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Abstract: The degree of insulation of a prime p is defined as the largest interval around p within
which no other prime exists. A prime p is classified as insulated if its degree of insulation is
greater than that of its neighbouring primes. This leads to the emergence of a new sequence,
known as the insulated primes, which starts with 7, 13, 23, 37, 53, 67, 89, 103, 113, 131, 139, 157,

173, 181, 193, 211, 233, 277, 293, and so on. This paper explores several properties and intriguing
relationships concerning the degree of insulation, and includes a brief heuristic study of the
insulated primes. Finally, the reader is left with a captivating open problem.
Keywords: Special prime sequences, Prime gaps.
2020 Mathematics Subject Classification: 11A41, 11K31.

1 Introduction

Prime numbers (denoted by P) and their several special sub-sequences have continuously
fascinated both young enthusiasts and experienced researchers [7]. During the covid-19 pandemic,
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we reported two new sequences A339270 and A339148 to OEIS, namely degree of insulation and
insulated primes, respectively.

Definition 1.1. The degree of insulation D : P → N of a prime p is defined as D(p) ≜ maxXp,
where the set Xp = {m ∈ N : π(p − m) = π(p + m) − 1} and π(x) is the prime counting
function. As a convention, fix D(2) = 0.

Since D(pn) can be interpreted as the largest spread around pn containing only the prime
pn, any procedure to evaluate D(pn) will either compute the prime counting function π(x) or
determine the surrounding primes (pn−1, pn+1). The plot of D(p) values for primes less than
1000 is shown in Figure 1.

Figure 1. Plot of D(p) for primes less than 1000.

Consider the prime triplet (pn−1, pn, pn+1) = (19, 23, 29), then D(23) is calculated as follows:

π(23− 1)
?
= π(23 + 1)− 1 ⇒ 8

?
= 9− 1 ⇒ 8 = 8

π(23− 2)
?
= π(23 + 2)− 1 ⇒ 8

?
= 9− 1 ⇒ 8 = 8

π(23− 3)
?
= π(23 + 3)− 1 ⇒ 8

?
= 9− 1 ⇒ 8 = 8

π(23− 4)
?
= π(23 + 4)− 1 ⇒ 8

?
= 9− 1 ⇒ 8 = 8

π(23− 5)
?
= π(23 + 5)− 1 ⇒ 7

?
= 9− 1 ⇒ 7 ̸= 8

which gives D(23) = 4. This process highlights two key results: (a) if α /∈ Xp then (α+ r) /∈ Xp

for all r ≥ 0, and (b) if α /∈ Xp then D(p) < α for prime p. On similar lines, as illustrated
above, one can evaluate D(19) = 2 and D(29) = 1. Observing that D(23) > D(19) and
D(23) > D(29) gives rise to the concept of insulated primes which is formally defined below.

Definition 1.2. The n-th prime pn is said to be insulated if and only if

D(pn) > max{D(pn−1), D(pn+1)}.
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Figure 2 shows the plot of n-th insulated prime in versus n. Some quick observations regarding
insulated primes* are: (a) primes just adjacent to an insulated prime can never be insulated, and
(b) in seems to obey a linear-like fit.

Figure 2. Plot of in versus n for primes less than 1000.

With the motivation laid out, the subsequent sections are devoted to its investigation. The
remainder of the paper presents analytic/heuristic analysis of D(p) and insulated primes.

2 Main analysis and results

Proposition 2.1. Primes just adjacent to an insulated prime can never be insulated.

Proof. Let pn be an insulated prime, then D(pn−1) < D(pn) and D(pn+1) < D(pn) by definition.
For pn−1 to be an insulated prime, the conditions D(pn−2) < D(pn−1) and D(pn) < D(pn−1)

must hold. Clearly, the latter condition contradicts the condition for insulation of pn, therefore,
pn−1 cannot be an insulated prime. Likewise, for pn+1 to be an insulated prime, the conditions
D(pn) < D(pn+1) and D(pn+2) < D(pn+1) must hold; however, D(pn) < D(pn+1) poses a
contradiction, therefore, pn+1 also cannot be an insulated prime.

Proposition 2.2. For prime p, if α /∈ Xp then D(p) < α.

Proof. Since π(x) is an increasing function, so for every r ≥ 0, we have π(p+α+r) ≥ π(p+α)

and π(p− α) ≥ π(p− α− r) which combines to give

π(p+ α + r)− π(p− α− r) ≥ π(p+ α)− π(p− α).

