Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2024, Volume 30, Number 3, 654–661 DOI: 10.7546/nntdm.2024.30.3.654-661

On the number of partitions of a number into distinct divisors

Noah Lebowitz-Lockard¹ and Joseph Vandehey²

¹ 8330 Millman St., Philadelphia, PA, 19118, USA e-mail: nlebowi@gmail.com ² Department of Mathematics, University of Texas at Tyler 3900 University Blvd., Tyler, TX, 75799, USA e-mail: jvandehey@uttyler.edu

Received: 21 February 2024 Revised: 19 October 2024 Accepted: 25 October 2024 **Online First: 31 October 2024**

Abstract: Let $p_{dsd}(n)$ be the number of partitions of n into distinct squarefree divisors of n. In this note, we find a lower bound for $p_{dsd}(n)$, as well as a sequence of n for which $p_{dsd}(n)$ is unusually large.

Keywords: Partitions, Distinct divisors, Asymptotics. 2020 Mathematics Subject Classification: 11N37, 11P70.

1 Introduction

A *partition* of n is a representation of n as an unordered sum of positive integers. We let $p(n)$ and $p_d(n)$ be the number of partitions of n and the number of partitions of n into distinct parts. In 1918, Hardy and Ramanujan [5, §1.4, 7.1] proved two of the seminal results on partitions, obtaining asymptotic formulae for $p(n)$ and $p_d(n)$.

Theorem 1.1. *As* $n \rightarrow \infty$ *, we have*

$$
p(n) \sim \frac{1}{4n\sqrt{3}} \exp\left(\pi \sqrt{\frac{2n}{3}}\right), \quad p_d(n) \sim \frac{1}{4\sqrt[4]{3n^3}} \exp\left(\pi \sqrt{\frac{n}{3}}\right).
$$

Copyright © 2024 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

Seven decades later, Bowman submitted a problem to the American Mathematical Monthly, asking for an asymptotic formula for the number of partitions of n into *divisors* of n . Erdős and Odlyzko then found precise bounds for this quantity, which we call $p_{div}(n)$ [8, Sequence A018818]. From here on, we also let $d(n)$ be the number of divisors of n.

Theorem 1.2 ([1]). As $n \to \infty$, we have

$$
n^{(1+O(1/\log\log n))(d(n)/2-1)} \le p_{div}(n) \le n^{(1+o(1))d(n)/2}.
$$

In this note, we consider another type of partition. We let $p_{dd}(n)$ and $p_{dsd}(n)$ be the number of partitions of n into distinct divisors and distinct *squarefree* divisors of n, respectively. Though these quantities appear in the Online Encyclopedia of Integer Sequences [8, Sequences A033630, A225245], we are unaware of any published research on them.

The functions $p_{dd}(n)$ and $p_{dsd}(n)$ have very erratic behavior. Let $\sigma(n)$ be the sum of the divisors of n. We say that n is *abundant* if $\sigma(n) > 2n$, *deficient* if $\sigma(n) < 2n$, and *perfect* if $\sigma(n) = 2n$. If n is deficient, then $p_{dd}(n) = 1$ and if n is perfect, then $p_{dd}(n) = 2$. While the perfect numbers are sparse, the deficient numbers have a density of approximately 0.7524 [6], which implies that $p_{dd}(n) = 1$ about 3/4 of the time. (The fact that deficient numbers even have a density was independently proved by Chowla [2], Davenport [3], and Erdős [4]. It is also a consequence of the Erdős-Wintner Theorem $[10,$ Theorem III.4.1].) Even still, we show that $p_{dd}(n)$ and $p_{dsd}(n)$ can be quite large.

