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1 Introduction

A partition of n is a representation of n as an unordered sum of positive integers. We let p(n)
and pd(n) be the number of partitions of n and the number of partitions of n into distinct parts.
In 1918, Hardy and Ramanujan [5, §1.4, 7.1] proved two of the seminal results on partitions,
obtaining asymptotic formulae for p(n) and pd(n).

Theorem 1.1. As n → ∞, we have
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Seven decades later, Bowman submitted a problem to the American Mathematical Monthly,
asking for an asymptotic formula for the number of partitions of n into divisors of n. Erdős
and Odlyzko then found precise bounds for this quantity, which we call pdiv(n) [8, Sequence
A018818]. From here on, we also let d(n) be the number of divisors of n.

Theorem 1.2 ([1]). As n → ∞, we have

n(1+O(1/ log logn))(d(n)/2−1) ≤ pdiv(n) ≤ n(1+o(1))d(n)/2.

In this note, we consider another type of partition. We let pdd(n) and pdsd(n) be the number
of partitions of n into distinct divisors and distinct squarefree divisors of n, respectively. Though
these quantities appear in the Online Encyclopedia of Integer Sequences [8, Sequences A033630,
A225245], we are unaware of any published research on them.

The functions pdd(n) and pdsd(n) have very erratic behavior. Let σ(n) be the sum of the
divisors of n. We say that n is abundant if σ(n) > 2n, deficient if σ(n) < 2n, and perfect if
σ(n) = 2n. If n is deficient, then pdd(n) = 1 and if n is perfect, then pdd(n) = 2. While the
perfect numbers are sparse, the deficient numbers have a density of approximately 0.7524 [6],
which implies that pdd(n) = 1 about 3/4 of the time. (The fact that deficient numbers even
have a density was independently proved by Chowla [2], Davenport [3], and Erdős [4]. It is also
a consequence of the Erdős-Wintner Theorem [10, Theorem III.4.1].) Even still, we show that
pdd(n) and pdsd(n) can be quite large.

Theorem 1.3. For a given i, let pi be the i-th prime. If n = p1p2 · · · pk for some k, then

pdd(n) = pdsd(n) ≥ (1 + o(1))
2d(n)/4 log n

n log log n
= exp

(
exp

(
(log 2 + o(1))

log n

log log n

))
.

This result is very close to being optimal in the sense that pdd(n) cannot be substantially larger
than the bound in Theorem 1.3. Because n has d(n) divisors, there are 2d(n) sets of divisors of n,
which implies that pdd(n) ≤ 2d(n). In addition [10, Theorem I.5.4],

d(n) ≤ 2(1+o(1)) logn/ log logn,

which implies that

pdd(n) ≤ exp

(
exp

(
(log 2 + o(1))

log n

log log n

))
for all n.

We can actually get a slightly better upper bound than 2d(n). A classic theorem of Sárközy
and Szemerédi [9] states that for a given m, k, a set of k real numbers has at most

(1 + o(1))
8√
π

2k

k3/2

subsets with sum m and that this bound is optimal. (Recent results such as [7, Theorem 2.1]
suggest that one can get a better bound if the elements of the set do not lie in a small number of
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arithmetic progressions. It would be interesting to know if this condition applies to the divisors
of a given n.) Hence,

pdd(n) ≤ (1 + o(1))
8√
π

2d(n)

d(n)3/2
.

We also find some additional lower bounds on pdd(n) and pdsd(n) which may be of independent
interest. In particular, if n is a multiple of a large power of 2, we can obtain the following result.

Theorem 1.4. Let n = 2am with m > 1 odd. If 2a+1 > σ(m), then

pdd(n) ≥
⌊
2a+1 − 1

σ(m)− 1

⌋d(m)−1

.

As m → ∞, we have σ(m) = m1+o(1) (which we discuss in more detail later). Fix ϵ > 0.
If n = 2am is a sufficiently large number and m < n(1/2)−ϵ, then 2a+1 > σ(m), allowing us to
use the previous theorem. Thus, the number of n ≤ x satisfying the conditions of Theorem 1.4 is
equal to x(1/2)+o(1).

A similar result holds for squarefree divisors. From here on, rad(m) is the radical of m, i.e.,
the largest squarefree divisor of m.

