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Abstract: We consider a polylogarithm expression containing complex arguments, namely

P±(n) = ℜ
(
Lin

(
1± i

2

))
.

The central notion of the present paper is to evaluate the real parts of P±(n) for first four orders,
specifically n = 1, 2, 3, and 4, by constructing certain logarithmic integrals. To extract the real
parts, we demonstrate an organized approach, and the proofs solely rely on the calculation of the
logarithmic integrals. Additionally, we present a potential closed form of P±(5).
Keywords: Polylogarithm function, Dilogarithm function, Logarithmic integral, Real part,
Harmonic number, Gamma function, Beta function.
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1 Introduction

In the mathematical literature, various special functions (see [7, pp. 859–1046]) are introduced.
Among these special functions, the polylogarithm is one that is customarily defined by
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Lis(z) =
∞∑
n=1

zn

ns
(1)

for any arbitrary order s > 1 and complex argument z with |z| ≤ 1. The first published study of
the function was due to A. Jonquière in 1889, leading to its common designation as the Jonquière
function. Lewin [8] conducted a comprehensive study of the function, compiling and addressing
numerous intriguing identities and formulas. The evaluation of the real parts of the polylogarithm
expressions, which is the core of this paper, is merely the particular cases of formulas that can be
found in [8].

For case n = 1, the real parts of the following polylogarithm expression

P±(n) = ℜ
(
Lin

(
1± i

2

))
, (2)

reduce to the natural cases ℜ (log(1± i)), which are trivial to evaluate. Likewise, for n = 2 and
n = 3, the real parts of (2) can be calculated by using Landen’s well-known functional equations.
They are dilogarithm identity [8, p. 5, Eqn. (1.12)]

Li2(z) + Li2

(
−z
1− z

)
= −1

2
log2(1− z), (3)

and trilogarithm identity [8, p. 155, Eqn. (6.10)]

Li3(z) + Li3

(
−z
1− z

)
=

log3(1− z)

6
+ ζ(3) + ζ(2) log(1− z)

− log2(1− z) log(z)

2
− Li3 (1− z) . (4)

By specializing x = ±i in the aforementioned formulas and following the routine simplifications
to extract the real values, we obtain their respective real parts. A creative approach can be found
in [15], particularly for the case n = 3. Also, we suggest looking in [5] to the interested readers,
which deals with the case n = 3 and its closely related polylogarithm expression. For further
insights, especially concerning the real parts of dilogarithm, trilogarithm, and tetralogarithm, one
can explore [17, p. 36].

Now we collect some basic tools and definitions that will be used repeatedly throughout this
paper. For s ∈ C, a generalized harmonic number H(s)

n is defined by

H(s)
n =

n∑
k=1

1

ks
, and H(1)

n = Hn

is the nth harmonic number, and obeys the following generating function [7, Entry 1.513.6]
∞∑
n=0

xnHn =
log(1− x)

1− x
, x ∈ [−1, 1), (5)

and it satisfies the recurrence relation Hn+1 = Hn+
1

n+ 1
. The beta and the gamma

functions denoted by B(a, b) for ℜ(a) > 0, ℜ(b) > 0 and Γ(z) for ℜ(z) > 0, respectively,
are defined by

B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx,=
Γ(a)Γ(b)

Γ(a+ b)
and Γ(z) =

∫ ∞

0

xz−1e−x dx. (6)
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Besides the definition of the gamma function, we note that

Γ(z)Γ(1− z) =
π

sin (πz)
and Γ(1 + z) = zΓ(z), (7)

where the former equation is the reflection formula [7, Entry 8.334.3] of the gamma function and
the latter one is the fundamental property of the gamma function. The Riemann zeta function and
the alternating zeta function for ℜ(s) > 1 are defined by

ζ(s) =
∞∑
n=1

1

ns
and η(s) =

∞∑
n=1

(−1)n−1

ns
=
(
1− 21−s

)
ζ(s), (8)

respectively. The latter series is famously known as Dirichlet series, which is the alternating sum
to the Dirichlet series expansion of the Riemann zeta function and they are the particular cases
Lis(1) and −Lis(−1), respectively, of the polylogarithmic function (1). In a similar fashion, the
Dirichlet beta function, which is also known as the Catalan beta function, is closely related to the
Riemann zeta function. The Dirichlet beta function is defined by

β(s) =
∞∑
n=0

(−1)n

(2n+ 1)s
=

(−4)s

Γ(s)

(
ψ(s−1)

(
1

4

)
− ψ(s−1)

(
3

4

))
, (9)

where ψ(m)(z) = dm

dzm
ψ0(z) = (−1)m+1m!ζ(m + 1, z) is the polygamma function where m > 0

and ℜ(z) > 0. For s = 2, s = 3, and s = 4 in (1), we have

Li2(z) =
∞∑
n=1

zn

n2
, Li3(z) =

∞∑
n=1

zn

n3
, and Li4(z) =

∞∑
n=1

zn

n4
(10)

dilogarithm, trilogarithm, and tetralogarithm functions, respectively. Some special values include

Li2(1) = ζ(2) =
π2

6
, Li3(1) = ζ(3), and Li4(1) = ζ(4) =

π4

90
, (11)

β(2) = G, β(3) =
π3

32
, and, β(5) =

5π5

1536
, (12)

η(1) = log(2), η(2) =
π2

12
, and η(3) =

3

4
ζ(3), (13)

where G is famously known as Catalan’s constant. For more intriguing identities associated with
Catalan’s constant, we refer interested readers to the papers [1] and [4], and we suggest looking
at the references given therein for more identities. These preliminary concepts are instrumental
in the paper’s analysis.

We organize the remaining work of the paper into different sections. In Section 2, we introduce
key logarithmic integrals, which serve as the main framework of this paper along with several
generating functions essential for proving the even-indexed alternating harmonic sums. Section 3
highlights several intermediate findings, namely lemmas and propositions. Section 4 contains the
major results and their corresponding proofs. Section 5 presents proofs for two integrals derived
during the calculation of Proposition 3.1. In Section 6, we discuss an open problem related to the
subject of the paper and closely associated identities.
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2 Logarithmic integrals and a few generating functions

In this section, we introduce three distinct logarithmic integrals. For natural numbers a and b, we
define

B(a, b) =
∫ 1

0

x loga x logb(1− x)

1 + x2
dx.

Specifically, we focus on the integrals B(1, 1), B(2, 1), and B(1, 2), which are expressed as
follows:

B(1, 1) =
∫ 1

0

x log x log(1− x)

1 + x2
dx,

B(2, 1) =
∫ 1

0

x log2 x log(1− x)

1 + x2
dx,

B(1, 2) =
∫ 1

0

x log x log2(1− x)

1 + x2
dx.