Theorem 1.3. *For a given i, let* p_i *be the i-th prime. If* $n = p_1p_2 \cdots p_k$ *for some k, then*

$$
p_{dd}(n) = p_{dsd}(n) \ge (1 + o(1)) \frac{2^{d(n)/4} \log n}{n \log \log n} = \exp\left(\exp\left((\log 2 + o(1)) \frac{\log n}{\log \log n}\right)\right).
$$

This result is very close to being optimal in the sense that $p_{dd}(n)$ cannot be substantially larger than the bound in Theorem 1.3. Because n has $d(n)$ divisors, there are $2^{d(n)}$ sets of divisors of n, which implies that $p_{dd}(n) \leq 2^{d(n)}$. In addition [10, Theorem I.5.4],

$$
d(n) \le 2^{(1+o(1))\log n/\log\log n},
$$

which implies that

$$
p_{dd}(n) \le \exp\left(\exp\left((\log 2 + o(1))\frac{\log n}{\log \log n}\right)\right)
$$

for all n .

We can actually get a slightly better upper bound than $2^{d(n)}$. A classic theorem of Sárközy and Szemerédi [9] states that for a given m, k , a set of k real numbers has at most

$$
(1+o(1))\frac{8}{\sqrt{\pi}}\frac{2^k}{k^{3/2}}
$$

subsets with sum m and that this bound is optimal. (Recent results such as [7, Theorem 2.1] suggest that one can get a better bound if the elements of the set do not lie in a small number of arithmetic progressions. It would be interesting to know if this condition applies to the divisors of a given n .) Hence,

$$
p_{\text{dd}}(n) \le (1 + o(1)) \frac{8}{\sqrt{\pi}} \frac{2^{d(n)}}{d(n)^{3/2}}.
$$

We also find some additional lower bounds on $p_{dd}(n)$ and $p_{dsd}(n)$ which may be of independent interest. In particular, if n is a multiple of a large power of 2, we can obtain the following result.

Theorem 1.4. Let $n = 2^a m$ with $m > 1$ odd. If $2^{a+1} > \sigma(m)$, then

$$
p_{dd}(n) \ge \left\lfloor \frac{2^{a+1}-1}{\sigma(m)-1} \right\rfloor^{d(m)-1}
$$

.

.

As $m \to \infty$, we have $\sigma(m) = m^{1+o(1)}$ (which we discuss in more detail later). Fix $\epsilon > 0$. If $n = 2^am$ is a sufficiently large number and $m < n^{(1/2)-\epsilon}$, then $2^{a+1} > \sigma(m)$, allowing us to use the previous theorem. Thus, the number of $n \leq x$ satisfying the conditions of Theorem 1.4 is equal to $x^{(1/2)+o(1)}$.

A similar result holds for squarefree divisors. From here on, $rad(m)$ is the radical of m, i.e., the largest squarefree divisor of m .

Theorem 1.5. Let $n = q_1q_2 \cdots q_k m$ where the q_i 's are an increasing sequence of primes with $q_1 = 2$ *and* $q_{i+1} \leq \sigma(q_1 \cdots q_i) + 1$ *. If* $q_1, \ldots, q_k \nmid m$ *and*

$$
\sigma(q_1\cdots q_k) < n < \sigma(q_1\cdots q_k)(\sigma(\text{rad}(m))-1),
$$

then

$$
p_{dsd}(n) \geq \left\lfloor \frac{\sigma(q_1 \cdots q_k)}{\sigma(rad(m)) - 1} \right\rfloor^{d(rad(m)) - 1}
$$

Note that if p_i is the *i*-th prime, then Euclid's proof of the infinitude of primes implies that $p_{i+1} \leq p_1 \cdots p_i + 1$. So, our bound applies to $n = p_1 \cdots p_k m$, where m is a number whose prime factors are greater than p_k . Though the q_i 's in Theorem 1.5 do not have to be consecutive, they cannot grow too quickly either.

2 The main result

We begin this section by showing that for certain numbers m , we can write all numbers less than or equal to $\sigma(m)$ as the sum of distinct squarefree divisors of m. (Note that in the following lemma, m is already squarefree, making each of its divisors squarefree as well.)

