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Abstract: In this paper we study the properties of the unbounded sequence 0<y1≤y2≤y3≤· · ·
of positive reals having asymptotic distribution function of the form xλ. As a consequence, we
immediately get information on the asymptotic behavior of the power means of order r > 0 of
function values of some arithmetic functions, e.g., the first n prime numbers or the values of the
prime counting function.
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1 Introduction

Let 0 < y1 ≤ y2 ≤ y3 ≤ · · · be an unbounded sequence of positive real numbers. This sequence
we shortly denote by Y . The following sequence ym/yn, n = 1, 2, . . . , m = 1, 2, . . . , n is called
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the ratio block sequence of the sequence Y . It is formed by the blocks Y1, Y2, . . . , Yn, . . . , where

Yn =

(
y1
yn

,
y2
yn

, . . . ,
yn
yn

)
, n = 1, 2, . . .

is called the n-th block. This kind of block sequences derived from strictly increasing sequence of
positive integers was introduced by O. Strauch and J. T. Tóth [14] and they studied the set of their
distribution functions. For further results on this topic, see [2], Chapter 1.8.23 in [13], expository
paper [12] and the references therein.

If one allows the Y sequence to not exclusively consist of integers, a significant portion of
the previously known statements will remain unchanged or only slightly modified. We will
show that a substantial portion of the results on the asymptotic behaviour of arithmetic mean
(geometric mean, power mean) of the sequence Y are strongly associated with the property that
the distribution function of the corresponding block sequence is of the form xλ.

We note that in this paper we employ the notations Y and Yn for the sequences under
examination, as opposed to the previous papers where X and Xn were used. This distinction
is made to illustrate that the scenario is not the same when we focus exclusively on sequences of
positive integers.

2 Definitions

• If r is a non-zero real number, and y1, y2, . . . , yn, are positive real numbers, then the
generalized mean or power mean with exponent r of these positive real numbers is

Mr(y1, y2, . . . , yn) =

(
1

n

n∑
i=1

yri

) 1
r

.

For r = 0 we set it equal to the geometric mean (which is the limit of means with exponents
approaching zero).

The following basic definitions are from the paper of O. Strauch [12].

• For each n ∈ N consider the step distribution function

F (Yn, x) =
#{i ≤ n; yi

yn
< x}

n
,

of the sequence 0 < y1 ≤ y2 ≤ y3 ≤ · · · for x ∈ [0, 1), and for x = 1, we define
F (Yn, 1) = 1.

Using
yi
ym

< x ⇐⇒ yi
yn

< x
ym
yn

from the definition above of F (Yn, x), it directly follows that

F (Ym, x) =
n

m
F

(
Yn, x

ym
yn

)
≤ n

m
F (Yn, x) (1)

for every m ≤ n and x ∈ [0, 1].
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• A non-decreasing function g : [0, 1] → [0, 1], g(0) = 0, g(1) = 1 is called distribution
function. We shall identify any two distribution functions coinciding at common points of
continuity.

• A distribution function g(x) is a distribution function of the sequence of blocks Yn,
n = 1, 2, . . . , if there exists an increasing sequence n1 < n2 < · · · of positive integers
such that

lim
k→∞

F (Ynk
, x) = g(x)

almost everywhere on [0, 1]. This is equivalent to the weak convergence, i.e., the preceding
limit holds for every point x ∈ [0, 1] of continuity of g(x).

• Denote by G(Yn) the set of all distribution functions of Yn, n = 1, 2, . . . . If G(Yn) =

{g(x)} is a singleton, the distribution function g(x) is also called the asymptotic distribution
function of Yn.
Specifically, if G(Yn) = {x}, then we say that the sequence of blocks Yn is uniformly
distributed in [0, 1].

• We will use the one-step distribution function cα(x) with the step at α ∈ [0, 1] defined on
[0, 1] via cα(1) = 1 and for x < 1

cα(x) =

0, if x ≤ α

1, if x > α
.

In particular, we always have cα(0) = 0.

3 Results

The following theorem determines which distribution functions can be considered as singletons.

Theorem 3.1. Assume that G(Yn) = {g}. Then for x ∈ [0, 1] either

(i) g(x) = c0(x) or

(ii) g(x) = c1(x) or

(iii) g(x) = xλ for some λ > 0.

The proof is identical to the proof of Theorem 8.2 in [14], with the exception that when
considering the distribution functions of block sequences of positive real numbers, we must
also take into account the distribution function c1(x). We mention as an example the case
yn = ln(n+1), n = 1, 2, . . . which has singleton c1(x) and the case yn =

√
n, n = 1, 2, . . . with

G(Yn) = x2.
In the next two theorems, we give the necessary and sufficient conditions for a block sequence

of the sequence Y to have an asymptotic distribution function of the form xλ.
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Theorem 3.2. Let λ > 0 be a real number and 0 < y1 ≤ y2 ≤ y3 ≤ · · · be a sequence of positive
real numbers. The necessary and sufficient condition for G(Yn) = {xλ} is that

lim
n→∞

1

n

n∑
i=1

yi
yn

=
λ

λ+ 1
. (2)

The proof is the same as for Theorem 1 in [2].