The first integral, B(1, 1), can be found in references such as [15, pp. 97–100] and [17, p. 100,
QLI (12;5)]. Similarly, the second integral and the third integral, B(2, 1) and B(1, 2), are discussed
in [17, p. 103, QLI (122;5)] and [17, p. 103, QLI (112;5)], respectively. These integrals are
presented as propositions, and we will evaluate them in detail in Section 3. More advanced types
of integrals, similar to those discussed, can be found in [17].

During the calculation of B(1, 1) and B(2, 1), we encounter several other intriguing logarithmic
integrals such as∫ 1

0

log x log(1 + x2)

1− x
dx = 2ζ(3)− π

2
G− 3π2

16
log(2),∫ 1

0

log(1 + x2) log(1− x)

x
dx =

23

32
ζ(3)− π

2
G,∫ 1

0

Li2(x) log(1 + x2)

x
dx =

35

32
ζ(3) log(2)− 23π4

2304
+

5

4
Li4

(
1

2

)
− 5π2

96
log2(2) +

5

96
log4(2),∫ 1

0

log(1 + x2) log2(x)

1− x
dx = 2G2 +

35

16
ζ(3) log(2)− 199

5760
π4,∫ 1

0

log(x) log(1− x) log(1 + x2)

x
dx = G2 +

35

32
ζ(3) log(2) +

5

96
log4(2) +

5

4
Li4

(
1

2

)
− 5

96
π2 log2(2)− 119

5760
π4.

The detailed computation of these integrals can be found in Section 3. The final two integrals
are particularly notable, as their closed forms include the term G2. Several more such integrals
can be found in [17]. The computation of integral B(1, 2) involves some difficult harmonic sums,
which are briefly highlighted below. In order to derive corresponding results, we list Vălean’s
(see [14, p. 422] and [16, p. 3–4]) generalized alternating harmonic series

∞∑
n=1

(−1)n−1H
(p)
2n

n
= pζ(p+ 1)− 1

2p+1

p∑
k=1

η(k)η(p− k + 1)−
p∑

k=1

β(k)β(p− k + 1),
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where p in a natural number. For x ∈ [−1, 1), a few generating functions associated with
harmonic numbers are as follows:

∞∑
n=1

Hn

n
xn = Li2(x) +

log2(1− x)

2
,

∞∑
n=1

H2
n

n2
xn = 2ζ(4)− log x log3(1− x)

3
+

(Li2(x))
2

2
− log2(1− x) Li2(1− x) + Li4(x)

+ 2 log(1− x) Li3(1− x)− 2 Li4(1− x), x ̸= 0
∞∑
n=1

HnH
(2)
n

n
xn =

log3(1− x) log(x)

6
− log4(1− x)

24
+

log2(1− x) Li2(1− x)

2
− ζ(4)

− Li4

(
x

1−x

)
− log(1− x) Li3(1− x) + Li4(1− x),

∞∑
n=1

H
(2)
n

n2
xn = −2 Li4

(
x

x−1

)
+2Li4(1−x)− Li4(x) +

Li22(x)

2
+2 log(1−x) Li3(x)−2ζ(4)

− log4(1− x)

12
− ζ(2) log2(1− x)− 2ζ(3) log(1− x) +

log(x) log3(1− x)

3
,

x ̸= 0.

The generating functions mentioned above, along with their proofs, can be found in [9, pp.
71–85] and [14, pp. 398–405]. Next, we highlight some even-indexed alternating harmonic sums,
which are crucial for computing Proposition 3.3. They are as follows:

∞∑
n=1

(−1)n+1H2n

n
=

5π2

48
− log2(2)

4
, (14)

∞∑
n=1

(−1)n+1H
(3)
2n

n
=

199π4

11520
− 3

32
log(2)ζ(3)−G2, (15)

∞∑
n=1

(−1)n+1H
(2)
2n

n2
= 2G2 − 353π4

5760
− 5π2

24
log2(2) +

35

8
log(2)ζ(3) +

5

24
log4(2) + 5Li4

(
1

2

)
,

(16)
∞∑
n=1

(−1)n+1H
2
2n

n2
= 2G2 − 5

48
log4(2) +

π2

6
log2(2)− 35

16
log(2)ζ(3) +

77π4

960

− πG log(2)− 2πℑ
(
Li3

(
1 + i

2

))
− 5

2
Li4

(
1

2

)
, (17)

∞∑
n=1

(−1)n+1H2nH
(2)
2n

n
=

5

96
log4(2) +

35

64
log(2)ζ(3)− π2

16
log2(2)− 137π4

11520
+
πG

4
log(2)

+
π

2
ℑ
(
Li3

(
1 + i

2

))
+

5

4
Li4

(
1

2

)
. (18)

Using Vălean’s generalized result for the case p = 3 and after some computation, the conclusion
of (15) (see [14, p. 425] and [16, p. 5]) follows. The other series (14), (16) (see [14, p. 450]),
(17), and (18) can be obtained by substituting x = i in the last three generating functions and
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extracting the real parts. The extraction of the real parts is elementary and the details are left to
the reader.

While the main results of this paper are acknowledged in the mathematical literature, this
paper offers an organized approach by introducing specific classes of logarithmic integrals, which
are specified above. Before proving our results, we compile some intermediate findings that will
aid in the analysis of both propositions and theorems.

3 Lemmas, propositions, and proofs

Lemma 3.1. The following relation holds:∫ 1

0

xp logq(x) dx = (−1)q
Γ(q + 1)

(p+ 1)q+1
, ℜ(p) > −1,ℜ(q) > −1.

Proof. A proof of the aforementioned result can be found in [13, pp. 57–58], demonstrated using
the recurrence method. However, making the substitution x = ey leads to∫ 1

0

xp logq(x) dx =

∫ 0

−∞
yqey(p+1) dy =

(−1)q

(p+ 1)q+1

∫ ∞

0

e−ttq dt.

By using the definition of the gamma function in the latter integral, the conclusion follows.

Lemma 3.2. For ℜ(m) > −1, the following equality holds:∫ 1

0

x logm(x)

1 + x2
dx =

(−1)m

2m+1

(
1− 1

2m

)
ζ(m+ 1)Γ(m+ 1).