Lemma 2.1. Let $m = q_1q_2 \cdots q_k$, where the q_i 's are distinct primes, $q_1 = 2$, and $q_{i+1} \leq$ $\sigma(q_1q_2\cdots q_i) + 1$ *for all* $i < k$. Then we can express every number less than or equal to $\sigma(m)$ as *a sum of distinct divisors of* m*.*

Proof. We prove this result by induction on k. Clearly, it holds for $k = 1$ because we can express 1, 2, and 3 as sums of distinct divisors of 2. Suppose $k > 1$ and we already have the result for $k - 1$. For a given q_k ≤ $(q_1 + 1) \cdots (q_{k-1} + 1) + 1$, we have that

$$
\bigcup_{i,j\leq (q_1+1)\cdots (q_{k-1}+1)} \{iq_k+j\}=[0,(q_1+1)\cdots (q_k+1)].
$$

By assumption, we can express every number less than or equal to $(q_1 + 1) \cdots (q_{k-1} + 1)$ as a sum of distinct divisors of $q_1 \cdots q_{k-1}$. In particular, for any $i, j \leq (q_1 + 1) \cdots (q_{k-1} + 1)$, we can write

$$
i = \sum_{d \in S_1} d, \quad j = \sum_{d \in S_2} d
$$

for some sets S_1 and S_2 of divisors of $q_1 \cdots q_{k-1}$. So,

$$
iq_k + j = \sum_{d \in S_1} dq_k + \sum_{d \in S_2} d,
$$

which is a sum of distinct divisors of m.

Using this result, we prove our main theorem.

Proof of Theorem 1.3. Let $n = p_1 \cdots p_k$ and let $C > e^{\gamma} - \epsilon$ for a small positive ϵ , where γ is the Euler–Mascheroni constant. In addition, let q be the prime closest to $C \log \log n$. Because the ratio of consecutive primes goes to 1, we have $q \sim C \log \log n$ as $n \to \infty$. If n is sufficiently large, then $q < p_k \sim \log n / \log \log n$, and so we have $q|n$. From here on, we let $n = qp_k m$.

There are $2^{d(m)}$ sets of distinct divisors of m, each of which has a sum of at most $\sigma(m)$. By the Pigeonhole Principle, there exists some $a \le \sigma(m)$ which has at least $2^{d(m)}/\sigma(m)$ representations as a sum of distinct divisors of m. In addition, $\sigma(m) - a$ also has at least $2^{d(m)}/\sigma(m)$ representations because we can simply take the complement of any subset of the set of divisors of m which add up to a. If we let $A = \max(a, \sigma(m) - a)$, we have a number $\geq \sigma(m)/2$ which we can write as a sum of distinct divisors of m in at least $2^{d(m)}/\sigma(m)$ different ways.

At this point, we show that the set $\{p_1, p_2, \ldots, p_k\} \setminus \{q\}$ satisfies the conditions of Lemma 2.1. If $p_r < q$, then Euclid's proof of the infinitude of the primes shows that $p_r \leq p_1 \cdots p_{r-1} + 1$. Suppose $p_r > q$ with $r \leq k$. As $q \to \infty$, the product of the primes $\langle p_r \rangle$ excluding q is still asymptotic to e^{p_r} , which is much larger than p_r .

Define $B = n - qA$ with A, q, and n as above, implying that $n = qA + B$. We already know that we can express A as a sum of distinct divisors of m in at least $2^{d(m)}/\sigma(m)$ ways. If we can show that $B > 0$ and that it is possible to express B as a sum of distinct divisors of $p_k m$, then we will be able to find at least $2^{d(m)}/\sigma(m)$ expressions for n as a sum of distinct divisors of *n*. Simply take each sum for A and multiply every element by q, then add the sum for B. If a_1, a_2, \ldots, a_s are distinct divisors of m with sum A and b_1, b_2, \ldots, b_t are distinct divisors of $p_k m$ with sum B , then

$$
n = q(a_1 + \dots + a_s) + (b_1 + b_2 + \dots + b_t).
$$

Each qa_i and b_j is a divisor of m. We already know that the a_i 's are distinct and that the b_j 's are distinct. In addition, $qa_i \neq b_j$ for all i and j because $q \nmid p_k m$ and each b_j divides $p_k m$. We have already established that there are $2^{d(m)}/\sigma(m)$ tuples (a_1, \ldots, a_s) . We still need to show that there is at least one tuple (b_1, \ldots, b_t) .