As Xp contains all the possible candidates for being D(p) and given α /∈ Xp, then π(p + α) −
π(p− α) > 1 since there exists at least one prime p ∈ [p− α, p+ α]. Therefore, π(p+ α+ r)−
π(p − α − r) ≥ π(p + α) − π(p − α) > 1 implies π(p + α + r) − π(p − α − r) ̸= 1. That is,
α + r is also not a possible candidate for D(p), thus, D(p) must be less than α.

———————
* Since D(p) essentially insulates p from neighboring primes, the name “insulated primes” is given. Initially,

“isolated” was intended to be used, but it is already taken (OEIS: A023188).
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Theorem 2.1. We have D(pk) = min{pk+1 − pk − 1, pk − pk−1}.

Proof. Let ⌊.⌋P and ⌈.⌉P be the prime floor and prime ceiling functions [14]. Then, the degree of
insulation can be equivalently expressed as D(p) = max{m ∈ N : ⌊p+m⌋P = ⌈p−m⌉P}. This
shows D(p) is the largest m such that there is no prime except p from p−m+1 to p+m. Hence,
D(p) = min{⌈p+ 1⌉P − p− 1, p− ⌊p− 1⌋P}.

Despite suspicion of a direct connection between degree of insulation and gap between primes,
note that unlike gaps, the value of D(p) can be odd as well.

Corollary 2.1. For a prime p > 2, if D(p) is odd then p + (D(p) + 1) is prime, else if D(p) is
even then p−D(p) is prime.

Proof. From Theorem 2.1, D(pk) = min{pk+1 − pk − 1, pk − pk−1}. Since the difference of two
primes is always even, so, if D(pk) is odd then D(pk) = pk+1−pk−1 ⇒ pk+1 = pk+D(pk)+1,
else if D(pk) is even then D(pk) = pk − pk−1 ⇒ pk−1 = pk −D(pk).

Proposition 2.3. For primes pn ≥ 5, if D(pn) = 1 then D(pn+1) = 2.

Proof. Due to Corollary 2.1, D(pn) = 1 implies pn + 2 is the next prime pn+1. In view of
Proposition 2.2, only m ∈ {1, 2} need to be checked within Xp for evaluating D(pn+1). To find
D(pn+1), we have two scenarios based on whether pn+1 + 2 is prime or not. We can conclude
that it is not possible for pn+1 + 2 to be a prime since it would imply the existence of the prime
triplet (pn, pn + 2, pn + 4) which contradicts a known fact that every prime number (greater than
3) is congruent to ±1 modulo 6. Under the remaining case that pn+1 + 2 is not a prime, we have

π(pn+1 − 1)
?
= π(pn+1 + 1)− 1 ⇒ n

?
= (n+ 1)− 1 ⇒ n = n

π(pn+1 − 2)
?
= π(pn+1 + 2)− 1 ⇒ n

?
= (n+ 1)− 1 ⇒ n = n

π(pn+1 − 3)
?
= π(pn+1 + 3)− 1 ⇒ n− 1

?
= (n+ 1)− 1 ⇒ n− 1 ̸= n,

which shows D(pn+1) = 2.

The next two results provide bounds on the degree of insulation. Following on the lines as
shown below, interested reader may explore further to obtain other bounds.

Proposition 2.4. For k ≥ 6, we have

D(pk) ≤ k − 1 + log((k − 1) log (k − 1)) + k log

(
k log k

(k − 1) log(k − 1)

)
. (1)

Proof. We know the inequality:

n(log(n log n)− 1) < pn < n log(n log n), (2)

where the left-hand side (due to Dusart [6]) holds for n ≥ 2 and the right-hand side (due to
Rosser [18]) holds for n ≥ 6. Then, due to Theorem 2.1, we have
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D(pk) ≤ pk − pk−1

≤ k − 1 + log((k − 1) log (k − 1)) + k log

(
k log k

(k − 1) log(k − 1)

)
where second line uses (2) to arrive at the final result.

Proposition 2.5. There exists a constant θ such that D(pk) < pθk − 1 for sufficiently large k.

Proof. Hoheisel [10] showed that there exists a constant θ < 1 such that

π(x+ xθ)− π(x) ∼ xθ

log(x)
as x → ∞, (3)

hence, showing pn+1 − pn < pθn for large n. Along with Theorem 2.1, we have D(pk) ≤ pk+1 −
pk − 1 < pθk − 1.

