Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2024, Volume 30, Number 3, 634–639 DOI: 10.7546/nntdm.2024.30.3.634-639

New Fibonacci-type pulsated sequences. Part 2

Lilija Atanassova¹ and Velin Andonov²

¹ Institute of Information and Communication Technologies, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 2, Sofia 1113, Bulgaria e-mail: l.c.atanassova@gmail.com

² Institute of Mathematics and Informatics, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 8, Sofia 1113, Bulgaria e-mail: velin_andonov@math.bas.bg

Received: 22 February 2024 Accepted: 16 October 2024 Revised: 29 August 2024 Online First: 24 October 2024

Abstract: A new Fibonacci sequence from a pulsated type is introduced. The explicit form of its members is given.

Keywords: Fibonacci sequence, Pulsated sequence. **2020 Mathematics Subject Classification:** 11B39.

1 Introduction

The present work is a continuation of the previous authors' paper [17]. As pointed out in the first part of the research [17], the first extension of the Fibonacci sequence in the form of two or more sequences, was introduced in [11]. This idea has been developed in different directions (see, e.g., [2–14, 16, 18–22]). In the first part of the research, we studied three Fibonacci-type sequences of the so called pulsated sequences. In the present study, another form of three pulsated Fibonacci-type sequences will be discussed, and a property of theirs will be proven.

Copyright © 2024 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

2 Main results

Let a, b, c, d be fixed real numbers. Let us define the following Fibonacci sequence of pulsated type:

$$\begin{array}{rcl}
\alpha_{0} &= a, \\
\beta_{0} &= b, \\
\gamma_{0} &= c, \\
\beta_{1} &= d, \\
\alpha_{2k+2} &= \beta_{2k+1} + \gamma_{3k}, \\
\beta_{2k+2} &= \beta_{2k+1} + \beta_{3k}, \\
\gamma_{2k+2} &= \beta_{2k+1} + \alpha_{3k}, \\
\beta_{2k+3} &= \beta_{2k+2} + \beta_{3k+1}, \\
\end{array}$$

where $k \ge 0$ is an integer. The first members of this new sequence are as given in the following Table 1.

n	$lpha_n$	$oldsymbol{eta}_n$	γ_n		
0	a	b	С		
1		d			
2	c+d	b+d	a+d		
3		b+2d			
4	a+b+3d	2b + 3d	b + c + 3d		
5		3b + 5d			
6	4b + c + 8d	5b + 8d	a+4b+8d		
7		8b + 13d			
8	a + 12b + 21d	13b + 21d	12b + c + 21d		
9		21b + 34d			
10	33b + c + 55d	34b + 55d	a+33b+55d		
:		•			

Table 1. The first members of the pulsated Fibonacci sequence

Theorem 1. For every four real numbers a, b, c, d and for every integer $k \ge 0$:

$$\begin{split} &\alpha_{4k+2} &= (F_{4k+1}-1)b+c+F_{4k+2}d, \\ &\beta_{4k+2} &= F_{4k+1}b+F_{4k+2}d, \\ &\gamma_{4k+2} &= a+(F_{4k+1}-1)b+F_{4k+2}d, \\ &\beta_{4k+3} &= F_{4k+2}b+F_{4k+3}d, \\ &\alpha_{4k+4} &= (F_{4k+3}-1)b+c+F_{4k+4}d, \\ &\beta_{4k+4} &= a+(F_{4k+3}-1)b+F_{4k+4}d, \\ &\gamma_{4k+4} &= a+(F_{4k+3}-1)b+F_{4k+4}d, \\ &\beta_{4k+5} &= F_{4k+4}b+F_{4k+5}d. \end{split}$$