Proof. Since
x

1 + x2
=

∞∑
k=0

(−1)kx2k+1, and employing Lemma 3.1, we have

∫ 1

0

x logm(x)

1 + x2
dx =

∞∑
k=0

(−1)k
∫ 1

0

x2k+1 logm(x) dx

=
∞∑
k=0

(−1)k
(−1)mΓ(m+ 1)

(2k + 2)m+1

=
(−1)m

2m+1
Γ(m+ 1)

∞∑
k=0

(−1)k

(k + 1)m+1

=
(−1)m

2m+1
Γ(m+ 1)

∞∑
k=1

(
1

km+1
− 2

(2k)m+1

)
=

(−1)m

2m+1

(
1− 1

2m

)
ζ(m+ 1)Γ(m+ 1),

which is the desired result.

Next, we establish a lemma associated with the polylogarithm expression, P±(n), and we give
its equivalent integral form.

618



Lemma 3.3. [An integral representation of P±(n)] If n ≥ 1 is a positive integer, then

P±(n) =
(−1)n−1

Γ(n)

∫ 1

0

x logn−1(1− x)

1 + x2
dx = ℜ

(
Lin

(
1± i

2

))
,

where ℜ(.) denotes the real part and i =
√
−1 is the imaginary unit.

Proof. Lemma 3.3 is a particular case (a = 1) of the general result that can be found in [14, p. 11].
Since x2 + 1 = (x+ i)(x− i), we have∫ 1

0

x logn−1(1− x)

1 + x2
dx =

∫ 1

0

x logn−1(1− x)

(x+ i)(x− i)
dx

=
1

2

∫ 1

0

logn−1(1− x)

(
1

x+ i
+

1

x− i

)
dx

=
1

2

∫ 1

0

logn−1(x)

(
1

1− x+ i
+

1

1− x− i

)
dx.

Enforcing the substitution x → 1 − x, we obtain the last integral. Furthermore, we note that
1

1±i−x
= 1

(1±i)(1−x/(1±i))
= 1

1±i

∑∞
k=0 (x/(1± i))k. Thus,

∫ 1

0

x logn−1(1− x)

1 + x2
dx =

1

2

∞∑
k=0

∫ 1

0

logn−1(x)

(
xk

(1 + i)k+1
+

xk

(1− i)k+1

)
dx. (19)

Next, we interchange the sum and the integral in (19), which is justifiable by the dominated
convergence theorem. Finally, invoking Lemma 3.1, we obtain∫ 1

0

x logn−1(1− x)

1 + x2
dx =

(−1)n−1Γ(n)

2

∞∑
k=0

(
1/(1 + i)k+1

(k + 1)n
+

1/(1− i)k+1

(k + 1)n

)
.

Shifting the index k to k − 1, and in view of (1), we have∫ 1

0

x logn−1(1− x)

1 + x2
dx =

(−1)n−1Γ(n)

2

∞∑
k=1

(
1/(1 + i)k

kn
+

1/(1− i)k

kn

)
=

(−1)n−1Γ(n)

2

(
Lin

(
1

1 + i

)
+ Lin

(
1

1− i

))
=

(−1)n−1Γ(n)

2

(
Lin

(
1− i

2

)
+ Lin

(
1 + i

2

))
=

(−1)n−1Γ(n)

2

(
Lin

(
1 + i

2

)
+ Lin

(
1 + i

2

))
= (−1)n−1Γ(n)ℜ

(
Lin

(
1± i

2

))
.

We note that the conjugate of 1 + i is 1 − i and ℜ (Lin(z)) = ℜ (Lin(z)), where z is the
conjugate of z ∈ C. Utilizing these facts and dividing both sides by (−1)n−1Γ(n), we establish
the desired closed form between integral and polylogarithm expression. Furthermore, by equating
the obtained result with (2), the desired conclusion follows.
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Lemma 3.4. For all x ∈ (−1, 1), we have

2
∞∑
n=1

(−1)n+1H2nx
2n−1 =

2 tan−1 x

1 + x2
+

log(1 + x2)

x(1 + x2)
.

Proof. We start with the series representations of tanh−1 x [7, Entry 1.643.2] and log(1 − x2)

[7, Entry 1.513.4] as follows

− tanh−1 x log(1− x2) =
∞∑
n=0

x2n+1

2n+ 1

∞∑
n=0

x2n+2

n+ 1
=

∞∑
n=0

n∑
k=0

x2n+3

(k + 1)(2n− 2k + 1)
.

We obtain the latter double sum by applying the Cauchy product. Additionally, by performing
the partial fraction decomposition of the summand, we get

− tanh−1 x log(1− x2) =
∞∑
n=0

2

2n+ 3

n∑
k=0

(
1

2k + 2
+

1

2n− 2k + 1

)
x2n+3

=
∞∑
n=0

2

2n+ 3

2n+2∑
k=1

1

k
x2n+3 = 2

∞∑
n=0

H2n+2

2n+ 3
x2n+3

= 2
∞∑
n=1

H2n

2n+ 1
x2n+1. (20)

We shifted the index n to n − 1, to achieve (20). Further, differentiating both sides of (20) with
respect to x gives us

2
∞∑
n=1

H2nx
2n = − d

dx

(
tanh−1 x log(1− x2)

)
=

2x tanh−1 x− log(1− x2)

1− x2
.

Finally, replacing x with ix, and taking into account ix tanh−1(ix) = −x tan−1 x, along with
routine simplification, leads us to the desired result.

Lemma 3.5. For all n ∈ N, the following relation holds:∫ 1

0

xn−1 log x log2(1− x) dx =
2ζ(3)

n
+

2ζ(2)Hn

n
− H

(2)
n

n2
− H2

n

n2
− 2HnH

(2)
n

n
− 2H

(3)
n

n
.

Proof. It is well-known that (see [9, p. 114], [13, p. 2])∫ 1

0

xn−1 log2(1− x) dx =
H2

n +H
(2)
n

n
.

We note that Hn = ψ0(n+ 1) + γ and H(2)
n =

∑n
k=1 1/k

2 = ζ(2)− ψ1(n+ 1), where γ, ψ0(z),
and ψ1(z) are the Euler–Mascheroni constant, the digamma function, and the trigamma function,
respectively. By substituting the values into the above relation and taking the partial derivatives
of it with respect to n, we obtain∫ 1

0

xn−1 log x log2(1− x) dx =
∂

∂n

(
(ψ0(n+ 1) + γ)2 + ζ(2)− ψ1(n+ 1)

n

)
=

∂

∂n

f(n)

g(n)
.
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Since ψm(z) =
dm

dzm
ψ0(z) and

∂

∂n
f(n) = 2ψ1(n+ 1)(γ + ψ0(n+ 1))− ψ2(n+ 1) = 2(ζ(2)−H(2)

n )Hn + 2ζ(3, n+ 1),

using the quotient rule for derivatives, i.e., ∂

∂n

f(n)

g(n)
=

g(n) ∂
∂nf(n)− f(n) ∂

∂ng(n)

(g(n))2
, simplying, and

rearranging the terms, the conclusion follows.

