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1 Introduction

All variables and constants written by lower case letters are integer-valued. As suggested by
Graham, Knuth, and Patashnik [6, p. 115], x K y denotes that x and y are coprime.

1.1 Mustonen’s experiments

Mustonen [9] experimentally studied with the computing environment Survo [8] the congruence

xn
` yn ” 0 pmod pq, (1)

where n ą 0 and p P P. He observed the following.

1. All its roots are in a set L of parallel equidistant lines with gcd pn, p´ 1q different slopes.

2. All integer points of L are roots.

3. Each nontrivial root (that is, p ∤ x, y) lies on exactly one line.

We tried without success to prove these observations. As a promising step in this direction.
we were able to solve (1) by the following procedure.

Step 1. Fix a with p ∤ a.

Step 2. Substitute y “ a in (1).

Step 3. Solve x.

Step 4. Go through all a’s.

Unfortunately, we obtained a quite complex formula (not given here), and we could not go ahead.
So, we must leave this problem open.

1.2 Solvability of (1)

Instead, we succeeded to give a complete description on the solvability of (1), and, more generally,
on that of

xn
` yn ” 0 pmodmq,

where n,m ą 0. An equivalent problem (see the above procedure) concerns the solvability of the
congruence

xn
” ´an pmodmq, (2)

where a K m. This is the topic of our paper.

When referring to (2), we assume its background (n,m ą 0 and a K m).

We need to do nothing if n “ 1, and all congruences are solvable if m “ 1, but we include
these trivial cases for completeness.

If n is odd, then (2) is solvable, because the trivial solution x ” ´a (modm) always exists.
But what about the nontrivial solvability, i.e., the existence of nontrivial roots x ı ´a (modm)?
If n is even, then the answer is easy.
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Theorem 1.1. If n is even and the congruence p2q is solvable, then the following conditions are
equivalent.

(a) All possible roots of p2q are nontrivial.

(b) m ą 2.

Proof. All congruences are modulo m.

(b)ñ(a). Let xn ” ´an. We show that x ı ´a. If x ” ´a, then, since n is even, also xn ” an.
Therefore an ” ´an, and further 2an ” 0, i.e., m | p2anq. Since a K m, it follows that m | 2,
contradicting (b).

␣(b)ñ ␣(a). If m “ 1, then any x is a trivial root of (2). If m “ 2, then, since a is odd and
xn “ ´an, also x is odd and hence trivial.

We study the solvability and nontrivial solvability of (2) in Sections 3–4, present some further
results in Section 5, and complete our paper with discussion in Section 6. Many OEIS sequences
[11] relate to our topics. We consider some of them.

2 Preliminaries

We need certain well-known results. Our primary reference is Apostol [1], but we also use
Lozano-Robledo [7].

2.1 Euler’s totient

Let us begin with Euler’s totient ϕpmq.

Lemma 2.1. [1, Theorem 2.5] Let p P P and α ą 0. If p ‰ 2, then

ϕppαq “ pα´1
pp´ 1q “ ϕp2pαq.

If p “ 2, then the first equation holds, while the second does not.

Lemma 2.2. [1, Theorem 10.10c] If m ą 2, then

ind p´1q “
ϕpmq

2
,

where ind stands for the index modulo m pto a given baseq.

There are several OEIS sequences on Euler’s totient. We introduce one of them.

A023022. at is the number of expressions of t as a sum of two positive, relatively prime numbers.
For example, 15 “ 14 ` 1 “ 13 ` 2 “ 11 ` 4 “ 8 ` 7, so a15 “ 4. If t ą 2, then at “ ϕptq{2.
Thus we have a comment to add: if t ą 2, then at “ ind p´1q modulo t.
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2.2 Primitive roots

Studying (2) becomes easier if m has a primitive root (i.e., there is a primitive root modulo m).

Lemma 2.3. [1, p. 212] The set of positive numbers having a primitive root is

R “ H YK,

where
H “ t1, 2, 4u, K “ tupγ : u P t1, 2u, 2 ‰ p P P, γ ą 0u. (3)

We consider also the larger set
H̃ “ t2γ : γ ě 0u.

A033948. at is the t-th positive integer having a primitive root.

A001918. at is the smallest positive primitive root modulo the t-th prime.

2.3 Congruences

We apply Lemma 2.4 if m P R, and Lemma 2.5 in the general case.

Lemma 2.4. [7, Theorem 8.6.11] Let n ą 0, m P R, and c K m. The following conditions are
equivalent.

(a) The congruence xn ” c pmodmq is solvable.