We prove that $B \in [0, \sigma(p_k m)]$. From there, Lemma 2.1 implies that B is a sum of distinct divisors of $p_k m$. In order to prove that $B \geq 0$, we need to show that $qA \leq n$. Note that $qA \leq q\sigma(m)$. Mertens' Theorem [10, Theorem I.1.12] gives us

 \Box

$$
q\sigma(m) = qm \prod_{\substack{p \le p_{k-1} \\ p \neq q}} \left(1 + \frac{1}{p}\right) \sim e^{\gamma} \frac{n}{p_k} \log p_{k-1} \sim e^{\gamma} \frac{n(\log \log n)^2}{\log n}.
$$

If *n* is sufficiently large, then $qA < n$.

We now show that $B \le \sigma(p_k m)$. Because A is positive, $B = n - qA < n$. We prove that $B \leq \sigma(p_k m)$ by showing that $\sigma(p_k m) > n$. We apply Mertens' Theorem again, obtaining

$$
\sigma(p_k m) \sim e^{\gamma} p_k m \log \log(p_k m) \sim n(e^{\gamma} \log \log n) / q \sim (e^{\gamma} / (e^{\gamma} - \epsilon)) n.
$$

Putting everything together gives us $p_{dsd}(n) \geq 2^{d(m)}/\sigma(m)$. In addition,

$$
\sigma(m) \sim e^{\gamma} m \log \log m \sim e^{\gamma} \frac{n \log \log n}{qp_k} \sim \frac{e^{\gamma}}{e^{\gamma} - \epsilon} \frac{n \log \log n}{\log n}.
$$

We also have $d(m) = d(n)/4$. Letting $\epsilon \to 0$ gives us our desired result.

3 Proofs of Theorems 1.4 and 1.5

In order to prove Theorems 1.4 and 1.5, we provide alternate characterizations of $p_{dd}(n)$ and $p_{dsd}(n)$ in terms of lattice points. From here on, we let $\mathcal{D}(k)$ be the set of divisors of an integer k.

Lemma 3.1. *If* $n = 2^am$ *with m odd, then*

$$
p_{dd}(n) = # \left\{ (x_d)_{d \in \mathcal{D}(m) \setminus \{1\}} : x_d \le 2^{a+1} - 1 \text{ and } n - 2^{a+1} + 1 \le \sum_{d \in \mathcal{D}(m) \setminus \{1\}} dx_d \le n \right\}
$$

Proof. Let S be a set of divisors of n with sum n. Every element of S has the form $2^{b}d$ with $b \le a$ and $d|m$. Let x_d be the sum of 2^b for all b satisfying $2^b d \in S$. Then,

$$
n = \sum_{s \in S} s = \sum_{d|m} d \sum_{2^b d \in S} 2^b = \sum_{d|m} dx_d.
$$

By definition, x_d can be any sum of distinct powers of 2 up to 2^a . Hence, x_d can be any non-negative integer less than 2^{a+1} . We have

$$
\sum_{d \in \mathcal{D}(m) \setminus \{1\}} x_d d = n - x_1.
$$

Setting d to 1 shows that x_1 can be any non-negative integer less than or equal to $2^{a+1} - 1$. Therefore,

$$
n - 2^{a+1} + 1 \le \sum_{d \in \mathcal{D}(m) \setminus \{1\}} x_d d \le n,
$$

where the only restriction on the x_d 's is that they are also less than or equal to $2^{a+1} - 1$.

Conversely, suppose $(x_d)_{d \in \mathcal{D}(m) \setminus \{1\}}$ is a tuple satisfying the conditions of the lemma. If we let

$$
x_1 = n - \sum_{d \in \mathcal{D}(m) \setminus \{1\}} dx_d,
$$

 \Box

.

