15, 25, 45. Now, let g(r) =
⌊
2(m−r)
r(r−1)

⌋
. Then,

r g(r)

3 374

5 112

9 31

15 10

25 3

45 1

S 531

There are 531 ways to write m = 1125 as a sum of arithmetic progressions when r ≥ 3 is
odd. To list the possible ways, we use Algorithm 3.
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For r = 3, there is a total of 374 ways (374 + 1− 1 = 374):

1125 = 374 + 375 + 376

1125 = 373 + 375 + 377

...

1125 = 2 + 375 + 748

1125 = 1 + 375 + 749

For r = 5, there is a total of 112 ways
(
223−1

2
+ 1 = 112

)
:

1125 = 223 + 224 + · · ·+ 227

1125 = 221 + 223 + · · ·+ 229

...

1125 = 3 + 114 + · · ·+ 447

1125 = 1 + 113 + · · ·+ 449

For r = 9, there is a total of 31 ways
(
121−1

4
+ 1 = 31

)
:

1125 = 121 + 122 + · · ·+ 129

1125 = 117 + 119 + · · ·+ 133

...

1125 = 5 + 35 + · · ·+ 245

1125 = 1 + 32 + · · ·+ 249

For r = 15, there is a total of 10 ways
(
68−5
7

+ 1 = 10
)
:

1125 = 68 + 69 + · · ·+ 82

1125 = 61 + 63 + · · ·+ 89

...

1125 = 12 + 21 + · · ·+ 138

1125 = 5 + 15 + · · ·+ 145

For r = 25, there is a total of 3 ways:

1125 = 33 + 34 + · · ·+ 57

1125 = 21 + 23 + · · ·+ 69

1125 = 9 + 12 + · · ·+ 81

For r = 45, there is only 1 way:

1125 = 3 + 4 + · · ·+ 47.

671



Example 2.3. Let m = 6125. In how many ways can we write m as a sum of arithmetic
progressions when r ≥ 3 odd?

We use Algorithm 1. First, q =
⌊√

2m
⌋
=

⌊√
12250

⌋
= 110. Then, 3 ≤ r ≤ 110. Since

m = 6125, r = 5, 7, 25, 35, 49. Now, let g(r) =
⌊
2(m−r)
r(r−1)

⌋
. Then,

r g(r)

5 612

7 291

25 20

35 10

49 5

S 938

There are 938 ways to write m = 6125 as a sum of arithmetic progressions when r ≥ 3 is
odd. To list the possible ways, we use Algorithm 3.

For r = 5, there is a total of 612 ways (1223− 1 + 1 = 1223):

6125 = 1223 + 1224 + · · ·+ 1227

6125 = 1221 + 1223 + · · ·+ 1229

...

6125 = 3 + 614 + · · ·+ 2447

6125 = 1 + 613 + · · ·+ 2449

For r = 7, there is a total of 291 ways
(
872−2

3
+ 1 = 291

)
:

6125 = 872 + 873 + · · ·+ 878

6125 = 869 + 871 + · · ·+ 881

...

6125 = 5 + 295 + · · ·+ 1745

6125 = 2 + 293 + · · ·+ 1748

For r = 25, there is a total of 20 ways
(
223−5
12

+ 1 = 20
)
:

6125 = 233 + 234 + · · ·+ 257

6125 = 221 + 223 + · · ·+ 269

...

6125 = 17 + 36 + · · ·+ 473

6125 = 5 + 25 + · · ·+ 485
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For r = 35, there is a total of 10 ways
(
158−5
17

+ 1 = 10
)
:

6125 = 158 + 159 + · · ·+ 192

6125 = 141 + 143 + · · ·+ 209

...

6125 = 22 + 31 + · · ·+ 328

6125 = 5 + 15 + · · ·+ 345

For r = 45, there is a total of 5 ways:

6125 = 101 + 102 + · · ·+ 149

6125 = 77 + 79 + · · ·+ 173

6125 = 53 + 56 + · · ·+ 197

6125 = 29 + 33 + · · ·+ 221

6125 = 5 + 10 + · · ·+ 245

Example 2.4. Let m = 75 (Ho et al., [3]). In how many ways can we write m as a sum of
arithmetic progressions when r ≥ 3 odd?

