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1 Introduction

Sums of powers of integers 1n +2n + · · ·+mn have been studied for hundreds of years and even
now there is still a steady stream of articles published on the subject. Jacques Bernoulli ([1], pp.
95–97) had introduced the numbers called after his name to evaluate the sum of the n-th powers
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of the first m integers. He then proved the following summation formula (see, for example, (6.78)
of Graham, Knuth, and Patashnik [6] and Theorem 1.19 of Kerr [16]) .

n∑
ℓ=1

ℓk =
1

k + 1

k∑
ℓ=0

(−1)ℓBℓ

(
k + 1

ℓ

)
nk−ℓ+1

=
1

k + 1
(Bk+1(n+ 1)−Bk+1(1)) , (1)

where n, k ≥ 1 and Bℓ are the Bernoulli numbers with B1 = −1/2.
The Faulhaber theorem states that the sum of the odd powers

12m−1 + 22m−1 + · · ·+ n2m−1

can be expressed as a polynomial of the triangular number Tn = n(n + 1)/2. Let λ =

m(m+ 2x+ 1) be the sum of x+ 1, x+ 2, . . . , x+m. Then extended and generalized results of
the sums of integer powers in terms of the sum of arithmetic series, λ, are surveyed and developed
in Chen, Fu, and Zhang [2], which are given as

n∑
ℓ=1

(x+ ℓ)2k−1 =
k∑

ℓ=1

λℓ

2k

k∑
j=ℓ

(
2k

2j

)(
j

ℓ

)(
x+

1

2

)2j−2ℓ

B2k−2j

(
1

2

)
. (2)

In this paper, we will study the divisibility of the sums of powers by using the Girard–Waring
identity of the sums of two power terms, xn + yn. Albert Girard published a class of identities in
Amsterdam in 1629 and Edward Waring published similar material in Cambridge in 1762–1782,
which are referred as the Girard–Waring identities later. These identities may be derived from the
earlier work of Sir Isaac Newton. Surveys and some applications of these identities can be found
in Comtet [3] (p. 198), Gould [5], Shapiro and one of the authors [8], and [10]. Nie, Chen and
the authors [12] give a different approaches to derive the Girard–Waring identities by using the
Binet formula of recursive sequences and divided differences. Meanwhile, this approach offers
some formulas and identities that have more wider applications, for instance, the transformations
of certain recursive sequences to the Chebyshev polynomials of the first kind and the Chebyshev
polynomials of the second kind shown in Weng and the authors [13]. Recently, [11] present a
general rule of construction of identities for recursive sequences by using sequence transformation
techniques developed in [12]. In this sense, this paper is a derivative, successor, and development
of [12] and [11].

The Girard–Waring identity and its Binet form can be presented by

xn + yn =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k

k

)
(xy)k(x+ y)n−2k, (3)

xn+1 − yn+1

x− y
=

∑
0≤k≤[n/2]

(−1)k
(
n− k

k

)
(xy)k(x+ y)n−2k. (4)

Shapiro and one of the authors [8] used Riordan array approach to establish the Binet type
Girard–Waring identity (4). Paper [12] establishes the formula
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(
a1 − ya0
x− y

)
xn −

(
a1 − xa0
x− y

)
yn = a1(x+ y)n−1

+

[n/2]∑
j=1

1

j

(
n− j − 1

j − 1

)
(−1)j(x+ y)n−2j−1(xy)j (j(x+ y)a0 + (n− 2j)a1) ,

which includes Binet Girard–Waring identity as a special case of a0 = 0 and a1 = 1.
There are some alternative forms of the Girard–Waring identity. As an example, we present

the following one. If x+ y + z = 0, then the Girard–Waring identity gives

xn + yn =
∑

0≤k≤[n/2]

(−1)k
n

n− k

(
n− k

k

)
(−z)n−2k(xy)k

= (−1)nzn +
∑

1≤k≤[n/2]

(−1)n−k n

n− k

(
n− k

k

)
zn−2k(xy)k,

which implies

xn + yn − (−1)nzn =
∑

1≤k≤[n/2]

(−1)n−k n

n− k

(
n− k

k

)
zn−2k(xy)k.

Thus, when n is even, we have formula

xn + yn − zn =
∑

1≤k≤n/2

(−1)n−k n

n− k

(
n− k

k

)
zn−2k(xy)k, (5)

while for odd n we have

xn + yn + zn =
∑

1≤k≤[n/2]

(−1)n−k n

n− k

(
n− k

k

)
zn−2k(xy)k, (6)

where x+ y + z = 0. Particularly, if n = 3, then

x3 + y3 + z3 = 3xyz, (7)

which was shown in [10]. Furthermore, the following proposition was represented in [10], which
can also be observed directly from (6).

