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1 Introduction

For a fixed natural number n ≥ 2, having the canonical form

n =
k∏

i=1

pαi
i ,

where k, α1, α2, . . . , αk ≥ 1 are natural numbers and p1 < p2 < · · · < pk are different prime
numbers, in [1], we defined the set:

Set(n) =

{
m | m =

k∏
i=1

pβi

i & δ(n) ≤ βi ≤ ∆(n)

}
,
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where

δ(n) = min(α1, . . . , αk),

∆(n) = max(α1, . . . , αk).

Other authors (see, e.g. [5]) denote the functions δ and ∆ by h and H , respectively.
In the present paper, for the natural numbers n, the set of Set(n)s is constructed and for this

set it is proved that it is a commutative monoid.

2 Main results

Let everywhere below the natural numbers n and m have the canonical forms

m =
k+l∏
i=1

pαi
i ≥ 2,

n =
k+l+u∏
i=k+1

pβi

i ≥ 2,

where k, l, u ≥ 0 are natural numbers and obviously, (m,n) = 1 is and only if l = 0.
Therefore, they generate the sets

Set(m) =

{
a | a =

k+l∏
i=1

pγii & δ(m) ≤ γi ≤ ∆(m)

}
,

Set(n) =

{
b | b =

k+l+u∏
i=k+1

pεii & δ(n) ≤ εi ≤ ∆(m)

}
,

where

δ(m) = min(α1, . . . , αk+l),

∆(m) = max(α1, . . . , αk+l).

δ(n) = min(βk+1, . . . , βk+l+u),

∆(n) = max(βk+1, . . . , βk+l+u).

Obviously,

mn =
k+l∏
i=1

pαi
i ·

k+l+u∏
i=k+1

pβi

i =
k∏

i=1

pαi
i ·

k+l∏
i=k+1

pαi+βi

i ·
k+l+u∏

i=k+l+1

pβi

i .

The following question arises: What is the relation between sets Set(m), Set(n) and Set(mn)

that can be constructed for the natural number mn?
The latter set must have the form:

Set(mn) =

{
c | c =

k+l+u∏
i=1

pζii & δ(mn) ≤ ζi ≤ ∆(mn)

}
. (2)
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Let us define the operation ∗ by

Set(m) ∗ Set(n) = Set(mn). (3)

Let
Σ = {Set(n) | n ∈ N},

where N is the set of the natural numbers.
For the set Σ we will prove the following theorem.

Theorem 1. ⟨Σ, ∗⟩ is a commutative semi-group.

Proof. First, we will show that the operation ∗ , defined by (3) really gives the set in the right side
of (2). Let Set(m), Set(n) ∈ Σ. Then

Set(m) ∗ Set(n) =
{
a | a =

k+l∏
i=1

pγii & δ(m) ≤ γi ≤ ∆(m)

}

∗
{
b | b =

k+l+u∏
i=k+1

pεii & δ(n) ≤ εi ≤ ∆(m)

}

=

{
c | c =

k+l∏
i=1

pγii ·
k+l+u∏
i=k+1

pεii & δ(m) ≤ γi ≤ ∆(m) & δ(n) ≤ εi ≤ ∆(m)

}
Having in mind that

δ(mn) = min(α1, . . . , αk, αk+1 + βk+1, . . . , αk+l + βk+l, βk+l+1, . . . , βk+l+u),

∆(mn) = max(α1, . . . , αk, αk+1 + βk+1, . . . , αk+l + βk+l, βk+l+1, . . . , βk+l+u),

if we put

ζi =


γi, for i = 1, . . . , k

γi + εi, for i = k + 1, . . . , k + l

εi, for i = k + l + 1, . . . , k + l + u

then we will obtain that

Set(m) ∗ Set(n) =
{
c | c =

k+l+u∏
i=1

pζii & δ(mn) ≤ ζi ≤ ∆(mn)

}
= Set(mn).

Hence Set(mn) ∈ Σ.
Second, in a similar, but essentially longer way, it is checked that for every three natural

numbers m,n, r:

Set(m) ∗ (Set(n) ∗ Set(r)) = (Set(m) ∗ (Set(n)) ∗ Set(r),

i.e., the operation * is associative.
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Third, for the natural numbers m and n we see as above that

Set(m) ∗ Set(n) =
{
c | c =

k+l+u∏
i=1

pζii & δ(mn) ≤ ζi ≤ ∆(mn)

}

=

{
c | c =

k+l+u∏
i=1

pζii & δ(nm) ≤ ζi ≤ ∆(nm)

}
= Set(n) ∗ Set(m),

i.e., the operation ∗ is commutative.
This proves the Theorem.

It is easy to see that if we define
Set(1) = {1},

then ⟨Σ, ∗, Set(1)⟩ is not a (commutative) monoid, because for Set(n) ∗ Set(1) we will have that
δ(n.1) must be equal to 1 even when δ(n) > 1. Obviously, for each natural number n, δ(n) = 1

if and only if n has at least one divisor with a degree 1. Now, let us define

Σ∗ = {Set(n) | n ∈ N & δ(n) = 1}.

For it the following theorem is valid.

Theorem 2. ⟨Σ∗, ∗, Set(1)⟩ is a commutative monoid.

Really, now
Set(n) ∗ Set(1) = Set(n) = Set(1) ∗ Set(n).

Now, we can define
(Set(n))2 = Set(n) ∗ Set(n).

Then by induction we can prove that for every two natural numbers n, s ≥ 2:

(Set(n))s = (Set(n))s−1 ∗ Set(n) =
{
m |m =

k∏
i=1

pβi

i & sδ(n) ≤ βi ≤ s∆(n)

}
.

Really, from (3) we obtain as the first step of the induction that

(Set(n))2 = Set(n) ∗ Set(n) =
{
m | m =

k∏
i=1

pβi

i & 2δ(n) ≤ βi ≤ 2∆(n)

}
.

All operators from modal and topological type, defined over Set(n) in [1–4] can be applied
over Set(m) ∗ Set(n), too.

3 Conclusion

In the paper, the set Σ was defined and some of its properties have been studied. An Open
Problem is what other interesting properties Σ has.
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