Using Algorithm 2, we have p = 7, k = 5, r = 7j ,
⌊
k
2

⌋
= 2, and j = 1, 2. Let g(j) =⌊

2(75−j−1)
7j−1

⌋
. Then,

j g(j)

1 800

2 14

S 814

There are 814 number of ways of writing 75 as Eq. (4) when r ≥ 3 is odd. To list the possible
ways, we use Algorithm 3.

For j = 1, there is a total of 800 ways
(
2398−1

3
+ 1 = 800

)
:

16807 = 2398 + 2399 + · · ·+ 2404

16807 = 2395 + 2397 + · · ·+ 2407

...

16807 = 4 + 803 + · · ·+ 4798

16807 = 1 + 801 + · · ·+ 4801

For j = 2, there is a total of 14 ways
(
319−7
24

= 14
)
:

16807 = 319 + 320 + · · ·+ 367

16807 = 295 + 297 + · · ·+ 391

...

16807 = 31 + 44 + · · ·+ 655

16807 = 7 + 21 + · · ·+ 679
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Example 2.5. Let m = 310. In how many ways can we write m as a sum of arithmetic progressions
when r ≥ 3 odd?

Using Algorithm 2, we have r = 3j ,
⌊
10
2

⌋
= 5, and j = 1, 2, · · · , 5. Let g(j) =

⌊
2(75−j−1

7j−1

⌋
.

Then,

j g(j)

1 19682

2 1640

3 168

4 18

5 2

S 21510

Thus, there are 21510 ways of writing 310 as Eq. (4) when r ≥ 3 is odd.

3 Main results for m odd and r even

Throughout this section, we consider even r. When r = 2, m is represented by the sum of two
positive integers, which is trivial. When r > 2, we have the following result.

Theorem 3.1. Let m > 1 be a positive odd integer expressed as (2), where a, d ∈ N and r = 2t,
with t > 1. Then,

(i). t and d are odd;

(ii). m ≥ 21;

(iii). t | m and 1 < t ≤
⌊
−1+

√
1+4m
4

⌋
≤ ⌊

√
m⌋;

(iv). 1 ≤ d ≤
⌊

m−2t
t(2t−1)

⌋
and a = 1

2

(
m
t
− (2t− 1)d

)
;

(v). There are

S =
∑

t|m, g∈E

g

2
+

∑
t|m, g∈O

g + 1

2
, (7)

where g =
⌊

m−2t
t(2t−1)

⌋
ways to write m as the form of (2), where g is either E (even) or O

(odd).

Proof. (i). From (2), we have m = r
(
a+

(
r−1
2
d
))

. Next, 2m
r

= 2a+(r−1)d, we have r | 2m.
Let r = 2t with t > 1, then m

t
= 2a+ (2t− 1)d. If m is odd, then t is odd. Note that 2a is

even and m
t

is odd, so d is odd.

(ii). We consider the smallest numbers a = 1, d = 1, and r = 6. Thus, m ≥ 6(1 + 5
2
) = 21.
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(iii). From m
t
= 2a+ (2t− 1)d, we have m−2at

t(2t−1)
= d. Since a ≥ 1, then m−2at

t(2t−1)
≤ m−2t

t(2t−1)
. Hence

1 ≤ d ≤
⌊

m−2t
t(2t−1)

⌋
. Solving for a, we have a = 1

2

(
m
t
− (2t− 1)d

)
.

(iv). From m−2t
t(2t−1)

≥ 1, we have t(2t− 1) ≤ m− 2t. Then 2t2 + t−m ≤ 0.

Hence, t ≤
⌊
−1+

√
1+4m
4

⌋
. To further lower the upper bound, observe that since 0 ≤ 8

√
m,

0 ≤ 8
√
m+ 12m. Then 4m+ 1 ≤ 8

√
m+ 16m+ 1 = (4

√
m+ 1)

2. Simplifying this, we
have

⌊
−1+

√
1+4m
4

⌋
≤ ⌊

√
m⌋.