Proposition 1.1. Let x, y ∈ N. Then pxy(x+ y) | (xp + yp − (x+ y)p) when p ≥ 3 is a prime.

In the next section and Section 3, we give an approach to find divisibility of two type of sums
of powers of consecutive integers, respectively. In Section 4, we present another approach to study
the divisibility of the powers of integers in terms of arithmetic series by using the Faulhaber’s
theorem and the formula shown in Chen, Fu, and Zhang [2]. Finally, we discuss the power sums
expressed in terms of Stirling numbers of the second kind in Section 5.
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2 Divisibility of sums of powers of consecutive integers

It is well known that the sum of cubes of three consecutive integers is always divisible by 9 (see,
for example, Rosen [17]). Does it hold for other positive integer k for which the sum of k-th
powers of k consecutive integers is divisible for k2? It is easy to check the answer is negative
for k = 2, 4, etc. However, for odd k the situation is quite different. In Ho, Mellblom, and
Frodyma [14], it has been shown that for any odd positive integer k and m, the sum of the
(mk)-th powers of consecutive integers

nmk + (n+ 1)mk + · · ·+ (n+ k − 1)mk (8)

of any k consecutive integers is always divisible by k2. We will show that this result can be proved
by using the Girard–Waring identity. More precisely, let us denote by S(m, k, n) the above sum
(mod k2) of (mk)-th powers of k consecutive terms beginning with the integer n. We may drop
the symbol n and write S(m, k) instead, namely,

S(m, k) := 1mk + 2mk + · · ·+ kmk. (9)

Proposition 2.1. Let x, y ∈ N, and let p ≥ 3 be a prime number. If x + y = p, then
xp + yp ≡ 0 (mod p2). Furthermore, for any odd positive integer m, there holds

xpm + ypm ≡ 0 (mod p2). (10)

Proof. Substituting x+ y=z=p into Proposition 1.1, we immediately get p2xy | (xp + yp − pp),

which implies xp + yp ≡ 0 (mod p2), or equivalently, xp ≡ −yp (mod p2). If m is an odd
positive integer, then

(xp)m ≡ (−yp)m (mod p2).

Hence, we obtain (10).

Corollary 2.2. Let p ≥ 3 be a prime number, and let m be an odd positive integer. Denote

S(m, p) := 1mp + 2mp + · · ·+ pmp

and
S ′(m, p) := 1mp + 2mp + · · ·+ (p− 1)mp.

Then S(m, p) and S ′(m, p) ≡ 0 (mod p2).

Proof. From Proposition 2.1 for k = 1, 2, . . . , [p/2]

kmp + (p− k)mp ≡ 0 (mod p2).

Hence

S(m, p) =

[p/2]∑
k=1

(kmp + (p− k)mp) + pmp ≡ 0 (mod p2).

S ′(m, p) ≡ 0 (mod p2) can be obtained because pmp ≡ 0 (mod p2) (p ≥ 3).
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Remark 2.3. The result on S(m, p) of Corollary 2.2 is included in Theorem 2 of [14] by using a
different approach.

A similar process can be applied to extend the above result.

Proposition 2.4. Let p ≥ 3 be a prime number, and let m be an odd positive integer. For any
t ∈ N, denote

Ŝ(m, pt) := 1mp + 2mp + · · ·+ (pt)mp

and
Ŝ ′(m, pt) := 1mp + 2mp + · · ·+ (pt − 1)mp.

Then Ŝ(m, pt) and Ŝ ′(m, pt) ≡ 0 (mod pt+1).

Proof. Let x, y ∈ N with x + y = pt, and let p ≥ 3 be a prime number. Then from Proposition
1.1,

pt+1xy | (xp + yp − (pt)p),

which implies xp + yp ≡ 0 (mod pt+1). If m is an odd positive integer, then

xpm + ypm ≡ 0 (mod pt+1)

when x+ y = pt. Thus

Ŝ(m, pt) = 1mp + 2mp + · · ·+ (pt − 2)pm + (pt − 1)pm + (pt)mp

= (pt)mp + (1mp + (pt − 1)mp) + (2mp + (pt − 2)pm) + · · ·
≡ 0 (mod pt+1).

Ŝ ′(m, pt) ≡ 0 (mod pt+1) follows.
Here, Ŝ(m, pt) ≡ 0 (mod pt+1) because (pt)mp ≡ 0 (mod pt+1).

Remark 2.5. Formula (4) of Hsu [15] presents

n∑
k=1

km =
m∑
j=1

j!

{
m

j

}(
n+ 1

j + 1

)
,

where
{
m
j

}
are the Stirling numbers of the second kind. Thus for an odd integer m

1mp + 2mp + · · ·+ (pt)mp =

mp∑
j=1

j!