We give an alternative proof of the following Theorem of Filip and Tóth [3].

Theorem 3.3. Let λ > 0 be a real number and 0 < y1 ≤ y2 ≤ y3 ≤ · · · be a sequence of positive
real numbers. The necessary and sufficient condition for G(Yn) = {xλ} is that for every positive
integer k the following limit holds

lim
n→∞

ykn
yn

= k
1
λ . (3)

Proof. First, we show that the condition (3) is necessary for the block sequence to have an
asymptotic distribution function of the form xλ. We prove this part by contradiction. To the
contrary, we suppose that G(Yn) = {xλ} for some λ > 0 and the limit (3) does not hold for some
k. Then there are two possibilities:

1) lim infn→∞
ykn
yn

> k
1
λ ,

2) lim supn→∞
ykn
yn

< k
1
λ .

In the first case, there exists an η > 0 such that for infinitely many integers n we have

yn
ykn

<
1

k
1
λ

− η. (4)

On the other hand, from the condition G(Yn) = {xλ} it follows that

lim
n→∞

F

(
Ykn,

1

k1/λ
− η

)
= lim

n→∞

#{i ≤ kn; yi
ykn

< 1
k1/λ

− η}
kn

=

(
1

k1/λ
− η

)λ

<
1

k
,

which contradicts the fact that by (4) for infinitely many n

#

{
i ≤ kn;

yi
ykn

<
1

k1/λ
− η

}
≥ n.

The analysis of the second case is similar and left to the reader.

To prove the sufficiency assume that (3) holds for any positive integer k. Let α ∈ (0, 1). We
will show that

lim
n→∞

F (Yn, α) = lim
n→∞

#
{
i ≤ n; yi

yn
< α

}
n

= αλ.

Fix such an ε > 0 for which ε < min{α, 1 − α}. Choose α1 and α2 such that α − ε < α1 < α

and α < α2 < α+ε. Furthermore, let αλ
1 and αλ

2 be rational numbers with the same denominator,
αλ
1 = a

b
and αλ

2 = c
b

for suitable positive integers a, b, c. As a consequence of (3), we have

lim
m→∞

yαλ
1 bm

ybm
= lim

n→∞

yam
ybm

= lim
m→∞

yam
ym
ybm
ym

=
(a
b

) 1
λ
= α1 < α.
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Then there exists an m0 such that for every m ≥ m0 we have

yαλ
1 bm

ybm
< α.

Hence, if i ≤ αλ
1bm, then yi

ybm
< α. This means that

#

{
i ≤ bm;

yi
ybm

< α

}
≥ αλ

1bm.

Then

lim inf
m→∞

#{i ≤ bm; yi
ybm

< α}
bm

≥ lim inf
m→∞

αλ
1bm

bm
= αλ

1 ≥ (α− ε)λ. (5)

Similarly, we can show that

lim sup
m→∞

#{i ≤ bm; yi
ybm

< α}
bm

≤ lim sup
m→∞

αλ
2bm

bm
= αλ

2 ≤ (α + ε)λ. (6)

Since (5) and (6) hold for an arbitrary small positive ε, therefore, we have

lim
m→∞

F (Ybm, α) = lim
m→∞

#{i ≤ bm; yi
ybm

< α}
bm

= αλ. (7)

Taking into account that for arbitrary positive integers n and b there exists a nonnegative integer
m for which bm ≤ n < b(m+ 1) together with the inequality (1), we get

F (Ybm, α) ≤
n

bm
F (Yn, α) and F (Yn, α) ≤

b(m+ 1)

n
F (Yb(m+1), α)

which yields
bm

b(m+ 1)
F (Ybm, α) ≤ F (Yn, α) ≤

b(m+ 1)

bm
F (Yb(m+1), α).

Using the sandwich theorem for the terms in the previous inequality, we get that F (Yn, α) → αλ

for n → ∞ which completes the proof of the theorem.

Below, we can see the advantage of not exclusively concentrating on sequences consisting
solely of positive integers when considering distribution functions.

Corollary 3.1. Let Y denote the sequence 0 < y1 ≤ y2 ≤ y3 ≤ · · · and Y c denote the sequence
0 < yc1 ≤ yc2 ≤ yc3 < · · · for some c > 0 and Y c

n denote the related blocks. If G(Yn) = {xλ}, then
we have G(Y c

n ) = {xλ
c }.

Proof. The assertion follows from the definition of the step distribution function,

F (Y c, x) =
#
{
i ≤ n;

yci
ycn

< x
}

n
=

#
{
i ≤ n; yi

yn
< x

1
c

}
n

= F
(
Yn, x

1
c

)
and

lim
n→∞

F (Y c
n , x) = lim

n→∞
F
(
Yn, x

1
c

)
=
(
x

1
c

)λ
.