Theorem 1.5. Let n = q1q2 · · · qkm where the qi’s are an increasing sequence of primes with
q1 = 2 and qi+1 ≤ σ(q1 · · · qi) + 1. If q1, . . . , qk ∤ m and

σ(q1 · · · qk) < n < σ(q1 · · · qk)(σ(rad(m))− 1),

then

pdsd(n) ≥
⌊

σ(q1 · · · qk)
σ(rad(m))− 1

⌋d(rad(m))−1

.

Note that if pi is the i-th prime, then Euclid’s proof of the infinitude of primes implies that
pi+1 ≤ p1 · · · pi +1. So, our bound applies to n = p1 · · · pkm, where m is a number whose prime
factors are greater than pk. Though the qi’s in Theorem 1.5 do not have to be consecutive, they
cannot grow too quickly either.

2 The main result

We begin this section by showing that for certain numbers m, we can write all numbers less than
or equal to σ(m) as the sum of distinct squarefree divisors of m. (Note that in the following
lemma, m is already squarefree, making each of its divisors squarefree as well.)

Lemma 2.1. Let m = q1q2 · · · qk, where the qi’s are distinct primes, q1 = 2, and qi+1 ≤
σ(q1q2 · · · qi) + 1 for all i < k. Then we can express every number less than or equal to σ(m) as
a sum of distinct divisors of m.

Proof. We prove this result by induction on k. Clearly, it holds for k = 1 because we can express
1, 2, and 3 as sums of distinct divisors of 2. Suppose k > 1 and we already have the result for
k − 1. For a given qk ≤ (q1 + 1) · · · (qk−1 + 1) + 1, we have that⋃

i,j≤(q1+1)···(qk−1+1)

{iqk + j} = [0, (q1 + 1) · · · (qk + 1)].
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By assumption, we can express every number less than or equal to (q1+1) · · · (qk−1+1) as a sum
of distinct divisors of q1 · · · qk−1. In particular, for any i, j ≤ (q1+1) · · · (qk−1+1), we can write

i =
∑
d∈S1

d, j =
∑
d∈S2

d

for some sets S1 and S2 of divisors of q1 · · · qk−1. So,

iqk + j =
∑
d∈S1

dqk +
∑
d∈S2

d,

which is a sum of distinct divisors of m.

Using this result, we prove our main theorem.

Proof of Theorem 1.3. Let n = p1 · · · pk and let C > eγ − ϵ for a small positive ϵ, where γ is the
Euler–Mascheroni constant. In addition, let q be the prime closest to C log log n. Because the
ratio of consecutive primes goes to 1, we have q ∼ C log log n as n → ∞. If n is sufficiently
large, then q < pk ∼ log n/ log log n, and so we have q|n. From here on, we let n = qpkm.

There are 2d(m) sets of distinct divisors of m, each of which has a sum of at most σ(m). By the
Pigeonhole Principle, there exists some a ≤ σ(m) which has at least 2d(m)/σ(m) representations
as a sum of distinct divisors of m. In addition, σ(m) − a also has at least 2d(m)/σ(m)

representations because we can simply take the complement of any subset of the set of divisors
of m which add up to a. If we let A = max(a, σ(m) − a), we have a number ≥ σ(m)/2 which
we can write as a sum of distinct divisors of m in at least 2d(m)/σ(m) different ways.

At this point, we show that the set {p1, p2, . . . , pk}\{q} satisfies the conditions of Lemma 2.1.
If pr < q, then Euclid’s proof of the infinitude of the primes shows that pr ≤ p1 · · · pr−1 + 1.
Suppose pr > q with r ≤ k. As q → ∞, the product of the primes < pr excluding q is still
asymptotic to epr , which is much larger than pr.

Define B = n − qA with A, q, and n as above, implying that n = qA + B. We already
know that we can express A as a sum of distinct divisors of m in at least 2d(m)/σ(m) ways. If
we can show that B ≥ 0 and that it is possible to express B as a sum of distinct divisors of pkm,
then we will be able to find at least 2d(m)/σ(m) expressions for n as a sum of distinct divisors
of n. Simply take each sum for A and multiply every element by q, then add the sum for B. If
a1, a2, . . . , as are distinct divisors of m with sum A and b1, b2, . . . , bt are distinct divisors of pkm
with sum B, then

n = q(a1 + · · ·+ as) + (b1 + b2 + · · ·+ bt).