(v). Since d is odd, we need to count the number of odd numbers between 1 and
⌊

m−2t
t(2t−1)

⌋
,

inclusive. Let g =
⌊

m−2t
t(2t−1)

⌋
. If g is even, then there are g

2
odd numbers. If g is odd, then

there are g+1
2

odd numbers.

Corollary 3.1. Let m = pk, p ≥ 3 a prime number and k ∈ N, and let

pk = a+ (a+ d) + · · ·+ (a+ (r − 1)d), (8)

where a, d ∈ N, d odd, and r > 2 even. Then,

(i). r = 2pj , 1 ≤ j ≤
⌊
k
2

⌋
;

(ii). 1 ≤ d ≤
⌊
pk−j−2
2pj−1

⌋
and a = 1

2

(
pk−j − (2pj − 1) d

)
;

(iii). There are

S =

⌊ k
2⌋∑

j=1

⌊
1

2

(⌊
pk−j − 2

2pj − 1

⌋
+ 1

)⌋
(9)

number of ways to write pk as (4).

Proof. Since p is prime and m = pk, then r = 2t and t | m gives r = 2t = 2pj , 1 ≤ j ≤
⌊
k
2

⌋
.

Next, since r = 2pj = 2t and m = pk, we have⌊
m− 2t

t(2t− 1)

⌋
=

⌊
pk − 2pj

pj(2pj − 1)

⌋
=

⌊
pk−j − 2

2pj − 1

⌋
.

Lastly, since d is odd, we have the number of odd numbers in the interval 1 ≤ d ≤
⌊
pk−j−2
2pj−1

⌋
equal to

⌊
1
2

(⌊
pk−j−2
2pj−1

⌋
+ 1

)⌋
.
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3.1 Algorithms

Algorithm 4 Finding the number of ways to write m as a sum of arithmetic progression when
r = 2t, with t > 1 odd
Input: Positive odd integer m (not prime)
Output: S

1: Define integers q = ⌊
√
m⌋, t = 3, S = 0

2: while t ≤ q do
3: if m ≡ 0 (mod t) then
4: g =

⌊
m−2t
t(2t−1)

⌋
5: if g (mod 2) ≡ 0 then
6: S1 =

g
2

7: else
8: S2 =

g+1
2

9: end if
10: S = S1 + S2

11: end if
12: t = t+ 2

13: end while
14: There are S ways to write the given m as the form (2) when r = 2t, with t > 1 odd.

Similarly, this algorithm should achieve the time complexity O(q).

The next algorithm is similar to Algorithm 2, with r = 2t, t ∈ N odd.

Algorithm 5 Finding the number of ways S to write m = pk as a sum of arithmetic progression
when r = 2t, t ∈ N odd

Input: Positive odd integer m = pk, p prime, and k > 1 integer
Output: S

1: Define integers q =
⌊
k
2

⌋
, j = 1, S = 0

2: while j ≤ q do
3: g =

⌊
1
2

(
pk−j−2
2pj−1

+ 1
)⌋

4: S = S + g

5: j = j + 1

6: end while
7: There are S number of ways to write the given m as the form (2) when r > 2 is even and

m = pk, where p is a prime, and k > 1 integer.

The next algorithm lists all sums of arithmetic progressions for a given m and r = 2t, with
t > 1 odd, from Algorithm 4.
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Algorithm 6 Listing the possible ways to write m, m odd not prime, as a sum of arithmetic
progressions
Input: Positive odd integer m not prime.
Output: Prints all S ways

1: Initialize integers q = ⌊
√
m⌋, t = 3

2: while t ≤ q do
3: g =

⌊
m−2t
t(2t−1)

⌋
4: if m ≡ 0 (mod t) and g ̸= 0 then
5: for d = 1, . . . , g do
6: a = 1

2

(
m
t
− (2t− 1)d

)
7: Print ‘m = a+ (a+ d) + · · ·+ (a+ (r − 1)d)’
8: end for
9: end if

10: t = t+ 2

11: end while

Similarly, this algorithm also has the time complexity O(q · g) = O(q).

3.2 Examples

Example 3.1. Let m = 65. In how many ways can we write m as a sum of a sum of arithmetic
progressions when r > 2 even?