then the sum of all dx_d is equal to n. We also observe that $x_1 \geq 0$ because the sum of dx_d over all $d \in \mathcal{D}(m) \setminus \{1\}$ is at most n. In addition, we can break each x_d into powers of 2. For each $d \in \mathcal{D}(m)$, let T_d be the unique set of non-negative integers satisfying

$$
x_d = \sum_{i \in T_d} 2^i.
$$

By assumption, $x_d \le 2^{a+1} - 1$ for all $d > 1$. In addition, $x_1 \le 2^{a+1} - 1$ because the sum of dx_d over all possible $d > 1$ is at most $n - 2^{a+1} - 1$. Therefore, every set T_d consists of elements less than or equal to a . We now have a representation

$$
n = \sum_{d \in \mathcal{D}(m)} x_d \sum_{i \in T_d} 2^i.
$$

Each number $2^i x_d$ is a distinct divisor of n and the set of pairs $(2^i, x_d)$ is uniquely determined by $(x_d)_{d \in \mathcal{D}(m) \setminus \{1\}}$. Therefore, each tuple corresponds to a different representation of n as a sum of distinct divisors of n. \Box

Lemma 3.2. Let $n = q_1 \cdots q_k m$ where q_1, \ldots, q_k is an increasing sequence of primes with $q_1 = 2$ *and* $q_{i+1} \leq \sigma(q_1 \cdots q_i) + 1$ *for all i and* $q_1, \ldots, q_k \nmid m$ *. In addition, let* $S = \mathcal{D}(rad(m))$ *be the set of squarefree divisors of* m*. Then,*

$$
p_{dsd}(n) = \#\left\{(x_d)_{d \in \mathcal{S}\backslash\{1\}} : x_d \leq \sigma(q_1 \cdots q_k) \text{ and } n - \sigma(q_1 \cdots q_k) \leq \sum_{d \in \mathcal{S}\backslash\{1\}} dx_d \leq n\right\}.
$$

Proof. Our proof is similar to the proof of the previous lemma. The squarefree divisors of m are simply the divisors of rad (m) . Every sum of distinct squarefree divisors of n has the form

$$
\sum_{d|\text{rad}(m)}d\sum_{s\in S_d}s,
$$

where S_d is a set of divisors of $q_1 \cdots q_k$.

Using these results, we can bound $p_{dsd}(n)$ from above. Lemma 2.1 implies that we can express every number up to $\sigma(q_1 \cdots q_k)$ as a sum of distinct divisors of $q_1 \cdots q_k$. So, we can rewrite any sum of distinct divisors of n in the form

$$
x_1 + \sum_{d \in \mathcal{S}} dx_d,
$$

with each $x_d \le \sigma(q_1 \cdots q_k)$. If this quantity equals n, the rightmost sum must lie in the interval $[n - \sigma(q_1 \cdots q_k), n]$ because $x_1 \leq \sigma(q_1 \cdots q_k)$. An argument similar to the last paragraph of the previous proof implies that every tuple $(x_d)_{d \in S \setminus \{1\}}$ corresponds to a unique representation of n as a sum of distinct divisors of n. \Box

Proof of Theorem 1.4. Let $(x_d)_{d \in \mathcal{D}(m) \setminus \{1\}}$ be a tuple of integers which lie in the interval

$$
\left[\frac{n-2^{a+1}+1}{\sigma(m)-1}, \frac{n}{\sigma(m)-1}\right].
$$

We show that this tuple satisfies the conditions of Lemma 3.1.

We note that for each x_d , we have

$$
x_d \le \frac{n}{\sigma(m)-1} = \frac{2^a m}{\sigma(m)-1} \le 2^a \le 2^{a+1} - 1,
$$

which shows that the x_d 's are not too large. In addition,

$$
\sum_{d \in \mathcal{D}(m) \setminus \{1\}} dx_d \le \left(\sum_{d \in \mathcal{D}(m) \setminus \{1\}} d\right) \frac{n}{\sigma(m)-1} = n.
$$

For the lower bound on this sum, we note that

$$
\sum_{d \in \mathcal{D}(m) \setminus \{1\}} dx_d \ge \left(\sum_{d \in \mathcal{D}(m) \setminus \{1\}} d \right) \frac{n - 2^{a+1} + 1}{\sigma(m) - 1} = n - 2^{a+1} - 1.
$$

Thus, (x_d) satisfies the conditions of Lemma 3.1.