Next, we calculate the logarithmic integral, which are highlighted in Section 2.

Proposition 3.1. The following integral equality holds:

B(1, 1) =
∫ 1

0

x log(x) log(1− x)

1 + x2
dx =

41

64
ζ(3)− 3π2

32
log(2).

Proof. The proof of the integral B(1, 1) can be found in [13, pp. 97–100] and [17, p.100, QLI(12;5)].
In this paper, we provide a different approach of B(1, 1). It can be observed that∫ 1

0

x log(x) log(1− x)

1 + x2
dx =

1

2

∫ 1

0

(
log(x)

1− x
− log(1− x)

x

)
log(1 + x2) dx. (21)

In order to prove it, we consider a dilogarithm integral as follows

A =

∫ 1

0

xLi2(x)

1 + x2
dx.

With the aid of A, we evaluate the former integral of (21). We proceed by applying integration
by parts to the integral A, and using the value of Li2(1) leads to∫ 1

0

xLi2(x)

1 + x2
dx =

1

2
log(2) Li2(1) +

1

2

∫ 1

0

log(1 + x2) log(1− x)

x
dx

=
π2

12
log(2) +

1

2

∫ 1

0

log(1 + x2) log(1− x)

x
dx. (22)

In addition, using the integral form of the dilogarithm function, namely −Li2(x) = x
∫ 1

0
log(y)
1−xy

dy

(see [17, p. 46]), A can be expressed in other direction as follows

A = −
∫ 1

0

∫ 1

0

x2 log(y)

(1 + x2)(1− xy)
dy dx =

∫ 1

0

(∫ 1

0

x2 log(1/y)

(1 + x2)(1− xy)
dx

)
dy.

To compute the latter double integral, we decompose the integrand into partial fractions as follows:

x2

(1 + x2)(1− xy)
=

x2 + x2y2

(1 + x2)(1 + y2)(1− xy)
=

(1 + x2)− (1− x2y2)

(1 + x2)(1 + y2)(1− xy)

=
1

(1 + y2)(1− xy)
− 1

(1 + x2)(1 + y2)
− xy

(1 + x2)(1 + y2)
. (23)

Thus, upon integration, we find that

A =

∫ 1

0

(
log(1− y)

y(1 + y2)
+

π

4(1 + y2)
+

y log(2)

2(1 + y2)

)
log(y) dy

=

∫ 1

0

log(y) log(1− y)

y(1 + y2)
dy − π

4
G− π2

96
log(2).
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Setting m = 1 in Lemma 3.2, we obtain that
∫ 1

0
x log(x)
1+x2 dx = −π2

48
. And

∫ 1

0
log(y)
1+y2

dy = −η(1) =
−G. Substituting these values, we obtain, using partial fractions and integration by parts

A = −π
4
G− π2

96
log(2) +

∫ 1

0

log(y) log(1− y)

y(1 + y2)
dy

= −π
4
G− π2

96
log(2) +

∫ 1

0

log(y) log(1− y)

y
dy −

∫ 1

0

y log(y) log(1− y)

1 + y2
dy

= −π
4
G− π2

96
log(2) +

∫ 1

0

Li2(y)

y
dy −

∫ 1

0

x log(x) log(1− x)

1 + x2
dx.

Now using the relation
∫ 1

0
Li2(y)

y
dy = Li3(1) = ζ(3), we find using (21):

A = −π
4
G− π2

96
log(2) + ζ(3)−

∫ 1

0

x log(x) log(1− x)

1 + x2
dx = ζ(3)− π

4
G

− π2

96
log(2)− 1

2

∫ 1

0

log(1 + x2) log(x)

1− x
dx+

1

2

∫ 1

0

log(1 + x2) log(1− x)

x
dx. (24)

Equating (22) and (24), we conclude

1

2

∫ 1

0

log(1 + x2) log(x)

1− x
dx = ζ(3)− π

4
G− 3π2

32
log(2). (25)

Next, we demonstrate that the latter integral of (21) or integral in (22) holds

1

2

∫ 1

0

log(1 + x2) log(1− x)

x
dx =

23

64
ζ(3)− π

4
G. (26)

We proceed to prove (26) by using the logarithmic series [7, Entry 1.551] of log(1 + x2)

1

2

∫ 1

0

log(1 + x2) log(1− x)

x
dx =

1

2

∞∑
n=1

(−1)n+1

n

∫ 1

0

x2n−1 log(1− x) dx (27)

= −
∞∑
n=1

(−1)n+1H2n

4n2
. (28)

The series (28) is an immediate consequence of the integral
∫ 1

0
xn−1 log(1 − x) dx = −Hn

n
for

n > 0 (see [13, p. 2]), which we obtain by shifting index n to 2n and employing in (27).
Taking advantage of Lemma 3.4, we calculate (28). We multiply both sides of Lemma 3.4 by

the factor 1/2 to get

−
∞∑
n=1

(−1)n+1H2n

4n2
= −

∫ 1

0

1

y

∫ y

0

(
tan−1(x)

1 + x2
+

log(1 + x2)

2x(1 + x2)

)
dx dy. (29)

First, performing the inner integration, we have∫ y

0

(
tan−1(x)

1 + x2
+

log(1 + x2)

2x(1 + x2)

)
dx =

(tan−1(y))
2

2
− Li2(−y2)

4
− log2(1 + y2)

8
. (30)
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Substituting the result (30) back into (29), we obtain

−
∞∑
n=1

(−1)n+1H2n

4n2
=

∫ 1

0

1

y

(
Li2(−y2)

4
+

log2(1 + y2)

8
− (tan−1(y))

2

2

)
dy

=
Li3(−y2)

8

∣∣∣∣∣
1

0

+
ζ(3)

64
− 1

2

∫ 1

0

(tan−1(y))
2

y
dy

= −3ζ(3)

32
+
ζ(3)

64
− π

4
G+

7ζ(3)

16

=
23

64
ζ(3)− π

4
G.

In the course of the evaluation, we make use of well-known results, Li3(−1) = −3ζ(3)/4 and∫ 1

0
log2(1+y2)

y
dy = ζ(3)

8
,
∫ 1

0

(tan−1(y))
2

y
dy = π

2
G − 7ζ(3)

8
(for proofs, see Section 5). Putting the

obtained value back into (28), proves (26). Finally, collecting the results (25) and (26), and
substituting them into (21) produces the announced result of the integral.