{
mp

j

}(
pt + 1

j + 1

)
.

Then, from Proposition 2.4, we have

mp∑
j=1

j!

{
mp

j

}(
pt + 1

j + 1

)
≡ 0 (mod pt+1)

for any prime p ≥ 3.

We now consider the general case of p = k ∈ N is any odd positive integer.
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Proposition 2.6. Let x, y ∈ N with x+ y = k, an odd positive integer. Then

xk + yk ≡ 0 (mod k2). (11)

Proof. Note [k/2] = (k−1)/2 when k ∈ N is an odd number, and for 1 ≤ i ≤ (k−1)/2 k
k−i

(
k−i
i

)
are integers, since they are the coefficients of the Lucas polynomial. It can also be proved from
the following observation:

k

k − i

(
k − i

i

)
=

(
k − i

i

)
+

(
k − i− 1

i− 1

)
= 2

(
k − i

i

)
−
(
k − i− 1

i

)
.

Then, from the Girard–Waring identity (3) we have

xk + yk − (x+ y)k =
∑

1≤i≤(k−1)/2

(−1)i
k

k − i

(
k − i

i

)
(x+ y)k−2i(xy)i

=
∑

1≤i≤(k−3)/2

(−1)i
k

k − i

(
k − i

i

)
(x+ y)k−2i(xy)i

+(−1)(k−1)/2 2k

k + 1

(k+1
2

k−1
2

)
(x+ y)(xy)(k−1)/2

=
∑

1≤i≤(k−3)/2

(−1)i
k

k − i

(
k − i

i

)
kk−2i(xy)i + (−1)(k−1)/2k2(xy)(k−1)/2,

where every term of the sum on the rightmost contains the factor k2 because that the exponent of
kk−2i, k − 2i ≥ 3. Note the coefficient of the last term comes from

(−1)(k−1)/2 2

k + 1

(k+1
2

k−1
2

)
= (−1)(k−1)/2 2

k + 1

k + 1

2
= (−1)(k−1)/2.

Thus, we obtain

xk + yk − kk ≡ 0 (mod k2),

which implies (11).

Proposition 2.7. Let k be an odd positive integer, and let m be an odd positive integer. Denote

S(m, k) := 1mk + 2mk + · · ·+ kmk

and
S ′(m, k) := 1mk + 2mk + · · ·+ (k − 1)mk.

Then
S(m, k), S ′(m, k) ≡ 0 (mod k2). (12)

Proof. From Proposition 2.6, we have xk ≡ −yk (mod k2). For an odd positive integer m,
(xk)m ≡ −(yk)m (mod k2) follows. Thus xkm+ykm ≡ 0 (mod k2) when x+y=k. Consequently,
we have (12).
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Remark 2.8. The result on S(m, k) of Proposition 2.7 is included in Theorem 1 of [14] by using
a different approach.

Considering the case of odd k and even m, we may have the following result.

Proposition 2.9. Let k be an odd positive integer, and let m be an even positive integer. Then

S(m, k) := 1mk + 2mk + · · ·+ kmk

≡ 2(−1)m/2
∑

u+v=k,u<v

(uv)mk/2 (mod k2). (13)

Proof. From Proposition 2.6, we have xk + yk ≡ 0 (mod k2) if x + y = k. Denote a = xk and
b = yk. From (3), for an even positive integer m

am + bm =
∑

0≤i≤m/2

(−1)i
m

m− i

(
m− i

i

)
(a+ b)m−2i(ab)i

=
m

m

(
m

0

)
(a+ b)m + (−1)

m

m− 1

(
m− 1

1

)
(a+ b)m−2(ab)1 + · · ·

+(−1)(m/2)−1 m

m− (m/2) + 1

(
m
2
+ 1

m
2
− 1

)
(a+ b)2(ab)(m/2)−1

+(−1)m/2 m

m/2

(
m
2
m
2

)
(ab)m/2.

On the rightmost side of the above equation, all terms except the last one contain factor k2 because
a+ b = xk + yk. Thus,

am + bm = xmk + ymk ≡ 2(−1)m/2(xy)mk/2 (mod k2).

Consequently,

S(m, k) := 1mk + 2mk + · · ·+ kmk

= (1km + (k − 1)km) + (2km + (k − 2)km) + · · ·

+

([
k

2

]km
+

([
k

2

]
+ 1

)km
)

+ kkm

≡ 2(−1)m/2
∑

u+v=k,u<v

(uv)mk/2 (mod k2).