We use Algorithm 4. First, q =
⌊√

65
⌋
= 8. Then, 3 ≤ t ≤ 8. The only t that divides m = 65

is t = 5. Now, g =
⌊

m−2t
t(2t−1)

⌋
=

⌊
65−2·5
5·9

⌋
= 1, i.e., there is only one way to write m = 65 as a sum

of arithmetic progressions when t = 5 or r = 10. The parameters are a = 2 and d = 1, which
gives

65 = 2 + 3 + · · ·+ 11.

Thus, combining with the result from Example 2.1, the total number of ways to write m = 65 as
a sum of arithmetic progressions is 7.

Example 3.2. Let m = 1125. In how many ways can we write m as a sum of arithmetic
progressions when r > 2 even?

We use Algorithm 4. First, q = ⌊
√
m⌋ =

⌊√
1125

⌋
= 33. Then, 3 ≤ t ≤ 33. Since m = 1125,

the possible values of t are 3, 5, 9, 15, 25. Then,

t g(t)

3 74

5 24

9 7

15 2

25 1

S 54 = 74
2
+ 24

2
+ 7+1

2
+ 2

2
+ 1+1

2

677



There are 54 ways to write m = 1125 as a sum of arithmetic progressions when r > 2 even.
Thus, combining with the result from Example 2.2, there are 585 ways.

Example 3.3. Let m = 6125. In how many ways can we write m as a sum of arithmetic
progressions when r > 2 even?

We use Algorithm 4. First, q = ⌊
√
m⌋ =

⌊√
6125

⌋
= 78. Then, 3 ≤ t ≤ 78. Since m = 6125,

t = 5, 7, 25, 35, 49. Then,

t g(t)

5 135

7 67

25 4

35 2

49 1

S 106 = 135+1
2

+ 67+1
2

+ 4
2
+ 2

2
+ 1+1

2

There are 106 ways to write m = 6125 as a sum of arithmetic progressions when r > 2 even.
Thus, combining with the result from Example 2.3, there are 1044 ways.

Example 3.4. Let m = 75. In how many ways can we write m as a sum of arithmetic progressions
when r > 2 even?

Using Algorithm 5, we have q =
⌊
5
2

⌋
= 2. Then j = 1, 2. Let g(j) =

⌊
1
2

(
pk−j−2
2pj−1

+ 1
)⌋

.
Then,

j g(j)

1 92

2 2

S 94

There are 94 ways to write 75 as Eq. (4) when r > 2 is even. Thus, combining with the result
from Example 2.4, there is a total of 908 ways to write 75 as Eq. (4).

Example 3.5. Let m = 310. In how many ways can we write m as a sum of arithmetic progressions
when r > 2 even?

Using Algorithm 5, we have r = 2 · 3j , j = 1, 2, · · · , 5. Let g(j) =
⌊
1
2

(
pk−j−2
2pj−1

+ 1
)⌋

. Then,

j g(j)

1 1968

2 193

3 21

4 2

5 0

S 2184

There are 2184 ways of writing 310 as Eq. (4) when r > 2 is even. Thus, combining with the
result from Example 2.5, there is a total of 23694 ways.
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4 Conclusion

We presented novel theorems and algorithms concerning the representation of a positive odd
integer m as arithmetic progressions. The presented results greatly expand upon the work of the
manuscript duology of Ho et al. [3] and Ho et al. [4], co-authored by Professor Chungwu Ho,
to whom this manuscript is dedicated. Historically, there has been a great interest in representing
integers and powers of integers as sums of arithmetic progressions. Notably, Sylvester’s Theorem
has received much recent attention in the field of number theory. We extended Sylvester’s
Theorem to include results for all positive odd m.

We solved the problem of counting the total number of ways one can represent m as a
sum of arithmetic progressions. In doing so, we considered the two distinct cases of odd r and
even r. We found that partitioning the solution in such a way results in convenient mathematical
results and highly efficient computational algorithms; the mathematical convenience motivates a
further exploration of sums of arithmetic progressions, and the efficient algorithms encourages
the adoption of the presented results. Representing positive even integers as the sum of arithmetic
progressions will be a focus of future work in this paper.
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