Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2024, Volume 30, Number 3, 590–594

DOI: 10.7546/nntdm.2024.30.3.590-594

On the set of $\underline{\operatorname{Set}}(n)$'s

Krassimir T. Atanassov

Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria

e-mail: krat@bas.bg

Received: 10 June 2024 **Revised:** 29 September 2024 **Accepted:** 16 October 2024 **Online First:** 22 October 2024

Abstract: The set of $\underline{\operatorname{Set}}(n)$'s for natural numbers n is constructed. For this set it is proved that it is a commutative semi-group. The conditions for which it is a monoid are given.

Keywords: Monoid, Natural number, Set(n).

2020 Mathematics Subject Classification: 11A25.

1 Introduction

For a fixed natural number $n \geq 2$, having the canonical form

$$n = \prod_{i=1}^k p_i^{\alpha_i},$$

where k, $\alpha_1, \alpha_2, \ldots, \alpha_k \ge 1$ are natural numbers and $p_1 < p_2 < \cdots < p_k$ are different prime numbers, in [1], we defined the set:

$$\underline{\operatorname{Set}}(n) = \left\{ m \mid m = \prod_{i=1}^{k} p_i^{\beta_i} \& \delta(n) \le \beta_i \le \Delta(n) \right\},\,$$

Copyright © 2024 by the Author. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

where

$$\delta(n) = \min(\alpha_1, \dots, \alpha_k),$$

$$\Delta(n) = \max(\alpha_1, \dots, \alpha_k).$$

Other authors (see, e.g. [5]) denote the functions δ and Δ by h and H, respectively.

In the present paper, for the natural numbers n, the set of $\underline{\text{Set}}(n)$ s is constructed and for this set it is proved that it is a commutative monoid.

2 Main results

Let everywhere below the natural numbers n and m have the canonical forms

$$m = \prod_{i=1}^{k+l} p_i^{\alpha_i} \ge 2,$$

$$n = \prod_{i=k+1}^{k+l+u} p_i^{\beta_i} \ge 2,$$

where $k, l, u \ge 0$ are natural numbers and obviously, (m, n) = 1 is and only if l = 0.

Therefore, they generate the sets

$$\underline{\operatorname{Set}}(m) = \left\{ a \mid a = \prod_{i=1}^{k+l} p_i^{\gamma_i} \& \delta(m) \le \gamma_i \le \Delta(m) \right\},$$

$$\underline{\operatorname{Set}}(n) = \left\{ b \mid b = \prod_{i=k+1}^{k+l+u} p_i^{\varepsilon_i} \& \delta(n) \le \varepsilon_i \le \Delta(m) \right\},$$

where

$$\delta(m) = \min(\alpha_1, \dots, \alpha_{k+l}),$$

$$\Delta(m) = \max(\alpha_1, \dots, \alpha_{k+l}).$$

$$\delta(n) = \min(\beta_{k+1}, \dots, \beta_{k+l+u}),$$

$$\Delta(n) = \max(\beta_{k+1}, \dots, \beta_{k+l+u}).$$

Obviously,

$$mn = \prod_{i=1}^{k+l} p_i^{\alpha_i} \cdot \prod_{i=k+1}^{k+l+u} p_i^{\beta_i} = \prod_{i=1}^k p_i^{\alpha_i} \cdot \prod_{i=k+1}^{k+l} p_i^{\alpha_i + \beta_i} \cdot \prod_{i=k+l+1}^{k+l+u} p_i^{\beta_i}.$$

The following question arises: What is the relation between sets $\underline{\operatorname{Set}}(m), \underline{\operatorname{Set}}(n)$ and $\underline{\operatorname{Set}}(mn)$ that can be constructed for the natural number mn?

The latter set must have the form:

$$\underline{\operatorname{Set}}(mn) = \left\{ c \mid c = \prod_{i=1}^{k+l+u} p_i^{\zeta_i} \& \delta(mn) \le \zeta_i \le \Delta(mn) \right\}. \tag{2}$$

Let us define the operation * by

$$Set(m) * Set(n) = Set(mn).$$
(3)

Let

$$\Sigma = \{ \underline{\operatorname{Set}}(n) \mid n \in \mathbb{N} \},\,$$

where \mathbb{N} is the set of the natural numbers.

For the set Σ we will prove the following theorem.

Theorem 1. $\langle \Sigma, * \rangle$ is a commutative semi-group.

Proof. First, we will show that the operation *, defined by (3) really gives the set in the right side of (2). Let $\underline{\operatorname{Set}}(n), \underline{\operatorname{Set}}(n) \in \Sigma$. Then

$$\underline{\operatorname{Set}}(m) * \underline{\operatorname{Set}}(n) = \left\{ a \mid a = \prod_{i=1}^{k+l} p_i^{\gamma_i} \& \delta(m) \le \gamma_i \le \Delta(m) \right\}$$

$$* \left\{ b \mid b = \prod_{i=k+1}^{k+l+u} p_i^{\varepsilon_i} \& \delta(n) \le \varepsilon_i \le \Delta(m) \right\}$$

$$= \left\{ c \mid c = \prod_{i=1}^{k+l} p_i^{\gamma_i} \cdot \prod_{i=k+1}^{k+l+u} p_i^{\varepsilon_i} \& \delta(m) \le \gamma_i \le \Delta(m) \& \delta(n) \le \varepsilon_i \le \Delta(m) \right\}$$