In virtue of Theorem 3.2 and Corollary 3.1, we can establish the asymptotic behavior of power
mean of the first n terms of the sequences studied.
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Corollary 3.2. Let Y denote the sequence 0 < y1 ≤ y2 ≤ y3 ≤ · · · and G(Yn) = {xλ}. Then for
any r > 0

lim
n→∞

Mr(y1, . . . , yn)

yn
= lim

n→∞

(
1

n

n∑
i=1

yri
yrn

) 1
r

=

(
λ
r

λ
r
+ 1

) 1
r

=

(
λ

λ+ r

) 1
r

, (8)

further for the sum of powers we get
n∑

i=1

yri ∼
λ

λ+ r
nyrn. (9)

Using (3), we can show that the block sequence of the following number theoretical sequences
is uniformly distributed in [0, 1] and from (9) we get the related asymptotic results for λ = 1.

In the case yn = pn, equation (9) was obtained by [9], see also [7].

Let cn,k, n = 1, 2, . . . is the sequence of numbers with k prime factors. Equation (9) for the
case yn = cn,k was obtained by Jakimczuk [5]. We note that

cn,k ∼
n.(k − 1)! log n

(log log log n)k−1
.

The next asymptotic result seems to be original. Let πk(x) be the number of integers less
than or equal to x which can be written as product of k prime factors. It was already known to
Landau [8], Section 56, that

πk(x) ∼
1

(k − 1)!

x(log log x)k−1

log x
.

In this case, we get
n∑

i=1

πr
k(i) ∼

1

1 + r
nπr

k(n).

If we consider the sequence pnπ(n) (or p2n, respectively π(n)2), we get the related sums of
powers in (9) for λ = 1

2
. The details are left to the reader.

There are several papers concerning the geometric mean of the first n primes (see [11], [10],
[6], [1]), which in our notation is

lim
n→∞

M0

(
p1
pn

, . . . ,
pn
pn

)
=

1

e
. (10)

For simplicity, we will denote

Mr

(
p1
pn

, . . . ,
pn
pn

)
by Mr(Pn). We get the same limit as above if we consider the limit

lim
r→0+

lim
n→∞

Mr(Pn) = lim
r→0+

(
1

1 + r

) 1
r

=
1

e
,

(see (8)), but to prove (10), we have to consider the limit

lim
n→∞

lim
r→0+

Mr(Pn). (11)
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In general, the problem of proving or disproving whether under the conditions of Corollary
3.2 we can exchange the limit order

lim
n→∞

lim
r→0+

Mr

(
y1
yn

, . . . ,
yn
yn

)
= lim

r→0+
lim
n→∞

Mr

(
y1
yn

, . . . ,
yn
yn

)
is open.

We can prove it only in the special case, considering the sequence of prime numbers. Here,
we give an alternative proof of (10).

Theorem 3.4. Let pn denote the n-th prime number. Then the limit (10) holds.

Proof. The Moore–Osgood Theorem states that if one of the limits converges pointwise and the
other converges uniformly, then we can switch limits. Therefore, to use this theorem to prove
(11), we must demonstrate the uniform convergence of the sequence Mr(Pn).

A consequence of a deep result of [4] says that the sum of the r-th powers (r > −1) of the
primes less than x is asymptotic to π(xr+1). This implies that (8) holds for the sequence of prime
numbers in the case −1 < r < 0, too.

Let us consider the increasing function

h(x) =

1
e
, if x = 0(
1

1+x

) 1
x , if x ̸= 0

.

Since h(x) is continuous on the set of real numbers, for any ε > 0 there exists an η > 0 for
which

f(η)− f(−η) = f(η)− f(0) + f(0)− f(−η) <
ε

3
.

By (8), for the sequence of prime numbers and for r = η (r = −η) we have that for any ε > 0

there exists N(ε) such that for all n > N(ε) we have

Mη(Pn) < h(η) +
ε

3
and M−η(Pn) > h(−η)− ε

3
.

We will use the Cauchy criterion to prove the uniform convergence of the sequence Mr(Pn),
n = 1, 2, . . . in the neighbourhood of r = 0.

For a given ε > 0, let r ∈ (−η, η) ∖ {0}. Taking into account that the power mean Mr is
increasing in r, for any n,m > N(ε) we have

|Mr(Pn)−Mr(Pm)| < |Mη(Pn)−M−ηPm| < h(η) +
ε

3
−
(
h(−η)− ε

3

)
< ε.

Applying the Moore–Osgood Theorem, we can exchange the limit order, so

lim
n→∞

M0

(
p1
pn

, . . . ,
pn
pn

)
= lim

n→∞
lim
r→0

Mr

(
p1
pn

, . . . ,
pn
pn

)

= lim
r→0

lim
n→∞

Mr

(
p1
pn

, . . . ,
pn
pn

)
= lim

r→0

(
1

1 + r

) 1
r

=
1

e
.

544



4 Conclusion

We have extended the concept of distribution function of the block sequences for the sequences
of positive real numbers. Using the necessary and sufficient conditions (2) and (3) for the block
sequence of sequence 0 < y1 ≤ y2 ≤ y3 ≤ · · · having asymptotic distribution function of the
form xλ, new asymptotic results for the power means of some number theoretic sequences were
derived.
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[2] Bukor, J., Filip, F., & Tóth, J. T. (2019). On properties derived from different types
of asymptotic distribution functions of ratio sequences. Publicationes Mathematicae
Debrecen, 95(1–2), 219–230.
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