Proposition 3.2. The following relation holds:

B(2, 1) =
∫ 1

0

x log2(x) log(1− x)

1 + x2
dx = −5

4
Li4

(
1

2

)
+

13π4

3840
− 5

96
log4(2) +

5π2

96
log2(2).

Proof. Integral B(2, 1) [17, p. 103, QLI(122;5)] can be evaluated by using integration by parts,
and we obtain integrals that can be found in [10, 17]. Now, we begin as follows:∫ 1

0

x log2(x) log(1− x)

1 + x2
dx =

∫ 1

0

(
log(x)

2(1− x)
− log(1− x)

x

)
log(x) log(1 + x2) dx.

Using the linearity of the integral, we compute the latter integral as follows:∫ 1

0

log(x) log(1− x) log(1 + x2)

x
dx =

∫ 1

0

Li2(x) log(1 + x2)

x
dx+ 2

∫ 1

0

x log(x) Li2(x)

1 + x2
dx

= I + 2J (31)

The former integral

I =

∫ 1

0

Li2(x) log(1 + x2)

x
dx =

5

4
Li4

(
1

2

)
− 23π4

2304
+

35

32
ζ(3) log(2)

− 5π2

96
log2(2) +

5

96
log4(2), (32)

which is given in [17, p. 82]. It states that the value of integral is equal to QPLI4(1;4;2), and its
corresponding result is tabulated in [17, p. 107]. Alternatively, closed form (32) can be obtained
by transforming the integral into an infinite sum. To do so, we use the logarithmic series of
log(1 + x2), and then the integral relation

∫ 1

0
x2n−1 Li2(x) dx = π2

12n
− H2n

4n2 (see [8, p. 22]). The
general result can be found in [9, p. 194]. After some calculations, we get∫ 1

0

Li2(x) log(1 + x2)

x
dx =

π4

144
−

∞∑
n=1

(−1)n+1H2n

4n3
.
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The obtained series is the toughest harmonic series that can be reduced to closed form by
using the generating function

∑∞
n=1

Hn

n3 x
n (see [12, p. 84] and [9, p. 76]). However, an approach

due to Vălean by real analysis can be found in [10].
Integral J is a particular (n = 1) case of the integral that can be found in [13, p. 19]. We

transform the integral J to a double integral,

J =

∫ 1

0

x log(x) Li2(x)

1 + x2
dx = −

∫ 1

0

(∫ 1

0

x2 log(x) log(y)

(1 + x2)(1− xy)
dx

)
dy, (33)

using the identity −Li2(x) = x
∫ 1

0
log(y)
1−xy

dy. Furthermore, employing (23) in (33) and integrating
yields

J =

∫ 1

0

Li2(y) log(y)

y(1 + y2)
dy +

∫ 1

0

∫ 1

0

(
log(x) log(y)

(1 + x2)(1 + y2)
dy +

x log(x)y log(y)

(1 + x2)(1 + y2)

)
dx dy

=

∫ 1

0

Li2(y) log(y)

y
dy −

∫ 1

0

y log(y) Li2(y)

1 + y2
dy +G2 +

π4

2304

= −π
4

90
− J +G2 +

π4

2304
,

2J = G2 − 41

3840
π4.

The two integrals can be found in [7]. Since the calculations involved are trivial, the details are
left to the reader. Thus, substituting the final answers into (31) leads us to a remarkable conclusion
as follows:∫ 1

0

log(x) log(1− x) log(1 + x2)

x
dx =

5

4
Li4

(
1

2

)
+

35

32
ζ(3) log(2) +

5

96
log4(2)

+G2 − 5

96
π2 log2(2)− 119

5760
π4. (34)

In a similar fashion, we can readily conclude that

1

2

∫ 1

0

log(1 + x2) log2(x)

1− x
dx = ζ(3) log(2)−

∫ 1

0

∫ 1

0

x2 log2(xy)

(1 + x2)(1− xy)
dx dy, (35)

which is established through integration by parts. The general result of the former integral can be
found in [14, p. 38]. Using (23), the final integral reduces to∫ 1

0

∫ 1

0

(
1

(1 + x2)(1− xy)
− 1

(1 + x2)(1 + y2)
− xy

(1 + x2)(1 + y2)

)
log2(xy) dx dy.

By applying the identity log2(xy) = log2(x) + 2 log(x) log(y) + log2(y), we deduce that∫ 1

0

∫ 1

0

log2(xy)(1 + xy)

(1 + x2)(1 + y2)
dx dy =

∫ 1

0

∫ 1

0

log2(x) + 2 log(x) log(y) + log2(y)

(1 + x2)(1 + y2)
dx dy

+

∫ 1

0

∫ 1

0

xy(log2(x) + 2 log(x) log(y) + log2(y))

(1 + x2)(1 + y2)
dx dy

= 2G2 +
π4

32
+

3

16
ζ(3) log(2) +

π4

1152
. (36)
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The integrals involved in the above calculation are straightforward, and we leave the details to the
reader to pursue the final result (36). Similarly, we show that∫ 1

0

∫ 1

0

log2(xy)

(1 + x2)(1− xy)
dx dy =

π4

15
− ζ(3) log(2) +

∫ 1

0

log2(x) log(1 + x2)

2(1− x)
dx. (37)

Substituting (36) and (37) into (35), and dividing the obtained result by 2 yields

1

2

∫ 1

0

log(1 + x2) log2(x)

1− x
dx = G2 +

35

32
ζ(3) log(2)− 199

11520
π4. (38)

Subtracting (38) from (34) completes the proof.

Proposition 3.3. The following integral equality holds:

B(1, 2) =
∫ 1

0

x log x log2(1− x)

1 + x2
dx = −15

8
Li4

(
1

2

)
+

167π4

23040
− 5

64
log4(2) +

π2

32
log2(2).

Proof. Let the integral be denoted by I. We note that
x

1 + x2
=
∑
n≥1

(−1)n−1x2n−1, and using

Lemma (3.5), we have

I =
∞∑
n=1

(−1)n−1

∫ 1

0

x2n−1 log x log2(1− x) dx

=
∞∑
n=1

(−1)n−1

(
2ζ(3)

2n
+

2ζ(2)H2n

2n
− H

(2)
2n

4n2
− H2

2n

4n2
− 2H2nH

(2)
2n

2n
− 2H

(3)
2n

2n

)

=
∞∑
n=1

(−1)n−1

(
ζ(3)

n
+
ζ(2)H2n

n
− H

(2)
2n

4n2
− H2

2n

4n2
− H2nH

(2)
2n

n
− H

(3)
2n

n

)
.

