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Note on a quadratic inequality
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Abstract: In this note we obtain a quadratic inequality based on a result of Atanassov but in a
more symmetric form. Somewhat surprisingly, well-known properties of Chebyshev polynomials
can be used to give a straightforward proof.
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1 Introduction

In [1] Atanassov proved the following elementary quadratic inequality. (See also [2] and [3] for
similar results.) The notation here differs slightly from the notation used in [1].

For all real numbers {a1, . . . , an} (n ≥ 2),

n−1∑
k=1

ak+1(ak − ak+1) ≤
1

2(n− 1)

n−1∑
k=1

a2k.

Separating out the cross and square terms, this becomes

n−1∑
k=1

ak+1(ak − ak+1) ≤
1

2(n− 1)
a21 +

2n− 1

2(n− 1)

n−1∑
k=2

a2k + a2n. (1)
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The right hand side of this inequality is assymetrical as it gives different weights to the terms
in the sequence. If we look for a more symmetric expression, then a natural problem arises: can
we find constants λn such that

n−1∑
k=1

ak+1 ak ≤ λn

n∑
k=1

a2k (2)

for all real numbers {a1, . . . , an} (n ≥ 2).

The purpose of this note is to find the best constants.

2 Main result

Fix n and for simplicity write λn = x in (2). We can write the quadratic form obtained from (2)
as

2x
n∑

k=1

a2k − 2
n−1∑
k=1

ak+1ak = aT Hn a (3)

where a = (a1, . . . , an)
T and Hn is the n× n symmetric matrix

Hn =



2x −1 0 0 · · ·
−1 2x −1 0 · · ·
0 −1 2x −1 · · ·

. . .
· · · 0 −1 2x −1

· · · 0 0 −1 2x


.

Then the inequality (2) is equivalent to finding the smallest value of x such that Hn is positive
(semi-definite).

Let Un = Un(x) be the determinant of Hn. Expanding the determinant along (say) the first
row, we obtain

Un = 2xUn−1 − Un−2 (n ≥ 2), (4)

where we define U0 = 1.
The recurrence relation (4) is the defining relation of the Chebyshev polynomials of the second

kind (see, e.g. [4]) whose solutions are

Un(x) =
sin(n+ 1)t

sin t
where x = cos t. (5)

For a fixed n, the zeros of Un in [−1, 1] are the the values

xk = cos

(
k

n+ 1
π

)
k = 1 · · ·n (6)

Now for Hn to be positive, semi-definite, the determinants of Hk must all be positive,
(k = 1, . . . , n). Because limx→∞ Un(x) = ∞, this means that x cannot be smaller than the
largest zero of the Hk’s. From (6) this means that x ≥ cos

(
π

n+ 1

)
. So we have our main result.
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Theorem 2.1. Fix n ≥ 2. Then

n−1∑
k=1

ak+1 ak ≤ cos−1

(
π

n+ 1

) n∑
k=1

a2k

for all real numbers {a1, . . . , an} (n ≥ 1).

(Here we must obviously choose cos−1
(

π

n+ 1

)
∈ [0, 1].)

Note that the inequality is best possible since it becomes equality precisely when we choose
[a1, . . . , an] to be in the null space of Hn.
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