Example 2.10. As examples of Proposition 2.9, we have

S(2, 3) = (13)2 + (23)2 + (33)2 ≡ 2(−1)
∑

u+v=3,0<u<v

(uv)3 (mod 32)

≡ −2(1 · 2)3 (mod 32) ≡ 2 (mod 32)

S(4, 3) = (13)4 + (23)4 + (33)4 ≡ 2(−1)2
∑

u+v=3,0<u<v

(uv)6 (mod 32)

≡ 2(1 · 2)6 (mod 32) ≡ 2 (mod 32).
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In general, we have the following result for sequence (S(2ℓ, 3))ℓ≥1.

Corollary 2.11. For ℓ = 1, 2, . . . ,

S(2ℓ, 3) ≡ 2 (mod 32). (14)

Proof. Example shows that S(2, 3) ≡ 2 ( mod 32). Using mathematical induction, one may prove
that (14) is true. However, a direct proof can be given without using induction.

S(2ℓ, 3) ≡ 2(−1)ℓ
∑

u+v=3,0<u<v

(uv)3ℓ (mod 32)

= 2(−1)ℓ23ℓ (mod 32)

= 2(−1)ℓ(23)ℓ (mod 32)

= 2(−1)ℓ(−1)ℓ (mod 32)

= 2 (mod 32).

Example 2.12. This example gives a divisible case for odd k and even m. From Proposition 2.9
we obtain

S(2, 7) := 17 + (27)2 + · · ·+ (77)2 ≡ −2
∑

u+v=7,u<v

(uv)k (mod 72)

≡ −2
(
(1 · 6)7 + (2 · 5)7 + (3 · 4)7

)
(mod 72)

≡ −92223488 (mod 72) ≡ 0 (mod 72).

We now extend the result shown in Corollary 2.11 to S(m, p) for a prime p ≥ 3 and some m,
which is a special case of S(m, k) with odd integer k. In fact, [14] gives the following result.

Proposition 2.13. [14] Let p ≥ 3 be a prime number, and let ℓ be a positive integer. Then

S((p− 1)ℓ, p) ≡ (p− 1) (mod p2). (15)

Proof. We present a brief proof here for the convenience of the readers. We consider two cases.
The first case is for (a, p) = 1. Then, from Euler’s phi function theorem, we have aϕ(p

2) =

ap(p−1) ≡ 1 (mod p2). Thus, for 1 ≤ i ≤ p − 1, we have (iℓ)p(p−1) ≡ 1 (mod p2). The second
case is for p | a. Then, (pℓ)p(p−1) ≡ 0 (mod p2). Thus, we have

S((p− 1)ℓ, p) =(1ℓ)p(p−1) + (2ℓ)p(p−1) + · · ·+ ((p− 1)ℓ)p(p−1) + (pℓ)p(p−1)

≡(p− 1) (mod p2).

Corollary 2.14. Let p ≥ 3 be a prime number. Then

2
∑

u+v=p,0<u<v

(−uv)p(p−1)/2 ≡ (p− 1) (mod p2). (16)

Proof. From Proposition 2.9 we have

S(p− 1, p) := 1p(p−1) + 2p(p−1) + · · ·+ pp(p−1)

≡ 2(−1)(p−1)/2
∑

u+v=p,0<u<v

(uv)p(p−1)/2 (mod p2), (17)

which implies (16) after using (15) for ℓ = 1.
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Remark 2.15. An alternative proof of (15) can be represented by considering two cases. The
first case is for even ℓ. Then, by using Proposition 2.9 and noting that p ≥ 3 is an odd positive
integer, we have

S((p− 1)ℓ, p) := 1p(p−1)ℓ + 2p(p−1)ℓ + · · ·+ pp(p−1)ℓ

≡ 2(−1)(p−1)ℓ/2
∑

u+v=p,0<u<v

(uv)p(p−1)ℓ/2 (mod p2). (18)

Thus, for all 0 < u < v with u+ v = p

(uv)p(p−1)ℓ/2 =
(
(uv)ℓ/2

)p(p−1) ≡ 1 (mod p2)

which yields

S((p− 1)ℓ, p) ≡ 2(−1)(p−1)ℓ/2
[p
2

]
(mod p2) ≡ 2

p− 1

2
(mod p2).

The second case is for odd ℓ. Then, by noting that ℓ = 2k + 1 for a positive integer k and
p ≥ 3 is an odd positive integer, from Proposition 2.9 we have

2(−1)(p−1)ℓ/2
∑

u+v=p,0<u<v

(uv)p(p−1)ℓ/2

= 2(−1)(p−1)/2
∑

u+v=p,0<u<v

(uv)p(p−1)k(uv)p(p−1)/2

≡ 2(−1)(p−1)/2
∑

u+v=p,0<u<v

(uv)p(p−1)/2 (mod p2).