= ζ(3)
∞∑
n=1

(−1)n−1

n
+ ζ(2)

∞∑
n=1

(−1)n−1H2n

n
−

∞∑
n=1

(−1)n−1H
(2)
2n

4n2
−

∞∑
n=1

(−1)n−1H
2
2n

4n2

−
∞∑
n=1

(−1)n−1H2nH
(2)
2n

n
−

∞∑
n=1

(−1)n−1H
(3)
2n

n
. (39)

By substituting the values of (14), (15), (16), (17), (18), and η(1) = log 2 into (39), and after
some computations, we obtain the desired result.

Remark 3.1. Corollary 2.3 in [11] states that for m ̸= −1,−2, . . . , and q ∈ N, the following
holds: ∫ 1

0

xm logq(x) log2(1− x) dx = 2(−1)qq!
∞∑
n=0

Hn+1

(n+ 2)(n+m+ 3)q+1
.

Letting q = 1, replacing m with 2m+ 1, and then carrying out the sum as
∑

m≥0(−1)m yields

B(1, 2) =
∞∑

m=0

∞∑
n=0

(−1)m+1Hn+1

(n+ 2)(n+ 2m+ 4)2
= −15

8
Li4

(
1

2

)
+

167π4

23040
− 5 log4(2)

64
+
π2

32
log2(2).
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Proposition 3.4. For a positive integer m > 1, the following equality holds:∫ 1

0

x

1 + x2
m

√
1− x

x
dx =

π

sin
(
π
m

) ( 2m
√
2 cos

( π

4m

)
− 1
)
. (40)

Proof. Let G(m) represent the integral (40). Using the geometric series expansion of
x

1 + x2
=∑

k≥0

(−1)kx2k+1, we simplify G(m) as follows:

∞∑
k=0

(−1)k
∫ 1

0

x2k+1−1/m(1− x)1/m dx = Γ

(
1 +

1

m

) ∞∑
k=0

(−1)k
Γ
(
2k + 2− 1

m

)
(2k + 2)!

. (41)

We set a = 2k + 2 − 1/m, b = 1 + 1/m into the definition of the beta function (6). Summing,
we get an expression for the former and latter quantities of (41), respectively. Moreover, by the
definition of the gamma function (6), the term in the numerator of (41) equals Γ(2k + 2− 1/m),
and can be represented as an integral i.e.,

∫∞
0
x2k+1−1/me−x dx. This simplifies G(m)

Γ(1+1/m)
to

∞∑
k=0

(−1)k

(2k + 2)!

∫ ∞

0

x2k+2 e−x

x1+1/m
dx =

∫ ∞

0

x−1−1/me−x

(
∞∑
k=0

(−1)k
x2k+2

(2k + 2)!

)
dx

=

∫ ∞

0

x−1−1/me−x (1− cosx) dx. (42)

Further, integrating by parts with f(x) = e−x(1−cosx), f ′(x) = e−x(sinx−cosx+1), g′(x) =

x−1−1/m and g(x) = −mx−1/m gives us∫ ∞

0

x−1−1/me−x (1− cosx) dx = m

∫ ∞

0

x−1/me−x (sinx+ cosx− 1) dx. (43)

The equality (42) is achieved by using the Maclaurin series [7, Entry 1.411.3] of

cosx =
∞∑
k=0

(−1)k
x2k

(2k)!
, x ∈ R.

By linearity, we have
∫∞
0
x−1/me−x dx = Γ

(
1− 1

m

)
, which is a direct consequence of the gamma

function. Now, to find the closed form of the latter integral, we recall the general results (5) and
(6) from [7, Entry 3.944], respectively.∫ ∞

0

xa−1e−bx sin(xc) dx =
Γ(a)

(c2 + b2)a/2
sin
(
a tan−1 c

b

)
, ℜ(a) > 0,ℜ(b) > |ℑ(c)|, (44)∫ ∞

0

xp−1e−qx cos(xr) dx =
Γ(p)

(r2 + q2)p/2
cos

(
p tan−1 r

q

)
, ℜ(p) > 0,ℜ(q) > |ℑ(r)|. (45)

By setting a = 1− 1/m, b = c = 1 and p = 1− 1/m, p = r = 1 in (44) and (45), respectively,
we obtain ∫ ∞

0

x−1/me−x sinx dx =
2m
√
2√
2
Γ

(
1− 1

m

)
sin

[(
1− 1

m

)
π

4

]
, (46)∫ ∞

0

x−1/me−x cosx dx =
2m
√
2√
2
Γ

(
1− 1

m

)
cos

[(
1− 1

m

)
π

4

]
. (47)
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Simplifying (46) and (47), one obtains that∫ ∞

0

x−1/me−x(sinx+ cosx) dx =
2m
√
2Γ

(
1− 1

m

)
cos
( π

4m

)
. (48)

Putting the values of (48) and
∫∞
0
x−1/me−x dx back into (43), we arrive at

G(m) = mΓ

(
1 +

1

m

)
Γ

(
1− 1

m

)(
2m
√
2 cos

( π

4m

)
− 1
)

= Γ

(
1

m

)
Γ

(
1− 1

m

)(
2m
√
2 cos

( π

4m

)
− 1
)

(49)

Inserting z = 1/m into the reflection formula of the gamma function yields

Γ

(
1

m

)
Γ

(
1− 1

m

)
=

π

sin
(
π
m

) .
Substituting this value into (49) and simplifying proves (40).

Remark 3.2. For all m > 1, 1/m ∈ (0, 1). Let t = 1/m in the Proposition 3.4, we obtain

G(1/m) = G(t) = π cosec(πt)
(
2t/2 cos

(π
4
t
)
− 1
)
. (50)

Executing (50) via Mathematica produces the Laurent series around m = 0, namely

G(t) = log(2)

2
+

t

32

(
4 log2(2)− π2

)
+

t2

192

(
4 log3(2) + 13π2 log(2)

)
+

t3

6144

(
16 log4(2)− 31π4 + 104π2 log2(2)

)
+

t4

184320

(
48 log5(2) + 520π2 log3(2) + 1327π4 log(2)

)
+O(t5),

where O(t) denotes the Big O notation. In the above Laurent series, the coefficients of tp for p ≤ t

can be obtained by taking the p-th partial derivative of G(t) and letting t→ 0, i.e., limt→0
∂p

∂tp
G(t).