Each qai and bj is a divisor of m. We already know that the ai’s are distinct and that the bj’s are
distinct. In addition, qai ̸= bj for all i and j because q ∤ pkm and each bj divides pkm. We have
already established that there are 2d(m)/σ(m) tuples (a1, . . . , as). We still need to show that there
is at least one tuple (b1, . . . , bt).

We prove that B ∈ [0, σ(pkm)]. From there, Lemma 2.1 implies that B is a sum of distinct
divisors of pkm. In order to prove that B ≥ 0, we need to show that qA ≤ n. Note that
qA ≤ qσ(m). Mertens’ Theorem [10, Theorem I.1.12] gives us
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qσ(m) = qm
∏

p≤pk−1
p ̸=q

(
1 +

1

p

)
∼ eγ

n

pk
log pk−1 ∼ eγ

n(log log n)2

log n
.

If n is sufficiently large, then qA < n.
We now show that B ≤ σ(pkm). Because A is positive, B = n − qA < n. We prove that

B ≤ σ(pkm) by showing that σ(pkm) > n. We apply Mertens’ Theorem again, obtaining

σ(pkm) ∼ eγpkm log log(pkm) ∼ n(eγ log log n)/q ∼ (eγ/(eγ − ϵ))n.

Putting everything together gives us pdsd(n) ≥ 2d(m)/σ(m). In addition,

σ(m) ∼ eγm log logm ∼ eγ
n log log n

qpk
∼ eγ

eγ − ϵ

n log log n

log n
.

We also have d(m) = d(n)/4. Letting ϵ → 0 gives us our desired result.

3 Proofs of Theorems 1.4 and 1.5

In order to prove Theorems 1.4 and 1.5, we provide alternate characterizations of pdd(n) and
pdsd(n) in terms of lattice points. From here on, we let D(k) be the set of divisors of an integer k.

Lemma 3.1. If n = 2am with m odd, then

pdd(n) = #

(xd)d∈D(m)\{1} : xd ≤ 2a+1 − 1 and n− 2a+1 + 1 ≤
∑

d∈D(m)\{1}

dxd ≤ n

 .

Proof. Let S be a set of divisors of n with sum n. Every element of S has the form 2bd with
b ≤ a and d|m. Let xd be the sum of 2b for all b satisfying 2bd ∈ S. Then,

n =
∑
s∈S

s =
∑
d|m

d
∑
2bd∈S

2b =
∑
d|m

dxd.

By definition, xd can be any sum of distinct powers of 2 up to 2a. Hence, xd can be any
non-negative integer less than 2a+1. We have∑

d∈D(m)\{1}

xdd = n− x1.

Setting d to 1 shows that x1 can be any non-negative integer less than or equal to 2a+1 − 1.
Therefore,

n− 2a+1 + 1 ≤
∑

d∈D(m)\{1}

xdd ≤ n,

where the only restriction on the xd’s is that they are also less than or equal to 2a+1 − 1.
Conversely, suppose (xd)d∈D(m)\{1} is a tuple satisfying the conditions of the lemma. If we let

x1 = n−
∑

d∈D(m)\{1}

dxd,
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then the sum of all dxd is equal to n. We also observe that x1 ≥ 0 because the sum of dxd over
all d ∈ D(m)\{1} is at most n. In addition, we can break each xd into powers of 2. For each
d ∈ D(m), let Td be the unique set of non-negative integers satisfying

xd =
∑
i∈Td

2i.

By assumption, xd ≤ 2a+1 − 1 for all d > 1. In addition, x1 ≤ 2a+1 − 1 because the sum of dxd

over all possible d > 1 is at most n− 2a+1 − 1. Therefore, every set Td consists of elements less
than or equal to a. We now have a representation

n =
∑

d∈D(m)

xd

∑
i∈Td

2i.

Each number 2ixd is a distinct divisor of n and the set of pairs (2i, xd) is uniquely determined by
(xd)d∈D(m)\{1}. Therefore, each tuple corresponds to a different representation of n as a sum of
distinct divisors of n.