(b) c
ϕpmq

d
” 1 pmodmq, where d “ gcd pn, ϕpmqq.

If the congruence in (a) is solvable, then it has ppreciselyq d ppairwiseq incongruent roots.

Lemma 2.5. [1, Theorem 5.28] Let f be a polynomial with integer coefficients, and let
m1, . . . ,mk ą 0 be ppairwiseq coprime. The congruence

fpxq ” 0 pmodm1 ¨ ¨ ¨mkq

is solvable if and only if all congruences

fpxq ” 0 pmodm1q, . . . , fpxq ” 0 pmodmkq

are solvable. Moreover,
νpm1 ¨ ¨ ¨mkq “ νpm1q ¨ ¨ ¨ νpmkq,

where νplq denotes the number of ppairwiseq incongruent roots of the congruence fpxq ” 0 pmod lq.

3 Solvability of (2)

If n is odd, then, as already said in the Introduction, the congruence (2) is solvable. We can
therefore assume that

throughout this section, npą 0q is even.

Actually, most of our results are trivially true also for odd n.
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3.1 The case m PK

We find convenient to use Lemma 2.4 only for m P K, and tie m P H to the case m P H̃ .

Theorem 3.1. Let m “ upγ P K as in p3q, d “ gcd pn, ϕpmqq, and

n “ 2kl, ϕpmq “ 2ij, 2 ∤ l, j. (4)

The following conditions are equivalent:

(a) The congruence p2q is solvable.

(b) d | ϕpmq{2.

(c) k ď i´ 1.

(d) p ” 1 pmod 2k`1q.

Proof. The congruences are modulo m.

(a)ô(b). By simple calculation and the Euler–Fermat theorem [1, Theorem 5.17], we obtain

p´anq
ϕpmq

d “ p´1q
ϕpmq

d a
nϕpmq

d “ p´1q
ϕpmq

d paϕpmq
q
n
d ” p´1q

ϕpmq

d ¨ 1
n
d “ p´1q

ϕpmq

d .

Consequently,

p´anq
ϕpmq

d ” 1 ðñ
ϕpmq

d
is even,

verifying the claim by Lemma 2.4.

(b)ô(c). Since
d “ gcd p2kl, 2ijq “ 2minpk,iq gcd pl, jq,

it follows that

d |
ϕpmq

2
ðñ d | 2i´1j ðñ k ď i´ 1.

(c)ô(d). By (4) and Lemma 2.1,

2ij “ ϕpmq “ pγ´1
pp´ 1q.

Therefore,
i ě k ` 1 ðñ 2k`1

| pp´ 1q,

completing the proof.

Remark 3.1. Let n “ 2, a “ 1, and 2 ‰ p P P. Then (a) with m “ p states that ´1 is a quadratic
residue modulo p. The Legendre symbol

ˆ

´1

p

˙

“ 1 ðñ p ” 1 pmod 4q

[1, Theorem 9.4], which is just (d).

Remark 3.2. Dence and Dence [2, Corollary 7.2] studied the case n “ 4.

Corollary 3.1. Let m P K. The following conditions are equivalent.

(a) The congruence p2q is solvable for some a.

(b) The congruence p2q is solvable for any a.

Proof. The conditions (b)–(d) in Theorem 3.1 do not depend on a.
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Corollary 3.2. Let 2 ‰ p P P and

Kp “ tup
γ : u P t1, 2u, γ ą 0u.

The following conditions are equivalent.

(a) The congruence p2q is solvable modulo some m P Kp.

(b) The congruence p2q is solvable modulo any m P Kp.

Proof. The conditions (b)–(d) of Theorem 3.1 do not depend on u and γ.

Corollary 3.3. Let m “ upγ P K be as in p3q. The following conditions are equivalent.

(a) The congruence p2q is solvable.

(b) The congruence xn ” ´1 pmod pq is solvable.

Proof. Apply Corollaries 3.1 and 3.2.

When studying the solvability of (2) with m “ upγ P K, the congruence

xn
” ´1 pmod pq (5)

is therefore enough.

Theorem 3.2. The congruence p5q is solvable for infinitely many p’s.

Proof. Let n“2kl be as in (4).By Dirichlet’s theorem on arithmetic progressions [1, Theorem 7.9],
there are infinitely many primes of the form p “ 2k`1t` 1. All they apply by Theorem 3.1.

3.2 More OEIS sequences

The condition (d) of Theorem 3.1 with k “ 1 yields the primes satisfying

p ” 1 pmod 4q, (6)

and with k “ 2 those satisfying
p ” 1 pmod 8q. (7)

A002144. at is the t-th prime of the form (6).