Remark 3.3. Given Proposition 3.4, Remark 3.2, and the coefficients of the above Laurent series,
it is evident that the following logarithmic integrals are valid:∫ 1

0

x

1 + x2
log

(
x

1− x

)
dx =

π2

32
− log2(2)

8
, (51)∫ 1

0

x

1 + x2
log2

(
x

1− x

)
dx =

13π2

96
log(2) +

log3(2)

24
, (52)∫ 1

0

x

1 + x2
log3

(
x

1− x

)
dx =

31π4

1024
− log4(2)

64
− 13π2

128
log2(2). (53)

Now, we are ready for our main results and their corresponding proofs.
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4 Main results and proofs

Theorem 4.1. For positive integers, 1 ≤ n ≤ 4, the following relations hold:

P±(1) =
log(2)

2
,

P±(2) =
5π2

96
− log2(2)

8
,

P±(3) =
35

64
ζ(3)− 5π2

192
log(2) +

log3(2)

48
,

P±(4) =
5

16
Li4

(
1

2

)
+

343π4

92160
− 5π2

768
log2(2) +

log4(2)

96
.

Proof. We will divide the proof into two separate cases. The first case will address the proofs for
n = 1 and n = 2, while the remaining case will cover for n = 3 and n = 4. In the course of
proving the major results, we rely on Newton’s binomial formula (see [7, Entry 1.111])

(x− y)n =
n∑

k=0

(
n

k

)
(−1)kxn−kyk.

First case: n = 1 and n = 2. By substituting n = 1 into Lemma 3.3, one obtains an elementary
integral for P±(1), with its value equal to lim

m→0
G(1/m). In simpler terms, P±(1) = log(2)/2.

Likewise, for n = 2 in Lemma 3.3, we have

P±(2) = −
∫ 1

0

x log(1− x)

1 + x2
dx

= −
∫ 1

0

(
log(x)− log

(
x

1− x

))
x

1 + x2
dx

=

∫ 1

0

x

1 + x2
log

(
x

1− x

)
dx−

∫ 1

0

x log(x)

1 + x2
dx.

Considering (51), the value of Lemma 3.2 at m = 1, and straightforward algebraic operations
applied to the last two integrals, we arrive at the proposed result for P±(2).

Second case: n = 3 and n = 4. Likewise, substituting n = 3 into Lemma 3.3 and observing that
log2(1− x) = − log2(x) + 2 log(x) log(1− x) + log2

(
x

1−x

)
, we find that

P±(3) =
1

2

∫ 1

0

x log2(1− x)

1 + x2
dx

=
1

2

∫ 1

0

x
(
2 log(x) log(1− x) + log2

(
x

1−x

)
− log2(x)

)
1 + x2

dx

=

∫ 1

0

x log(x) log(1− x)

1 + x2
dx− 1

2

∫ 1

0

x log2(x)

1 + x2
dx+

1

2

∫ 1

0

x

1 + x2
log2

(
x

1− x

)
dx.

By setting m = 2 in Lemma 3.2, we obtain 3
16
ζ(3). Substituting the corresponding outputs of the

integrals in the last line of (52) and using Proposition 3.1 yields

P±(3) =
41

64
ζ(3)− 3π2

32
log(2)− 3

32
ζ(3) +

1

2

(
13π2

96
log(2) +

log3(2)

24

)
=

35

64
ζ(3)− 5π2

192
log(2) +

log3(2)

48
.
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Again for n = 4 in Lemma 3.3, and utilizing the identity

log3(1− x) = log3(x)− log3
(

x

1− x

)
− 3 log(x) log(1− x) log

(
x

1− x

)
,

we observe

P±(4) = −1

6

∫ 1

0

x log3(1− x)

1 + x2
dx

= −1

6

∫ 1

0

x
(
log3(x)− log3

(
x

1−x

)
− 3 log(x) log(1− x) log

(
x

1−x

))
1 + x2

dx

=
1

2

∫ 1

0

x log2(x) log(1− x)

1 + x2
dx− 1

2

∫ 1

0

x log(x) log2(1− x)

1 + x2
dx

+
1

6

∫ 1

0

x

1 + x2
log3

(
x

1− x

)
dx− 1

6

∫ 1

0

x log3(x)

1 + x2
dx. (54)

Putting m = 3 in Lemma 3.2, we have
∫ 1

0
x log3(x)
1+x2 dx = − 7π4

1920
. Then, substituting the values of

Proposition 3.2, Proposition 3.3, and (53) into (54), and simplying the calculations, proves the
announced result.

5 Proofs of the two integrals

In this section, we present the proofs of the two integrals obtained during the calculation of (28),

namely
∫ 1

0
log2(1+y2)

y
dy and

∫ 1

0

(tan−1(y))
2

y
dy.

We show that∫ 1

0

log2(1 + y2)

y
dy =

ζ(3)

8
and

∫ 1

0

(tan−1(y))
2

y
dy =

πG

2
− 7

8
ζ(3).

For the former integral, we initiate with the generating function of the harmonic number, we have∫ 1

0

log2(1 + y2)

y
dy = −2

∫ 1

0

1

y

∫ −y2

0

log(1− x)

1− x
dx dy = −

∞∑
n=0

(−1)n
Hn

(n+ 1)2

= −
∞∑
n=0

(−1)n
Hn+1 − 1

n+1

(n+ 1)2
=

∞∑
n=1

(−1)n
Hn

n2
−

∞∑
n=1

(−1)n

n3
. (55)

Employing the recurrence relation of the harmonic number gives rise to the first sum (55). We
employ a well-known identity (see [13, p. 310, Eqn. (4.88)], also see [3, p. 7]), which evaluates
to −5

8
ζ(3), for the first sum. The second sum is an elementary series that converges to −3

4
ζ(3).

Substituting the respective values into (55) yields the proposed answer.
The second integral is a well-known result, which can be found in [4, p. 3, Eqn. (35)], but we

provide an alternative proof.∫ 1

0

(tan−1(x))
2

x
dx =

∫ π
4

0

y2

sin y cos y
dy =

1

4

∫ π
2

0

y2

sin y
dy

= −1

2

∫ π
2

0

y log
(
tan
(y
2

))
dy. (56)
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It is easy to show that log
(
cot
(
y
2

))
= − log

(
tan
(
y
2

))
. Considering this property, we utilize the

Fourier series [7, Entry 1.442.2] of

log
(
tan
(y
2

))
= −2

∞∑
n=1

cos ((2n− 1)y)

2n− 1
, 0 < y < π.

