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1 Introduction

The present work is a continuation of the previous authors’ paper [17]. As pointed out in the
first part of the research [17], the first extension of the Fibonacci sequence in the form of two
or more sequences, was introduced in [11]. This idea has been developed in different directions
(see, e.g., [2–14, 16, 18–22]). In the first part of the research, we studied three Fibonacci-type
sequences of the so called pulsated sequences. In the present study, another form of three pulsated
Fibonacci-type sequences will be discussed, and a property of theirs wil be proven.
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2 Main results

Let a, b, c, d be fixed real numbers. Let us define the following Fibonacci sequence of pulsated
type:

α0 = a,

β0 = b,

γ0 = c,

β1 = d,

α2k+2 = β2k+1 + γ3k,

β2k+2 = β2k+1 + β3k,

γ2k+2 = β2k+1 + α3k,

β2k+3 = β2k+2 + β3k+1,

where k ≥ 0 is an integer. The first members of this new sequence are as given in the following
Table 1.

Table 1. The first members of the pulsated Fibonacci sequence

n αn βn γn

0 a b c

1 d

2 c+ d b+ d a+ d

3 b+ 2d

4 a+ b+ 3d 2b+ 3d b+ c+ 3d

5 3b+ 5d

6 4b+ c+ 8d 5b+ 8d a+ 4b+ 8d

7 8b+ 13d

8 a+ 12b+ 21d 13b+ 21d 12b+ c+ 21d

9 21b+ 34d

10 33b+ c+ 55d 34b+ 55d a+ 33b+ 55d
...

...
...

...

Theorem 1. For every four real numbers a, b, c, d and for every integer k ≥ 0:

α4k+2 = (F4k+1 − 1)b+ c+ F4k+2d,

β4k+2 = F4k+1b+ F4k+2d,

γ4k+2 = a+ (F4k+1 − 1)b+ F4k+2d,

β4k+3 = F4k+2b+ F4k+3d,

α4k+4 = (F4k+3 − 1)b+ c+ F4k+4d,

β4k+4 = F4k+3b+ F4k+4d,

γ4k+4 = a+ (F4k+3 − 1)b+ F4k+4d,

β4k+5 = F4k+4b+ F4k+5d.
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Proof. For k = 0, 1 the assertion is valid (see the above Table 1). Let us assume that it is valid
for some k. Then:

α4(k+1)+2 = α4k+6

= β4k+5 + γ4k+4,

= F4k+4b+ F4k+5d+ a+ (F4k+3 − 1)b+ F4k+4d

= a+ F4k+4b+ (F4k+5 − 1)b+ F4k+6d

β4(k+1)+2 = β4k+6

= β4k+5 + β4k+4,

= F4k+4b+ F4k+5d+ F4k+3b+ F4k+4d

= F4k+5b+ F4k+6d

γ4(k+1)+2 = γ4k+6

= β4k+5 + α4k+4,

= F4k+4b+ F4k+5d+ (F4k+3 − 1)b+ c+ F4k+4d

= (F4k+5 − 1)b+ c+ F4k+6d

β4(k+1)+3 = β4k+7

= β4k+6 + β4k+5,

= F4k+5b+ F4k+6d+ F4k+4b+ F4k+5d

= F4k+6b+ F4k+7d.

In [1], the arithmetic function ψ is defined and in [15] it is applied over the members of the
Fibonacci numbers, proving that they have a basis with 24 elements about the ψ-function, as
follows (see Table 2).

Table 2. The basis of 24 elements of the Fibonacci and the newly proposed sequences

n 0 1 2 3 4 5 6 7 8 9 10 11

ψ(n) 0 1 1 2 3 5 8 4 3 7 1 8

n 12 13 14 15 16 17 18 19 20 21 22 23

ψ(n) 9 8 8 7 6 4 1 5 6 2 8 1

n 24 25 26 27 28 29 30 31 32 33 34 . . .

ψ(n) 9 1 1 2 3 5 8 4 3 7 1 . . .

Let us define for every two natural numbers k ≥ 0 and i (0 ≤ i ≤ 3):

f4k+i = ψ(F4k+i).

Then the above table can obtain the form for the sequence {f4k+i} (see Table 3).
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Table 3. Alternative presentation

i\k 0 1 2 3 4 5 6 . . .

0 0 3 3 9 6 6 9 . . .

1 1 5 7 8 4 2 1 . . .

2 1 8 1 8 1 8 1 . . .

3 2 4 8 7 5 1 2 . . .

Hence, the newly proposed type of Fibonacci-type pulsated sequence has the same basis with
24 elements. Therefore, the above Theorem can be modified to the following form.

Theorem 2. For every four real numbers a, b, c, d and for every integer k ≥ 0:

ψ(α4k+2) = (f4k+1 − 1)b+ c+ f4k+2d,

ψ(β4k+2) = f4k+1b+ f4k+2d,

ψ(γ4k+2) = a+ (f4k+1 − 1)b+ f4k+2d,

ψ(β4k+3) = f4k+2b+ f4k+3d,

ψ(α4k+4) = (f4k+3 − 1)b+ c+ f4k+4d,

ψ(β4k+4) = f4k+3b+ f4k+4d,

ψ(γ4k+4) = a+ (f4k+3 − 1)b+ f4k+4d,

ψ(β4k+5) = f4k+4b+ f4k+5d.

3 Conclusion

The Fibonacci-type pulsated sequences discussed in the paper have a new form, different from the
previously defined ones. In a future leg of the present research, other Fibonacci-type sequences
that have a changing form will be defined and studied.
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