The constant θ has been extensively studied (for instance, see [1]). Hoheisel obtained the
possible value 32999

33000
, which was subsequently improved to 249

250
by Heilbronn [11]. Thereafter, its

value has been substantially reduced [8,9,12,19]. In 2001, Baker, Harman and Pintz [2] obtained
that θ may be taken to 0.525 which is the best known unconditional result. Under the assumption
that the Riemann hypothesis is true, much better results are known (see [3–5, 13, 17]).

Theorem 2.2. The definition of insulation of a prime pk is equivalent to

max{gk+1,min{gk−1, gk−2 + 1}} < gk < gk−1 +max{0, gk + 1− gk+1}, (4)

where gk = pk+1 − pk is the gap between consecutive primes.

Proof. The prime pk is insulated if and only if D(pk) > max{D(pk−1), D(pk+1)}. It can be
equivalently written as

D(pk)−max{D(pk−1), D(pk+1)} > 0

⇔min{D(pk)−D(pk−1), D(pk)−D(pk+1)} > 0

⇔min{min{gk − 1, gk−1} −D(pk−1),min{gk − 1, gk−1} −D(pk+1)} > 0

⇔min{gk − 1−D(pk−1), gk−1 −D(pk−1), gk − 1−D(pk+1), gk−1 −D(pk−1)} > 0,

where D(pk) = min{gk − 1, gk−1} using Theorem 2.1. The resulting inequality requires that the
minimum of the four entries should be positive, which happens if every entry is positive, that is,

max{gk − gk−1, gk − 1− gk−2} > 0

max{1, gk−1 − gk−2} > 0

min{1, gk+1 − gk} < 0

min{gk − gk−1, gk+1 − gk−1 − 1} < 0

(5)

since
gk − 1−D(pk−1) = gk − 1−min{gk−1 − 1, gk−2} = max{gk − gk−1, gk − 1− gk−2}
gk−1 −D(pk−1) = gk−1 −min{gk−1 − 1, gk−2} = max{1, gk−1 − gk−2}
gk − 1−D(pk+1) = gk − 1−min{gk+1 − 1, gk} = −min{1, gk+1 − gk}
gk−1 −D(pk+1) = gk−1 −min{gk+1 − 1, gk} = −min{gk − gk−1, gk+1 − gk−1 − 1}

.
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In (5), notice that the second inequality max{1, gk−1 − gk−2} > 0 is trivially true due to
the presence of 1 which makes the condition independent of the value of gk−1 − gk−2. The
third condition min{1, gk+1 − gk} < 0 will be true if and only if gk+1 − gk < 0. The first
and fourth inequalities can be expressed as gk − gk−1 + max{0, gk−1 − 1 − gk−2} > 0 and
gk − gk−1 + min{0, gk+1 − 1 − gk} < 0 respectively, which can be combined into a single
condition:

min{0, gk−2 + 1− gk−1} < gk − gk−1 < max{0, gk + 1− gk+1}.

Thus, (5) is reduced togk+1 < gk,

gk−1 +min{0, gk−2 + 1− gk−1} < gk < gk−1 +max{0, gk + 1− gk+1},

which can be further combined into a single condition to obtain the final result.

In order to carry out a formal study, let us first define:

fk(x) ≜
#{p ∈ P : D(p) = k and p ≤ x}

#{p ∈ P : p ≤ x}
(6)

which is the fraction of primes with D(p) = k over all primes below x. Figure 4 depicts that the
actual values approximately lie on the Gaussian curve:

fk(x) ≈
1√

2πσ(x)
exp

(
−1

2

(
k − 1

σ(x)

)2
)

(7)

for the parameter σ dependent on x. Figure 3 is a scatter plot which is evidently dense for smaller
values of D(p). This phenomenon is nicely expressed in Figure 4 which is the plot of true values
of fk along with the Gaussian fit predicted in (8).

Figure 3. Scatter plot of D(pn) for n ≤ 10000.
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Figure 4. Plot of fk versus k for primes less than 1000.

Theorem 2.3. If Eq. (7) and the Hardy–Littlewood conjecture are true, then

fk(x) ∼
2C

log x
exp

(
−4πC2

(
k − 1

log x

)2
)
, (8)

where C =
∏

p∈P>2

(
1− 1

(p−1)2

)
≈ 0.6601618 . . . is a constant.