Thus, the problem is reduced to prove

2(−1)(p−1)/2
∑

u+v=p,0<u<v

(uv)p(p−1)/2 ≡ (p− 1) (mod p2),

completing the proof. A short cut process for the case of odd ℓ maybe done as follows

S((p− 1)ℓ, p) ≡ S(p− 1, p) (mod p2) ≡ (p− 1) (mod p2).

3 Divisibility of the sum 1k + 2k + · · ·+ nk

We now establish the following general results on the divisibility of the sum

Sk(n) := 1k + 2k + · · ·+ nk (19)

for odd integers k ≥ 3 and n ∈ N.

Proposition 3.1. Let Sk(n) be the sum defined by (19), and let n and k ≥ 3 be odd integers
satisfying k ≡ 0 (mod n). Then

Sk(n) ≡ 0 (mod n2). (20)
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Proof. Noting for odd integers n and k ≥ 3

ik + (n− i)k ≡ ik + kn(−i)k−1 + (−i)k ≡ knik−1 (mod n2),

we may write Sk(n) as

Sk(n) =
[
1k + (n− 1)k

]
+
[
2k + (n− 2)k

]
+ · · ·

+

[(
n− 1

2

)k

+

(
n+ 1

2

)k
]
+ nk

≡ kn

[
1k−1 + 2k−1 + · · ·+

(
n− 1

2

)k−1
]
+ nk (21)

≡ 0 (mod n2), (22)

where, in the last step, we used k ≡ 0 (mod n). This completes the proof.

In Damianou and Schumer [4], Von Staudt–Clausen Theorem (see Theorem 118 of Hardy and
Wright [7]) is applied to establish the following result.

Theorem 3.2. [4] Let Sk(n) be the sum defined by (19). Then Sk(n) ≡ 0 (mod n) if and only if
for every prime p that divides n, p− 1 ∤ k.

By using Theorem 3.2 and noting the decomposition formula shown in (22) we obtain the
following conditions of n and k for the divisibility n2 |Sk(n).

Theorem 3.3. Let Sk (p
α) be the sum defined by (19), and let p be an odd prime, α ∈ N, and

k ≥ 3 an odd integers. Then the divisibility (pα)2 |Sk (p
α) holds if p− 1 ∤ (k − 1).

Proof. From (22), we have

Sk(n) ≡ kn

[
1k−1 + 2k−1 + · · ·+

(
n− 1

2

)k−1
]
+ nk (mod n2).

Since for 1 ≤ i ≤ n− 1 and odd k ≥ 3, ik−1 ≡ (n− i)k−1 (mod n) we have

1k−1 + 2k−1 + · · ·+
(
n− 1

2

)k−1

≡ (n− 1)k−1 + (n− 2)k−1 + · · ·+
(
n− n− 1

2

)k−1

(mod n)

= (n− 1)k−1 + (n− 2)k−1 + · · ·+
(
n+ 1

2

)k−1

(mod n).

Consequently, for k ≥ 3

Sk−1(n) ≡ Sk−1(n− 1) ≡ 2

[
1k−1 + 2k−1 + · · ·+

(
n− 1

2

)k−1
]
(mod n).

Particularly,

Sk−1 (p
α) ≡ Sk−1 (p

α − 1) ≡ 2

[
1k−1 + 2k−1 + · · ·+

(
pα − 1

2

)k−1
]
(mod pα) .
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Thus, from Theorem 3.2 we obtain that p− 1 ∤ (k − 1) implies

1k−1 + 2k−1 + · · ·+
(
pα − 1

2

)k−1

≡ 0 (mod pα) ,

so that

Sk(p
α) ≡ kpα

[
1k−1 + 2k−1 + · · ·+

(
pα − 1

2

)k−1
]
+ (pα)k ≡ 0

(
mod (pα)2

)
.

Theorem 3.4. Let Sk (pq) be the sum defined by (19), and let p and q be distinct odd primes and
k ≥ 3 an odd integers. Then the divisibility (pq)2 |Sk (pq) holds if k ∈ A \B, where

A = {k : k ∈ N and k ̸≡ 1 (mod p− 1)} and B = {k : k ∈ N and k ≡ 1 (mod q − 1)}.

Furthermore, the divisibility (pq)2 |d · Sk (pq) holds if k ∈ A, where

d =

{
q if k ≡ 1 (mod q − 1) and k ̸= q

1 otherwise
.