A080109. The above sequence squared termwise.

A002314. at is the smallest positive root of (5), where n “ 2 and m is the t-th term of A002144.

A007519. at is the t-th prime of the form (7).

A218028. at is the smallest positive root of (5), where n “ 4 and m is the t-th term of A007519.

We also introduce a quite curious sequence.

A262998. at is the t-th positive composite number satisfying

1ϕpmq
` 2ϕpmq

` ¨ ¨ ¨ ` ϕpmqϕpmq
” ϕpmq pmod mq.

This sequence contains all numbers 2p, where p P P satisfies (6), but has also some other terms.
Only five of them are known: 320, 480, 22113, 44226, 66339.
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3.3 The case m P H̃

This case is easy.

Theorem 3.3. If m P H̃ , then the following conditions are equivalent.

(a) The congruence p2q is solvable.

(b) m P t1, 2u.

Proof. (b)ñ(a). Trivial.

␣(b)ñ ␣(a). Let n “ 2h. The case m “ 4 is enough. Since a pK 4q is odd, a “ 2t ` 1 for
some t. If

xn
` an ” 0 pmod 4q,

then also x must be odd, x “ 2s` 1. But now,

xn
` an “ p2s` 1q2h ` p2t` 1q2h ” 2 pmod 4q,

implying wrongly that 2 ” 0 pmod 4q.

Remark 3.3. Corollaries 3.1 and 3.3 hold also for m P H̃ . All their statements are by Theorem 3.3
true if m “ 1, 2, and false otherwise.

Remark 3.4. Dence and Dence [3] studied the congruence xn ” c (mod 2γ) with n “ 2, 3, 4.

3.4 The case m ą 0

Theorem 3.4. Let m ą 0, and let n “ 2kl be as in p4q. The following conditions are equivalent.

(a) The congruence p2q is solvable.

(b) 4 ∤ n, and any odd prime factor p of m satisfies

p ” 1 pmod 2k`1
q. (8)

Proof. Let
m “ 2αpα1

1 ¨ ¨ ¨ p
αh
h , (9)

where α ě 0, α1, . . . , αh ą 0, and p1, . . . , ph are (distinct) odd primes. The “empty product”
(h “ 0) equals one.

By Lemma 2.5, (a) holds if and only if all congruences

xn
” ´an pmod 2αq, xn

” ´an pmod pα1
1 q, . . . , x

n
” ´an pmod pαh

h q

are solvable. By Theorem 3.3, the first one is solvable if and only if α ă 2, i.e., 4 ∤ m. By
Theorem 3.1, the remaining ones are solvable if and only if p1, . . . , ph satisfy (8).

Corollaries 3.1–3.3 are generalized easily. The proofs are analogous.
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Corollary 3.4. Let m ą 0. The following conditions are equivalent.

(a) The congruence p2q is solvable for some a.

(b) The congruence p2q is solvable for any a.

Corollary 3.5. Let 2 ‰ p1, . . . , ph P P pdistinctq, and

Kp1,...,ph “ tup
α1
1 ¨ ¨ ¨ p

αh
h : u P t1, 2u, α1, . . . , αh ą 0u.

The following conditions are equivalent.

(a) The congruence p2q is solvable modulo some m P Kp1,...,ph .

(b) The congruence p2q is solvable modulo any m P Kp1,...,ph .

Corollary 3.6. Let m be as in p9q. The following conditions are equivalent.

(a) The congruence p2q is solvable.

(b) The congruence xn ” ´1 pmod p1 ¨ ¨ ¨ phq is solvable.

(c) The congruence xn ” ´1 pmod 2p1 ¨ ¨ ¨ phq is solvable.

Remark 3.5. Dence and Dence [4, Theorem 6] studied also the solvability of (2). Some of our
results are special cases of theirs, but our approach is independent and more suitable for our
purpose.

4 Nontrivial solvability of (2)

Let us recall that the congruence (2) is nontrivially solvable if it has a solution x ı ´a (modm).
Having already considered even n in Theorem 1.1, we can assume that

throughout this section, n pą 0q is odd.

Contrary to what said in the beginning of Section 3, most of our results here are not true for
even n.

4.1 The case m PK

Theorem 4.1. Let m “ upγ P K be as in p3q. If p ∤ n, then the following conditions are
equivalent.

(a) The congruence p2q is nontrivially solvable.

(b) n M pp´ 1q.