Lemma 3.2. Let n = q1 · · · qkm where q1, . . . , qk is an increasing sequence of primes with q1 = 2

and qi+1 ≤ σ(q1 · · · qi)+1 for all i and q1, . . . , qk ∤ m. In addition, let S = D(rad(m)) be the set
of squarefree divisors of m. Then,

pdsd(n) = #

(xd)d∈S\{1} : xd ≤ σ(q1 · · · qk) and n− σ(q1 · · · qk) ≤
∑

d∈S\{1}

dxd ≤ n

 .

Proof. Our proof is similar to the proof of the previous lemma. The squarefree divisors of m are
simply the divisors of rad(m). Every sum of distinct squarefree divisors of n has the form∑

d|rad(m)

d
∑
s∈Sd

s,

where Sd is a set of divisors of q1 · · · qk.
Using these results, we can bound pdsd(n) from above. Lemma 2.1 implies that we can express

every number up to σ(q1 · · · qk) as a sum of distinct divisors of q1 · · · qk. So, we can rewrite any
sum of distinct divisors of n in the form

x1 +
∑
d∈S

dxd,

with each xd ≤ σ(q1 · · · qk). If this quantity equals n, the rightmost sum must lie in the interval
[n − σ(q1 · · · qk), n] because x1 ≤ σ(q1 · · · qk). An argument similar to the last paragraph of the
previous proof implies that every tuple (xd)d∈S\{1} corresponds to a unique representation of n as
a sum of distinct divisors of n.

Proof of Theorem 1.4. Let (xd)d∈D(m)\{1} be a tuple of integers which lie in the interval[
n− 2a+1 + 1

σ(m)− 1
,

n

σ(m)− 1

]
.
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We show that this tuple satisfies the conditions of Lemma 3.1.
We note that for each xd, we have

xd ≤
n

σ(m)− 1
=

2am

σ(m)− 1
≤ 2a ≤ 2a+1 − 1,

which shows that the xd’s are not too large. In addition,

∑
d∈D(m)\{1}

dxd ≤

 ∑
d∈D(m)\{1}

d

 n

σ(m)− 1
= n.

For the lower bound on this sum, we note that

∑
d∈D(m)\{1}

dxd ≥

 ∑
d∈D(m)\{1}

d

 n− 2a+1 + 1

σ(m)− 1
= n− 2a+1 − 1.

Thus, (xd) satisfies the conditions of Lemma 3.1.
In order to obtain our desired result, we simply bound the number of possible tuples from

below. By definition, each xd lies in the interval [(n−2a+1+1)/(σ(m)−1), n/(σ(m)−1)], which
contains at least ⌊(2a+1 − 1)/(σ(m) − 1)⌋ integers. In addition, D(m)\{1} contains d(m) − 1

elements. So, the total number of possible tuples is at least⌊
2a+1 − 1

σ(m)− 1

⌋d(m)−1

.

Proof of Theorem 1.5. This proof is similar to the previous one. We now let (xd)d∈S\{1} be a tuple
of integers which lie in the interval[

n− σ(q1 · · · qk)
σ(rad(m))− 1

,
n

σ(rad(m))− 1

]
,

where S = D(rad(m)). In this case, we need to show that (xd) satisfies the conditions of
Lemma 3.2.

We now have
xd ≤

n

σ(rad(m))− 1
≤ σ(q1 · · · qk)

for all d ∈ S\{1}. In addition,

∑
d∈S\{1}

dxd ≤

 ∑
d∈S\{1}

d

 n

σ(rad(m))− 1
= n,

∑
d∈S\{1}

dxd ≥

 ∑
d∈S\{1}

d

 n− σ(q1 · · · qk)
σ(rad(m))− 1

= n− σ(q1 · · · qk).

To finish the proof, we observe that the interval[
n− σ(q1 · · · qk)
σ(rad(m))− 1

,
n

σ(rad(m))− 1

]
660



contains at least ⌊σ(q1 · · · qk)/(σ(rad(m)) − 1)⌋ integers and that S\{1} has d(rad(m)) − 1

elements. Therefore, there are at least⌊
σ(q1 · · · qk)

σ(rad(m))− 1

⌋d(rad(m))−1

acceptable tuples.
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