Proof. We now prove the first part of the theorem. Since k is odd, in view of (22), we have

Sk(n) ≡ kn

(
1k−1 + 2k−1 + · · ·+

(
n− 1

2

)k−1
)

+ nk (mod n2). (23)

Owing to p− 1 ∤ k − 1 and q − 1 ∤ k − 1, by Theorem 3.2, we have

Sk−1(pq) ≡ 0 (mod pq). (24)

Since k is odd, we get ik−1 ≡ (n− i)k−1 (mod n). It follows that

Sk−1(pq) = 1k−1 + 2k−1 + · · ·+
(
pq − 1

2

)k−1

+

(
pq + 1

2

)k−1

+ · · ·+ (pq − 1)k−1 + (pq)k−1

≡ 2

(
1k−1 + 2k−1 + · · ·+

(
pq − 1

2

)k−1
)

(mod pq). (25)

Combining (24) and (25) yields that

2

(
1k−1 + 2k−1 + · · ·+

(
pq − 1

2

)k−1
)

≡ 0 (mod pq).

Under the condition that p and q are odd primes, we see that(
1k−1 + 2k−1 + · · ·+

(
pq − 1

2

)k−1
)

≡ 0 (mod pq).
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which, together with (23), implies that

Sk(pq) ≡ 0 (mod (pq)2).

To prove the second part of the theorem, we use (23) to get

qSk(n) ≡ knq

(
1k−1 + 2k−1 + · · ·+

(
n− 1

2

)k−1
)

+ qnk (mod n2).

Since k ≥ 3, we get

qSk(pq) ≡ kpq2

(
1k−1 + 2k−1 + · · ·+

(
pq − 1

2

)k−1
)

(mod (pq)2). (26)

Next we show that if p− 1 ∤ k − 1, then

p |

(
1k−1 + 2k−1 + · · ·+

(
pq − 1

2

)k−1
)
.

Since
pq − 1

2
= p · q − 1

2
+

p− 1

2
,

we have

1k−1 + 2k−1 + · · ·+
(
pq − 1

2

)k−1

= (1k−1 + 2k−1 + · · ·+ pk−1) + ((p+ 1)k−1 + (p+ 2)k−1 + · · ·+ (2p)k−1)

+ · · ·+

((
p
q − 3

2
+ 1

)k−1

+

(
p
q − 3

2
+ 2

)k−1

+ · · ·+
(
p
q − 3

2
+ p

)k−1
)

+

((
p
q − 1

2
+ 1

)k−1

+

(
p
q − 1

2
+ 2

)k−1

+ · · ·+
(
p
q − 1

2
+

p− 1

2

)k−1
)

≡ q − 1

2
(1k−1 + 2k−1 + · · ·+ pk−1) +

(
1k−1 + 2k−1 + · · ·+

(
p− 1

2

)k−1
)

(mod p). (27)

Recalling that p− 1 ∤ k − 1, we obtain

Sk−1(p) ≡ 0 (mod p). (28)

The condition that k ≥ 3 is odd implies ik−1 ≡ (p− i)k−1 (mod p). Thus,

Sk−1(p) = 1k−1 + 2k−1 + · · ·+
(
p− 1

2

)k−1

+

(
p+ 1

2

)k−1

+ · · ·+ (p− 1)k−1 + pk−1

= 2

(
1k−1 + 2k−1 + · · ·+

(
p− 1

2

)k−1
)

(mod p). (29)
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Combining (28) and (29) and noting that p is an odd prime, we obtain that(
1k−1 + 2k−1 + · · ·+

(
p− 1

2

)k−1
)

≡ 0 (mod p). (30)

Therefore, if k ≡ 1 (mod q − 1) and k ̸= q, by (26), we have

qSk(pq) ≡ 0 (mod (pq)2).

If k = q, (23) and (30) imply that

Sk(pq) ≡ 0 (mod (pq)2).

This completes the proof.

Example 3.5. For p = 5 and q = 7, p−1 ∤ (k−1) or k ̸≡ 1 (mod 4) implies k ∈ {4ℓ+3:ℓ ∈ N}.
From Theorem 3.4, Sk(35) ≡ 0 (mod 352) for all k ∈ {4ℓ + 3 : ℓ ∈ N} \ {6ℓ + 1 : ℓ ∈ N}.
For instance, k = 3, 11, 15, 23, 27, 35, 39, etc. Furthermore, dSk(35) ≡ 0 (mod 352) for all
k ∈ {4ℓ+ 3 : ℓ ∈ N}, where

d =

{
7, if k ≡ 1 (mod 6) and k ̸= 7,

1, otherwise.
.

Thus dSk(35) ≡ 0 (mod 352) for k = 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, etc.
Similarly, dSk(55) ≡ 0 (mod 552), where

d =

{
11, if k ≡ 1 (mod 10) and k ̸= 11

1 otherwise
,

for k = 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, etc. Sk(55) ≡ 0 (mod 552) for k =

3, 7, 11, 15, 19, 23, 27, 35, 39, 43, 47, 55, etc.