Proof. For k = 0, 1 the assertion is valid (see the above Table 1). Let us assume that it is valid for some k. Then:

$$\begin{split} \alpha_{4(k+1)+2} &= \alpha_{4k+6} \\ &= \beta_{4k+5} + \gamma_{4k+4}, \\ &= F_{4k+4}b + F_{4k+5}d + a + (F_{4k+3} - 1)b + F_{4k+4}d \\ &= a + F_{4k+4}b + F_{4k+5}d + a + (F_{4k+3} - 1)b + F_{4k+4}d \\ &= a + F_{4k+4}b + (F_{4k+5} - 1)b + F_{4k+6}d \\ \beta_{4(k+1)+2} &= \beta_{4k+5} + \beta_{4k+6}d \\ \gamma_{4(k+1)+2} &= \gamma_{4k+6} \\ &= \beta_{4k+5} + \alpha_{4k+4}, \\ &= F_{4k+4}b + F_{4k+5}d + (F_{4k+3} - 1)b + c + F_{4k+4}d \\ &= (F_{4k+5} - 1)b + c + F_{4k+6}d \\ \beta_{4(k+1)+3} &= \beta_{4k+7} \\ &= \beta_{4k+6} + \beta_{4k+5}, \\ &= F_{4k+5}b + F_{4k+6}d + F_{4k+4}b + F_{4k+5}d \\ &= F_{4k+6}b + F_{4k+7}d. \\ \Box$$

In [1], the arithmetic function ψ is defined and in [15] it is applied over the members of the Fibonacci numbers, proving that they have a basis with 24 elements about the ψ -function, as follows (see Table 2).

Table 2. The basis of 24 elements of the Fibonacci and the newly proposed sequences

n	0	1	2	3	4	5	6	7	8	9	10	11
$\psi(n)$	0	1	1	2	3	5	8	4	3	7	1	8
n	12	13	14	15	16	17	18	19	20	21	22	23
$\psi(n)$	9	8	8	7	6	4	1	5	6	2	8	1
n	24	25	26	27	28	29	30	31	32	33	34	
1												

Let us define for every two natural numbers $k \ge 0$ and $i \ (0 \le i \le 3)$:

$$f_{4k+i} = \psi(F_{4k+i}).$$

Then the above table can obtain the form for the sequence $\{f_{4k+i}\}$ (see Table 3).

Table 3. Alternative presentation

iackslash k	0	1	2	3	4	5	6	
0	0	3	3	9	6	6	9	
1	1	5	7	8	4	2	1	
2	1	8	1	8	1	8	1	
3	2	4	8	7	5	1	2	

Hence, the newly proposed type of Fibonacci-type pulsated sequence has the same basis with 24 elements. Therefore, the above Theorem can be modified to the following form.

Theorem 2. For every four real numbers a, b, c, d and for every integer $k \ge 0$:

$$\begin{split} \psi(\alpha_{4k+2}) &= (f_{4k+1} - 1)b + c + f_{4k+2}d, \\ \psi(\beta_{4k+2}) &= f_{4k+1}b + f_{4k+2}d, \\ \psi(\gamma_{4k+2}) &= a + (f_{4k+1} - 1)b + f_{4k+2}d, \\ \psi(\beta_{4k+3}) &= f_{4k+2}b + f_{4k+3}d, \\ \psi(\beta_{4k+4}) &= (f_{4k+3} - 1)b + c + f_{4k+4}d, \\ \psi(\beta_{4k+4}) &= a + (f_{4k+3} - 1)b + f_{4k+4}d, \\ \psi(\gamma_{4k+4}) &= a + (f_{4k+3} - 1)b + f_{4k+4}d, \\ \psi(\beta_{4k+5}) &= f_{4k+4}b + f_{4k+5}d. \end{split}$$

3 Conclusion

The Fibonacci-type pulsated sequences discussed in the paper have a new form, different from the previously defined ones. In a future leg of the present research, other Fibonacci-type sequences that have a changing form will be defined and studied.