Having in mind that

$$\delta(mn) = \min(\alpha_1, \dots, \alpha_k, \alpha_{k+1} + \beta_{k+1}, \dots, \alpha_{k+l} + \beta_{k+l}, \beta_{k+l+1}, \dots, \beta_{k+l+u}),$$

$$\Delta(mn) = \max(\alpha_1, \dots, \alpha_k, \alpha_{k+1} + \beta_{k+1}, \dots, \alpha_{k+l} + \beta_{k+l}, \beta_{k+l+1}, \dots, \beta_{k+l+u}),$$

if we put

$$\zeta_i = \begin{cases} \gamma_i, & \text{for } i = 1, \dots, k \\ \gamma_i + \varepsilon_i, & \text{for } i = k + 1, \dots, k + l \\ \varepsilon_i, & \text{for } i = k + l + 1, \dots, k + l + u \end{cases}$$

then we will obtain that

$$\underline{\operatorname{Set}}(m) * \underline{\operatorname{Set}}(n) = \left\{ c \mid c = \prod_{i=1}^{k+l+u} p_i^{\zeta_i} \& \delta(mn) \le \zeta_i \le \Delta(mn) \right\} = \underline{\operatorname{Set}}(mn).$$

Hence $\underline{\mathrm{Set}}(mn) \in \Sigma$.

Second, in a similar, but essentially longer way, it is checked that for every three natural numbers m, n, r:

$$Set(m) * (Set(n) * Set(r)) = (Set(m) * (Set(n)) * Set(r),$$

i.e., the operation * is associative.

Third, for the natural numbers m and n we see as above that

$$\underline{\operatorname{Set}}(m) * \underline{\operatorname{Set}}(n) = \left\{ c \mid c = \prod_{i=1}^{k+l+u} p_i^{\zeta_i} \& \delta(mn) \le \zeta_i \le \Delta(mn) \right\}$$

$$= \left\{ c \mid c = \prod_{i=1}^{k+l+u} p_i^{\zeta_i} \& \delta(nm) \le \zeta_i \le \Delta(nm) \right\}$$

$$= \underline{\operatorname{Set}}(n) * \underline{\operatorname{Set}}(m),$$

i.e., the operation * is commutative.

This proves the Theorem.

It is easy to see that if we define

$$\underline{\operatorname{Set}}(1) = \{1\},\$$

then $\langle \Sigma, *, \underline{\operatorname{Set}}(1) \rangle$ is not a (commutative) monoid, because for $\underline{\operatorname{Set}}(n) * \underline{\operatorname{Set}}(1)$ we will have that $\delta(n.1)$ must be equal to 1 even when $\delta(n) > 1$. Obviously, for each natural number n, $\delta(n) = 1$ if and only if n has at least one divisor with a degree 1. Now, let us define

$$\Sigma^* = \{ \underline{\operatorname{Set}}(n) \mid n \in \mathbb{N} \& \delta(n) = 1 \}.$$

For it the following theorem is valid.

Theorem 2. $\langle \Sigma^*, *, \underline{\operatorname{Set}}(1) \rangle$ is a commutative monoid.

Really, now

$$\underline{\operatorname{Set}}(n) * \underline{\operatorname{Set}}(1) = \underline{\operatorname{Set}}(n) = \underline{\operatorname{Set}}(1) * \underline{\operatorname{Set}}(n).$$

Now, we can define

$$(\operatorname{Set}(n))^2 = \operatorname{Set}(n) * \operatorname{Set}(n).$$

Then by induction we can prove that for every two natural numbers $n, s \ge 2$:

$$(\underline{\operatorname{Set}}(n))^s = (\underline{\operatorname{Set}}(n))^{s-1} * \underline{\operatorname{Set}}(n) = \left\{ m \mid m = \prod_{i=1}^k p_i^{\beta_i} \& s\delta(n) \le \beta_i \le s\Delta(n) \right\}.$$

Really, from (3) we obtain as the first step of the induction that

$$(\underline{\operatorname{Set}}(n))^2 = \underline{\operatorname{Set}}(n) * \underline{\operatorname{Set}}(n) = \left\{ m \mid m = \prod_{i=1}^k p_i^{\beta_i} \& 2\delta(n) \le \beta_i \le 2\Delta(n) \right\}.$$

All operators from modal and topological type, defined over $\underline{\operatorname{Set}}(n)$ in [1–4] can be applied over $\underline{\operatorname{Set}}(n) * \underline{\operatorname{Set}}(n)$, too.

3 Conclusion

In the paper, the set Σ was defined and some of its properties have been studied. An **Open Problem** is what other interesting properties Σ has.

References

- [1] Atanassov, K. (2020). Objects generated by an arbitrary natural number. *Notes on Number Theory and Discrete Mathematics*, 26(4), 57–62.
- [2] Atanassov, K. (2022). Objects generated by an arbitrary natural number. Part 2: Modal aspect. *Notes on Number Theory and Discrete Mathematics*, 28(3), 558–563.
- [3] Atanassov, K. (2023). Objects generated by an arbitrary natural number. Part 3: Standard modal-topological aspect. *Notes on Number Theory and Discrete Mathematics*, 29(1), 171–180.
- [4] Atanassov, K. (2023). Objects generated by an arbitrary natural number. Part 4: New aspects. *Notes on Number Theory and Discrete Mathematics*, 29(3), 589–597.
- [5] Sándor, J., & Crstici, B. (2005). *Handbook of Number Theory. II.* Springer Verlag, Berlin.