Proof. For k = 1, we have

#{p ∈ P : D(p) = 1 and p ≤ x}
#{p ∈ P : p ≤ x}

≈ 1√
2πσ(x)

exp

(
−1

2

(
1− 1

σ(x)

)2
)

=
1√

2πσ(x)
,

where the left-hand side of the equation can be written as π2(x)

π(x)
(where π2(x) is the number of

twin-primes upto x) since counting the number of primes with D(p) = 1 gives the number of
twin-prime pairs due to Corollary 2.1. Substituting the asymptotic formula for the prime counting
function π(x) ∼

∫ x

2
dt
log t

∼ x
log x

, and the twin-prime counting π2(x) ∼ 2C
∫ x

2
dt

(log t)2
∼ 2C x

(log x)2

(conjectured by Hardy and Littlewood, and heuristically verified in [20]), we obtain

1

σ(x)
≈ π2(x)

π(x)

√
2π ∼

2C x
(log x)2

x
log x

√
2π =

2C
√
2π

log x
,

where C ≈ 0.6601618 . . . is the twin-prime constant. Substituting the expression for σ(x) in (7)
gives the final result.

The above analysis also motivates the following thought. Let ν(x, g) be the number of
primes up to x that differ by gap g. In 2014, Zhang [21] proved that there are infinitely many
pairs of primes that differ by g for some g less than 7 × 107; a bound which subsequently
has been improved to 246 unconditionally (see [15, 16] and the references therein). Now, if
ν(x, 2) ≥ ν(x, 4) ≥ ν(x, 6) ≥ · · · ≥ ν(x, g) for at least up to g = 246 then it would directly
imply the infinitude of twin-primes. This is a separate topic for a future work.
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3 Growth pattern of insulated primes

The most natural method for finding D(p) is its definition, which involves computing π(x).
Alternatively, one could identify the surrounding primes of a given prime and apply Theorem 2.1,
but this approach becomes impractical for extremely large primes. To reduce the number of
π(x) computations, one can leverage the results established in the previous section and employ
bracketing techniques. For example, instead of starting from 1 and performing a linear search, it is
more efficient to begin from a suitable initial guess, m0, and then refine it using methods like the
bisection method or genetic algorithm. In the case of very large primes, by applying Proposition
2.5 or a sharper inequality, one can select a good starting point, enabling faster convergence.

Insulated primes can be interpreted as the sequence of local maxima in the plot of degree of
insulation. The sequence of insulated primes is 7, 13, 23, 37, 53, 67, 89, 103, 113, 131, 139, 157,

173, 181, 193, and so on. Using MATLAB command cftool for the curve fitting toolbox, a
variety of curves (with different settings) were tested which suggested in obeys a power law. It
was observed that the equation y = 18.41n1.097 is an extremely good fit as shown in Figure 5.

Figure 5. Comparison of in plots for primes less than 105.

Figure 6. Comparison of in plots for primes less than 106.
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The equation performs even better when tested for primes up to one million as shown in
Figure 6. We can conclude that in ∼ 18.41n1.097 is heuristically an accurate fit for the specified
magnitude of primes. The analysis so far suffices to convince that insulated primes are definitely
well-behaved in comparison to primes or other prime subsets, though any concrete result would
need to be rigorously proven.

Figure 7. Plot of log in
logn

versus n.

Figure 7 is the plot of log in

logn
for first one million insulated primes. It offers some evidence that

the exponent in the power law governing in may possibly approach a limiting value as n becomes
large. However, a more thorough analytic investigation remains open.

4 Conclusion and Future scope

This paper investigates the properties of a newly defined sequence called the “insulated primes.”
These primes are characterized by their degree of insulation, a concept that has deep yet intricate
connections to the gaps between consecutive primes. Through mathematical analysis, several
interesting results are established. Moreover, heuristics suggest that the n-th insulated prime, in,
follows a power law, indicating that the sequence of insulated primes may exhibit more regular
behavior compared to the sequence of all primes.

An extension of this concept leads to the definition of “highly insulated primes.” Just as the
application of the idea of insulation to the set of primes P yields the set of insulated primes I,
applying the same concept to I produces the set of highly insulated primes IH . A prime in is
considered highly insulated if and only if D(in) > max{D(in−1), D(in+1)}. This sequence is
documented as A339188 in the OEIS, which begins as 23, 53, 89, 211, 293, and so on. Readers
interested in further exploration are encouraged to investigate this sequence.

It is also worth noting that applying the concept of insulation each time reduces the size of
the resulting set. This raises a thought-provoking question: could the repeated application of
insulation eventually produce a finite set? Therefore, it is worthwhile to study the cardinality of a
set formed by iteratively applying insulation.
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Availability of code. Mathematica codes are available in OEIS. For implementation in other
languages, visit https://github.com/anuraag-saxena/Insulated-Primes.
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