References

- [1] Atanassov, K. (1985). An arithmetic function and some of its applications. *Bulletin of Number Theory and Related Topics*, 9, 18–27.
- [2] Atanassov, K. (1986). On a second new generalization of the Fibonacci sequence. *The Fibonacci Quarterly*, 24(4), 362–365.
- [3] Atanassov, K. (1989). On a generalization of the Fibonacci sequence in the case of three sequences. *The Fibonacci Quarterly*, 27(1), 7–10.
- [4] Atanassov, K. (2010). Combined 2-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, 16(2), 24–28.

- [5] Atanassov, K. (2013). Pulsating Fibonacci sequences. *Notes on Number Theory and Discrete Mathematics*, 19(3), 12–14.
- [6] Atanassov, K. (2013). Pulsated Fibonacci sequence. Part 2. Notes on Number Theory and Discrete Mathematics, 19(4), 33–36.
- [7] Atanassov, K. (2014). *n*-Pulsated Fibonacci sequence. *Notes on Number Theory and Discrete Mathematics*, 20(1), 32–35.
- [8] Atanassov, K. (2017). On two new two-dimensional extensions of the Fibonacci sequence. *Notes on Number Theory and Discrete Mathematics*, 23(3), 115–122.
- [9] Atanassov, K. (2018). On two new combined 3-Fibonacci sequences. *Notes on Number Theory and Discrete Mathematics*, 24(2), 90–93.
- [10] Atanassov, K. (2021). A short remark on a new Fibonacci-type sequence. *Notes on Number Theory and Discrete Mathematics*, 27(2), 168–171.
- [11] Atanassov, K., Atanassova, L. & Sasselov, D. (1985). A new perspective to the generalization of the Fibonacci sequence. *The Fibonacci Quarterly*, 23(1), 21–28.
- [12] Atanassov, K., Atanassova, V., Shannon, A., & Turner, J. (2002). New Visual Perspectives on Fibonacci Numbers. World Scientific, New Jersey.
- [13] Atanassov, K., Deford, D. R., & Shannon, A. G. (2014). Pulsated Fibonacci recurrences. In: Anderson, P., Ballot, C., & Webb, W. (Eds.). Proceedings of the Sixteenth International Conference on Fibonacci Numbers and Their Applications, July 20–27 2014, Rochester, New York, 22–27.
- [14] Atanassov, K., & Dimitrov, D. (2010). On ψ -function and 2-Fibonacci sequences. *Notes on Number Theory and Discrete Mathematics*, 16(1), 5–48.
- [15] Atanassov, K., & Shannon, A. G. (2005). Digit sum bases for Fibonacci and related numbers. *Notes on Number Theory and Discrete Mathematics*, 11(3), 25–32.
- [16] Atanassov, K., & Shannon, A. G. (2016). Combined 3-Fibonacci sequences from a new type. *Notes on Number Theory and Discrete Mathematics*, 22(3), 5–8.
- [17] Atanassova, L., & Andonov, V. (2023). New Fibonacci-type pulsated sequences. Notes on Number Theory and Discrete Mathematics, 29(4), 789–793.
- [18] Lee, J.-Z., & Lee, J.-S. (1987). Some properties of the generalization of the Fibonacci sequence. *The Fibonacci Quarterly*, 25(2), 111–117.
- [19] Spickerman, W., & Creech, R. (1997). The (2, T) generalized Fibonacci sequences. The Fibonacci Quarterly, 35(4), 358–360.

- [20] Spickerman, W., Creech, R., & Joyner, R. (1993). On the structure of the set of difference systems defining (3, F) generalized Fibonacci sequence. *The Fibonacci Quarterly*, 31(4), 333–337.
- [21] Spickerman, W., Creech, R., & Joyner, R. (1995). On the (3, F) generalizations of the Fibonacci sequence. *The Fibonacci Quarterly*, 33(1), 9–12.
- [22] Spickerman, W., Joyner, R., & Creech, R. (1992). On the (2, F)-generalizations of the Fibonacci sequence. *The Fibonacci Quarterly*, 30(4), 310–314.