Employing it in (56), we get

− 1

2

∫ π
2

0

y log
(
tan
(y
2

))
dy =

∞∑
n=1

1

2n− 1

∫ π
2

0

y cos ((2n− 1)y) dy

=
∞∑
n=1

1

2n− 1

(
π

2(2n− 1)
sin
(
(2n− 1)

π

2

)
− 1

2n− 1

∫ π
2

0

sin ((2n− 1)y) dy

)

=
π

2

∞∑
n=1

(−1)n+1

(2n− 1)2
−

∞∑
n=1

1

(2n− 1)3
=
πG

2
− 7

8
ζ(3). (57)

Plugging (57) back to (56), we arrive to the proposed result. □

6 An open problem

To date, in the mathematical literature, the real values of the polylogarithm expression, P±(n),
are explicitly known only up to the fourth order. Even in this paper, we use standard methods and
tools to prove the results only for 1 ≤ n ≤ 4. By applying the techniques demonstrated in this
paper, we can conclude that

ℜ
(
Lin

(
1± i

2

))
=

(−1)n

2n

(
1− 1

2n−1

)
ζ(n)− 1

Γ(n)

n−2∑
k=1

(−1)k
(
n− 1

k

)
B(n− k − 1, k)

+
(−1)n−1

Γ(n)
lim
t→0

∂n−1

∂tn−1

(
π cosec(πt)

(
−1 + 2−t/2 cos

(π
4
t
)))

, (58)

where k ≤ n and B(n − k − 1, k) represents the integral B(a, b) for a = n − k − 1 and b = k.
For positive integers n and k such that k ≤ n, consider a = n− k − 1 and b = k. By employing
Newton’s binomial identity for logn

(
x

1−x

)
and separating the first and the last terms of the series,

we obtain

logn
(

x

1− x

)
= logn(x) + (−1)n logn(1− x) +

n−1∑
k=1

(
n

k

)
logn−k(x)(− log(1− x))k. (59)

Next, by multiplying both sides of (59) by the factor x
1+x2 , rearranging the terms, and then

integrating, we obtain

−(−1)n
∫ 1

0

x logn(1− x)

1 + x2
dx =

∫ 1

0

x logn(x)

1 + x2
dx−

∫ 1

0

x

1 + x2
logn

(
x

1− x

)
dx

+
n−1∑
k=1

(−1)k
(
n

k

)∫ 1

0

x logn−k(x) logk(1− x)

1 + x2
dx. (60)
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Replacing n with n− 1, and then applying Lemma 3.2, Lemma 3.3, and Remark 3.2, expression
(60) attains the form as highlighted in (58).

For n = 5, using (58), we have

ℜ
(
Li5

(
1± i

2

))
=

557

1024
ζ(5)− π2

64
ζ(3) +

log5(2)

3840
+

13π2

4608
log3(2)

+
247π4

184320
log(2)−

∫ 1

0

x log(x) log2(1− x)

1 + x2
log

(
x1/4

(1− x)1/6

)
dx. (61)

The integral B(a, b) has an explicit solution using standard tools only for (a, b) = (1, 1), (2, 1),
and (1, 2). The equation would yield an explicit result if we had the integral results for B(2, 2)
and B(1, 3). However, there are no elementary solutions for these integrals. These integrals can
be evaluated using Mathematica packages [2] developed by Kam Cheong Au, which combine
MZV technique with complex analysis. For instance,

B(1, 3) = 45

16
Li5

(
1

2

)
− 35π2

64
ζ(3) +

13287

2048
ζ(5)− 3 log5(2)

128
+
π2

64
log3(2)− 23π4

1024
log(2).

Additionally, the conjectured values due to Kam Cheong Au for ℜ (Li5(1 + i)) and ℜ (Li6(1 + i))

can be found in [6]. For instance,

ℜ (Li5(1 + i)) =
5

32
Li5

(
1

2

)
+

2139ζ(5)

4096
− ln5(2)

768
+
π2 ln3(2)

288
+

97π4 ln(2)

18432
.

In view of Lemma 3.3, the desired result of P±(5) is equivalent to calculating the integral∫ 1

0
x log4(1−x)

1+x2 dx, which can easily be evaluated by using Kam Cheong Au’s Mathematica package.
To extract the real part of P±(5), we use the polylogarithmic inversion formula [8, p. 196, Eqn.
(7.38)], namely

Lin(r, θ) + (−1)n Lin(1/r, θ) = − logn(r)

n!
+ 2

⌊n/2⌋∑
m=1

logn−2m(r)

(n− 2m)!
Gl2m(θ).

Since Lin(r, θ) = Lin(−r, π − θ), replacing r with −r, putting n = 5, θ = π, and using the
values of Gl2m(θ) given in [8, p. 202], for m = 1 and m = 2, we have

Li5(r)− Li5(1/r) = − log5(−r)
5!

− 2η(2)
log3(−r)

3!
− 2η(4) log(−r).

This particular case can be found in [9, p. 43, Eqn. (1.98)]. Now, putting r = 1 + i, and after
some computation and extraction of the real parts, we obtain

ℜ (Li5(1 + i))−ℜ
(
Li5

(
1

1 + i

))
=

1313π4

184320
log(2)− log5(2)

3840
+

11π2

4608
log3(2).

Using the conjectured value of ℜ (Li5(1 + i)), we find

P±(5) =
5

32
Li5

(
1

2

)
+

2139

4096
ζ(5)− 343π4

184320
log(2) +

5π2

4608
log3(2)− log5(2)

960
,

which can be verified by employing the PSLQ-algorithm. Similarly, using the inversion formula
and the conjectured value of ℜ (Li6(1 + i)), we can easily conjecture the value of P±(6).
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Furthemore, in view of (61) and P±(5), we can readily conclude that∫ 1

0

x log(x) log2(1− x)

1 + x2
log

(
x1/4

(1− x)1/6

)
dx =

89

4096
ζ(5)− 5

32
Li5

(
1

2

)
+

59π4

184320
log(2)

− π2

64
ζ(3) +

log5(2)

768
+

π2

576
log3(2).

The above integral is equivalent to computing the value of B(2, 2)/4−B(1, 3)/6. Using the noted
value of B(1, 3), it is straightforward to deduce the value of B(2, 2). However, the real challenge
lies in evaluating these integrals without the use of Mathematica packages. Furthermore, the
question remains whether there exists any generalization for B(a, b). For brevity, we leave this
question for future research.
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