Example 3.6. Sk(6n+ 1) ≡ 0 (mod (6n+ 1)2) for all 0 ≤ n ≤ 20 and the following k:

3, 5, 7, 11, 15, 23, 27, 35, 39, 47, 59, 63, 75, 83, 87, 95, 99, 105, 107, 119, 123, etc.

If the 6n+ 1 is replaced by 30n+ 1, then we may add 9, 17, 29, 53, and 57 in the above list.

4 Faulhaber’s approach for the divisibility
of sums of powers of integers

Faulhaber’s formula, named after Johann Faulhaber, expresses the sum of the k-th powers of the
first n positive integers Sk(n) as a (k + 1)-th degree polynomial function of n, the coefficients
involving Bernoulli numbers Bj , in the form

Sk(n) =
n∑

ℓ=1

ℓk =
1

k + 1

k∑
ℓ=0

(
k + 1

ℓ

)
Bℓ n

k+1−ℓ, (31)
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where we use the Bernoulli number of the second kind B1 = 1/2. If we use the Bernoulli number
of the first kind B1 = −1/2 and noting all Bernoulli numbers with odd index k ≥ 3 are zero, then
formula (31) becomes (1), i.e.,

Sk(n) =
n∑

ℓ=1

ℓk =
1

k + 1

k∑
ℓ=0

(−1)ℓBℓ

(
k + 1

ℓ

)
nk+1−ℓ, (32)

where B1 = −1/2.
We first give a corollary of Proposition 3.1 and Theorem 3.3.

Corollary 4.1. Let Sk(n) be the sum defined by (19) with odd integers n and k ≥ 3. Then if
either (i) k ≡ 0 (mod n) or (ii) n = pα, a positive integer power of a prime p, and p−1 ∤ (k−1)

implies
1

k + 1

k∑
ℓ=0

(
k + 1

ℓ

)
Bℓ n

k−ℓ−1 ∈ N, (33)

where B1 = 1/2, and
1

k + 1

k∑
ℓ=0

(−1)ℓBℓ

(
k + 1

ℓ

)
nk−ℓ−1 ∈ N, (34)

where B1 = −1/2.

Proof. In case (i), by using Proposition 3.1 we know n2 | Sk(n). Thus, from Faulhaber’s formulas
(31) and (32), we obtain (33) and (34).

In case (ii), by using Theorem 3.3 we know (pα)2 | Sk(p
α). Thus, from Faulhaber’s formulas

(31) and (32), we get (33) and (34).

We now consider the divisibility of the sums of powers of arithmetic sequence {a+(i−1)d}
1≤i≤k

,

where (d, k) = 1, denoted by S(a, d; k) and defined by

S(a, d; k) :=
k∑

i=1

(a+ (i− 1)d)k = ak + (a+ d)k + · · ·+ (a+ (k − 1)d)k. (35)

Theorem 4.2. Let a, d, and k ∈ N, where k is an odd number with (d, k) = 1, and let S(a, d; k)
be the series defined by (35). Then S(a, d; k) ≡ 0 (mod k2).

Proof. For i = 1, 2, . . . , k we have

(a+ (i− 1)d) ≡ ji (mod k), (36)

where ji ∈ {1, 2, . . . , k}. Since (d, k) = 1, j1, j2, . . . , and jk are distinct, otherwise ji = jm for
some i > m implies

(a+ (i− 1)d)− (a+ (m− 1)d) = (i−m)d ≡ 0 (mod k),

From (i−m)d ≡ 0 (mod k), we have k | d(i−m). Under the condition (d, k) = 1, we infer that
k | (i − m), which is contrary to the fact that k ∤ (i − m) for any 1 ≤ m < i ≤ k. Therefore,
j1, j2, . . . , and jk are distinct.
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From (36), for some ℓ we have

(a+ (i− 1)d)k − jki = (ji + ℓk)k − jki

= jk−1
i

(
k

1

)
(ℓk) + jk−2

i

(
k

2

)
(ℓk)2 + · · ·+

(
k

k

)
(ℓk)k

≡ 0 (mod k2).

Thus
k∑

i=1

(a+ (i− 1)d)k ≡
k∑

i=1

jki =
k∑

j=1

jk ≡ 0 (mod k2),

completing the proof of the theorem.

Remark 4.3. If a = d = 1, then S(1, 1; k) = S(1, k) and the result of Theorem 4.2 reduces to
Proposition 2.7.

Because of the relation (a + bi)m = bm(a/b + i)m, there is no loss of generality to consider
the sum of the powers of x+ i, namely,

∑n
i=1(x+ i)m. If x is a positive integer, then the last sum

can be written as
n∑

i=1

(x+ i)m =
n+x∑
i=1

im −
x∑

i=1

im.