In order to obtain our desired result, we simply bound the number of possible tuples from below. By definition, each x_d lies in the interval $[(n-2^{a+1}+1)/(\sigma(m)-1), n/(\sigma(m)-1)]$, which contains at least $|(2^{a+1}-1)/(\sigma(m)-1)|$ integers. In addition, $\mathcal{D}(m)\setminus\{1\}$ contains $d(m)-1$ elements. So, the total number of possible tuples is at least

$$
\left\lfloor \frac{2^{a+1}-1}{\sigma(m)-1} \right\rfloor^{d(m)-1}.
$$

Proof of Theorem 1.5. This proof is similar to the previous one. We now let $(x_d)_{d \in S \setminus \{1\}}$ be a tuple of integers which lie in the interval

$$
\left[\frac{n-\sigma(q_1\cdots q_k)}{\sigma(\text{rad}(m))-1}, \frac{n}{\sigma(\text{rad}(m))-1}\right],
$$

where $S = \mathcal{D}(\text{rad}(m))$. In this case, we need to show that (x_d) satisfies the conditions of Lemma 3.2.

We now have

$$
x_d \le \frac{n}{\sigma(\text{rad}(m)) - 1} \le \sigma(q_1 \cdots q_k)
$$

for all $d \in S \setminus \{1\}$. In addition,

$$
\sum_{d \in S \setminus \{1\}} dx_d \le \left(\sum_{d \in S \setminus \{1\}} d\right) \frac{n}{\sigma(\text{rad}(m)) - 1} = n,
$$
\n
$$
\sum_{d \in S \setminus \{1\}} dx_d \ge \left(\sum_{d \in S \setminus \{1\}} d\right) \frac{n - \sigma(q_1 \cdots q_k)}{\sigma(\text{rad}(m)) - 1} = n - \sigma(q_1 \cdots q_k).
$$

To finish the proof, we observe that the interval

$$
\left[\frac{n-\sigma(q_1\cdots q_k)}{\sigma(\text{rad}(m))-1}, \frac{n}{\sigma(\text{rad}(m))-1}\right]
$$

contains at least $\lfloor \sigma(q_1 \cdots q_k)/(\sigma(\text{rad}(m)) - 1) \rfloor$ integers and that $S \setminus \{1\}$ has $d(\text{rad}(m)) - 1$ elements. Therefore, there are at least

$$
\left\lfloor \frac{\sigma(q_1\cdots q_k)}{\sigma(\text{rad}(m))-1} \right\rfloor^{d(\text{rad}(m))-1}
$$

acceptable tuples.

References

- [1] Bowman, D., Erdős, P., & Odlyzko, A. M. (1992). Problem 6640. *American Mathematical Monthly*, 99(3), 276–277.
- [2] Chowla, S. (1934). On abundant numbers. *Journal of the Indian Mathematical Society*, 1, 41–44.
- [3] Davenport, H. (1933). Über numeri abundantes. Sitzungsberichte der Königlich *Preussischen Akademie der Wissenschaften*, 29, 830–837.
- [4] Erdős, P. (1934). On the density of the abundant numbers. *Journal of the London Mathematical Society*, 9, 278–282.
- [5] Hardy, G. H., & Ramanujan, S. (1918). Asymptotic formulæ in combinatory analysis. *Proceedings of the London Mathematical Society*, 17, 75–115.
- [6] Kobayashi, M. (2010). *On the Density of Abundant Numbers*. Dartmouth College, PhD Dissertation.
- [7] Nguyen, H., & Vu, V. (2011). Optimal inverse Littlewood–Offord theorems. *Advances in Mathematics*, 226(6), 5298–5319.
- [8] The Online Encyclopedia of Integer Sequences. Available online at: http://www.oeis.org.
- [9] Sárközy, A., & Szemerédi, E. (1965). Über ein Problem von Erdős und Moser. *Acta Arithmetica*, 11, 205–208.
- [10] Tenenbaum, G. (2015). *Introduction to Analytic and Probabilistic Number Theory* (3rd ed.). American Mathematical Society.

 \Box