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1 Introduction

Let φ(n), ψ(n) and σ(n) denote the classical arithmetic functions, representing Euler’s totient,
Dedekind’s function, and the sum of divisors functions, respectively. Let φ∗(n) and σ∗(n) denote
the unitary analogues of the functions φ and σ. Is is well-known that these arithmetical functions
with the convention φ(1) = ψ(1) = σ(1) = φ∗(1) = σ∗(1) = 1 are multiplicative, and for prime
powers n = pa (p prime, a ≥ 1 integer) one has (see [4])

φ(pa) = pa ·
(
1− 1

p

)
, ψ(pa) = pa ·

(
1 +

1

p

)
, σ(pa) =

pa+1 − 1

p− 1
(1)

and
φ∗(pa) = pa − 1, σ∗(pa) = pa + 1. (2)
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Inspired by a paper by K. T. Atanassov [1] and the author [3], in a recent note S. Dimitrov [2]
has proved the following interesting inequalities:

Theorem 1. For all n ≥ 2 one has

φ2(n) + ψ2(n) + σ2(n) ≥ 3n2 + 2n+ 3. (3)

Theorem 2. For all n ≥ 2 one has

φ(n)ψ(n) + φ(n)σ(n) + σ(n)ψ(n) ≥ 3n2 + 2n− 1. (4)

In what follows, we shall prove the following refinements of (3) and (4), as well as a unitary
analogue for each of these relations:

Theorem 3. For all n ≥ 2 one has

φ2(n) + ψ2(n) + σ2(n) ≥ φ2(n) + 2ψ2(n) ≥ 3n2 + 2n+ 3. (5)

Theorem 4. For all n ≥ 2 one has

φ(n)ψ(n) + φ(n)σ(n) + σ(n)ψ(n) ≥ ψ2(n) + 2φ(n)ψ(n) ≥ 3n2 + 2n− 1. (6)

Theorem 5. For all n ≥ 2 one has

(φ∗(n))2 + (ψ(n))2 + (σ∗(n))2 ≥ (φ∗(n))2 + 2(σ∗(n))2 ≥ 3n2 + 2n+ 3. (7)

Theorem 6. For all n ≥ 2 one has

φ∗(n)ψ(n) + φ∗(n)σ∗(n) + ψ(n)σ∗(n) ≥ 2φ∗(n)σ∗(n) + (σ∗(n)2) ≥ 3n2 + 2n− 1. (8)

2 Proofs of main results

Two of the ingredients of the proofs are the following auxiliary results:

Lemma 1. Let xi > 1 (i = 1, 2, . . . , n) be real numbers. Then

n∏
i=1

(xi − 1)2 + 2
n∏

i=1

(xi + 1)2 ≥ 3
n∏

i=1

x2i + 2
n∏

i=1

xi + 3. (9)

Lemma 2. Let xi > 1 (i = 1, 2, . . . , n) be real numbers. Then

n∏
i=1

(xi + 1)2 + 2
n∏

i=1

(xi − 1)2 ≥ 3
n∏

i=1

x2i + 2
n∏

i=1

xi − 1. (10)

Remark 1. There is equality in (9) or (10) only for n = 1.
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Proof. We will prove only Lemma 1, the proof of Lemma 2 being similar. It is clear that, for
n = 1 there is equality in (9), as (x − 1)2 + 2(x + 1)2 = 3x2 + 2x + 3. Let us assume that (9)
holds true for n ≥ 2. It is easy to verify by direct computation that (9) holds true for n = 2, with
strict inequality. Now assume that (9) is valid for n ≥ 2, and we will prove that it holds for n+1,

too. The inequality for n+ 1 can be written as
n∏

i=1

(xi − 1)2 · (xn+1 − 1)2 + 2 ·
n∏

i=1

(xi + 1)2 · (xn+1 + 1)2

≥ 3
n∏

i=1

x2i · x2n+1 + 2
n∏

i=1

xi · xn+1 + 3.