By Faulhaber’s theorem, the two sums on the right-hand side are polynomials in (n+x)(n+x+1)

and x(x+ 1), respectively. Using the relation

(n+ x)(n+ x+ 1) = n(n+ 2x+ 1) + x(x+ 1),

we see that

[(n+ x)(n+ x+ 1)]i − [x(x+ 1)]i =
i∑

k=1

(
i

k

)
[n(n+ 2x+ 1)]k[x(x+ 1)]i−k,

which is a polynomial in n(n+ 2x+ 1). Hence, we have the following result.

Proposition 4.4. Let p ≥ 3 be a prime number, and let n be a positive integer with p as a factor.
If x is a positive integer satisfying p | (2x+ 1), then

n∑
i=1

(x+ i)m ≡ 0 (mod p2)

for all m = 0, 1, 2, . . . .

Proof. It is sufficient to notice that

p2

∣∣∣∣∣
i∑

k=1

(
i

k

)
[n(n+ 2x+ 1)]k[x(x+ 1)]i−k
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5 Power sum and Stirling numbers of the second kind

The Stirling numbers of the second kind, denoted by
{
n
k

}
, count the number of ways to partition a

set of n labelled objects into k nonempty unlabelled subsets. The Stirling numbers of the second
kind may also be characterized as the coefficients of the expansion of powers of an indeterminate
x in terms of the falling factorials (x)n = x(x− 1)(x− 2) · · · (x− n+1). In particular, (x)0 = 1

because it is an empty product. Hence,

n∑
k=0

{
n

k

}
(x)k = xn. (37)

Substituting n → n+ 1 into (37) and noting
{
n+1
0

}
= 0 for all n ≥ 0, we have

n+1∑
k=1

{
n+ 1

k

}
(x− 1)k−1 = xn. (38)

Expression of xk shown in (37) may help us to write the power sum Sk(n) =
∑n

j=1 j
k as

Sk(n) =
n∑

j=1

k∑
i=0

{
k

i

}
(j)i

=
n∑

j=1

k∑
i=0

{
k

i

}
i!

(
j

i

)

Since
{
k
0

}
= 0 for all k > 1, by interchanging the sums of the rightmost side of the above

equation and noting(
n+ 1

i+ 1

)
=

(n
i

)
+

(
n− 1

i

)
+ · · ·+

(
i+ 1

i

)
+

(
i+ 1

i+ 1

)
=

(n
i

)
+

(
n− 1

i

)
+ · · ·+

(
i+ 1

i

)
+

(
i

i

)
,

we obtain

Sk(n) =
k∑

i=1

{
k

i

}
i!

(
n∑

j=i

(
j

i

))
=

k∑
i=1

{
k

i

}
i!

(
n+ 1

i+ 1

)

=
k∑

i=1

{
k

i

}
1

i+ 1
(n+ 1)i+1 = (n+ 1)

k∑
i=1

1

i+ 1

{
k

i

}
(n)i.

Substituting (38) into Sk(n) =
∑n

j=1 j
k and noting (j − 1)i−1 = (i− 1)!

(
j−1
i−1

)
and(n

i

)
=

(
n− 1

i− 1

)
+

(
n− 2

i− 1

)
+ · · ·+

(
i− 1

i− 1

)
,

we have
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Sk(n) =
n∑

j=1

k+1∑
i=1

{
k + 1

i

}
(j − 1)i−1

=
n∑

j=1

k+1∑
i=1

{
k + 1

i

}
(i− 1)!

(
j − 1

i− 1

)

=
k+1∑
i=1

{
k + 1

i

}( n∑
j=i

(i− 1)!

(
j − 1

i− 1

))

=
k+1∑
i=1

{
k + 1

i

}
(i− 1)!

(n
i

)
=

k+1∑
i=1

1

i

{
k + 1

i

}
(n)i.

Hence, we obtain the following results.

Proposition 5.1. Denote Sk(n) =
∑n

j=1 j
k and let

{
n
k

}
be the Stirling numbers of the second

kind. Then

Sk(n) = (n+ 1)
k∑

i=1

1

i+ 1

{
k

i

}
(n)i (39)

Sk(n) =
k+1∑
i=1

1

i

{
k + 1

i

}
(n)i. (40)

Remark 5.2. Formula (39) is familiar, for instance, see (4) in [15].

Since an odd prime p |
{
p
i

}
for all 2 ≤ i ≤ p− 1 and

{
p
1

}
=
{
p
p

}
= 1, if n = k = p, from (39)

we know that
n+ 1

i+ 1
(n)i =

p+ 1

i+ 1
i!
(p
i

)
is divisible by p when i = 1 and i = p. Hence we have the following corollary.

Corollary 5.3. Denote Sk(n) =
∑n

j=1 j
k. Then p |Sp(p), where p ≥ 3 is a prime.
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