(11)

The left side of (11) can be written as
n∏

i=1

(xi − 1)2 · (x2n+1 − 2xn+1 + 1) + 2
n∏

i=1

(xi + 1)2 · (x2n+1 + 2xn+1 + 1)

=

[
n∏

i=1

(xi − 1)2 + 2
n∏

i=1

(xi + 1)2

]
· x2n+1

+ 2xn+1 ·

[
2

n∏
i=1

(xi + 1)2 −
n∏

i=1

(xi − 1)2

]

+
n∏

i=1

(xi − 1)2 + 2
n∏

i=1

(xi + 1)2

> 3
n∏

i=1

x2i · x2n+1 + 2
n∏

i=1

xi · x2n+1 + 3x2n+1

by the induction assumption, and the trivial facts

2
n∏

i=1

(xi + 1)2 −
n∏

i=1

(xi − 1)2 > 0,

n∏
I=1

(xi − 1)2 + 2
n∏

i=1

(xi − 1)2 > 0.

Now, by xn+1 > 1 we get that (9) holds true also for n + 1 in place of n. By mathematical
induction, inequality (9) follows for all n ≥ 1, with equality only for n = 1.

Lemma 3. If pi (i = 1, 2, . . . , n) are distinct primes and ai (i = 1, 2, . . . , n) ≥ 1 integers, then

2

p1 · · · pr
+

3

p21 · · · p2r
≥ 2

pa11 · · · parr
+

3

p2a11 . . . p2art

(12)

2

p1 · · · pr
− 1

p21 · · · p2r
≥ 2

pa11 · · · parr
− 1

p2a11 . . . p2art

. (13)

Proof. (12) follows by pa11 · · · parr ≥ p1 · · · pr and p2a11 · · · p2arr ≥ p21 · · · p2r. For the proof of (13),
write the inequality in the form

2

p1 · · · pr
− 2

pa11 · · · parr
≥ 1

p21 · · · p2r
− 1

p2a11 · · · p2arr

,
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or
2 ·

(
pa1−1
1 · · · par−1

r − 1
)

pa11 · · · parr
≥ p2a1−2

1 · · · p2ar−2
r − 1

p2a11 · · · p2arr

.

Reducing with pa1−1
1 · · · pa1−1

r − 1, (when it is not zero) and pa11 · · · parr , we get

2pa11 · · · parr ≥ pa1−1
1 · · · par−1

r + 1,

or
pa1−1
1 · · · par−1

r · (2p1 · · · pr − 1) ≥ 1,

which is true, or pai−1
i ≥ 1 and 2p1 · · · pr − 1 > 1. This proves (12).

Proofs of Theorems 5 and 6

First remark that relation (7) of Theorem 5 follows by the known inequality ψ(n) ≥ σ∗(n)

(see e.g. [3]). In a similar manner, the first inequality of (8) of Theorem 6 follows by the
same inequality. Now, for the proof of second inequality of (7), apply Lemma 1 for xi = paii
(i = 1, 2, . . . , r), where n =

∏r
i=1 p

ai
i is the prime factorization of n.

Applying (9) (with “r” in place of “n”) and using relation (2), we get the desired inequality
of (7). In the same manner, the second inequality of (8) of Theorem 6 follows by Lemma 2, as
(paii + 1)2 = (σ∗(paii ))

2 and φ∗(paii )σ
∗(paii ) = p2aii − 1 by relation (2). □

Proofs of Theorem 3 and 4

The first inequality of relation (5) of Theorem 3 follows by σ(n) ≥ ψ(n). For the proof of second
inequality, remark that this inequality can be written as(

φ(n)

n

)2

+ 2 ·
(
ψ(n)

n

)2

≥ 3 +
2

n
+

3

n2
. (14)

Remark that if n =
∏r

i=1 p
ai
i is the prime factorization on n, then

φ(n)

n
=

r∏
i=1

φ(pi)

pi
and

ψ(n)

n
=

r∏
i=1

ψ(pi)

pi
.

By relation (12) of Lemma 3, it will be sufficient to prove inequality (14) for n = p1p2 · · · pr.
Applying now Lemma 1 for xi = pi (i = 1, 2, . . . , r) and “r” in place of “n”, inequality (14)
follows. This proves Theorem 3.

The proof of Theorem (4) is similar, by application of inequality (13) of Lemma 3, and using
the same methods as in the case of Theorem 3.

As there is equality in Lemma 1 (and Lemma 2) only for n = 1, and there is equality in
Lemma 3 only for a1 = · · · = ar = 1, we get that there is Theorem 3 and 4 only form n = prime,
while in case of Theorems 5 and 6 again only for n = prime (as ψ(n) = σ∗(n) only for n =

squarefree, and by taking into account Lemma 2). □
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