If p | n, then (a) is equivalent to

(c) p2 | m or n M pp´ 1q.
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Proof. Case p ∤ n. By Lemma 2.4, (a) holds if and only if d :“ gcd pn, ϕpmqq ą 1. Since

d “ gcd pn, pγ´1
pp´ 1qq “ gcd pn, p´ 1q

by Lemma 2.1, the claim follows from the last sentence of Lemma 2.4.

Case p | n. Let n “ tpβ , where p ∤ t and β ą 0. As above, (a) holds if and only if

gcd pn, ϕpmqq “ gcd ptpβ, pγ´1
pp´ 1qq ą 1,

i.e.,
γ ą 1 or t M pp´ 1q. (10)

This is clearly equivalent to (c).

We continue as in Subsection 3.1. The proofs are analogous.

Corollary 4.1. Let m P K. The following conditions are equivalent.

(a) The congruence p2q is nontrivially solvable for some a.

(b) The congruence p2q is nontrivially solvable for any a.

Corollary 4.2. Let Kp be as in Corollary 3.2, and p ∤ n. The following conditions are equivalent.

(a) The congruence p2q is nontrivially solvable modulo some m P Kp.

(b) The congruence p2q is nontrivially solvable modulo any m P Kp.

Corollary 4.3. Let m “ upγ P K be as in p3q. The following conditions are equivalent.

(a) The congruence p2q is nontrivially solvable.

(b) The congruence p5q is nontrivially solvable.

Theorem 4.2. The congruence p5q is nontrivially solvable for infinitely many p’s.

4.2 The case m P H̃

We factorize
xn
` an “ px` aqfn´1px, aq, (11)

where

fn´1px, aq “ xn´1
´ xn´2a` ¨ ¨ ¨ ` x2an´3

´ xan´2
` an´1

“: gn´1px, aq ` an´1.

We also define that f0px, aq “ 1 and g0px, aq “ 0.

Lemma 4.1. If a is odd, then fn´1px, aq is odd for all x.

Proof. If x is even, then gn´1px, aq is even, so fn´1px, aq is odd. If x is odd, then gn´1px, aq is a
sum of n´1 odd numbers (or zero). Since n´1 is even, this sum is even, and fn´1px, aq is again
odd.
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Theorem 4.3. If m P H̃ , then p2q has only the trivial solution.

Proof. The congruences are modulo m. If m “ 1, then any x ” ´a, implying the claim in this
case. If m “ 2γ , γ ą 0, then, because apK mq is odd, fn´1px, aq is always odd by Lemma 4.1.
Hence, by (11), if x satisfies (2), then x ” ´a.

Remark 4.1. Corollaries 4.1 and 4.3 hold also for m P H̃ . All statements are false by Theorem 4.3.

4.3 The case m ą 0

Theorem 4.4. Let m ą 0. The following conditions are equivalent.

(a) The congruence p2q is nontrivially solvable.

(b) m has a prime factor p satisfying the condition (b) of Theorem 4.1.

Proof. By (9) and Lemma 2.5, the congruence (2) holds if and only if

xn
” ´an pmod 2αq, xn

” ´an pmod pα1
1 q, . . . , x

n
” ´an pmod pαh

h q. (12)

If m has no odd prime factor, then (12) reduces to xn ” ´an (mod 2α), which has by Theorem 4.3
only the trivial solution.

Otherwise, by Lemma 2.5 and Theorem 4.3,

νpmq “ νppα1
1 q ¨ ¨ ¨ νpp

αh
h q.

So, νpmq ą 1 if and only if at least one νppαi
i q ą 1, i.e., gcd pn, ϕppαi

i qq ą 1. The claim now
follows from Theorem 4.1.

The proofs of the following corollaries are similar to those of Corollaries 3.4–3.6.

Corollary 4.4. Let m ą 0. The following conditions are equivalent.

(a) The congruence p2q is nontrivially solvable for some a.

(b) The congruence p2q is nontrivially solvable for any a.

Corollary 4.5. Let Kp1,...,ph be as in Corollary 3.5. The following conditions are equivalent.

(a) The congruence p2q is nontrivially solvable modulo some m P Kp1,...,ph .

(b) The congruence p2q is nontrivially solvable modulo any m P Kp1,...,ph .

Corollary 4.6. Let m be as in p9q. The following conditions are equivalent.

(a) The congruence p2q is nontrivially solvable.

(b) The congruence xn ” ´1 pmod p1 ¨ ¨ ¨ phq is nontrivially solvable.

(c) The congruence xn ” ´1 pmod 2p1 ¨ ¨ ¨ phq is nontrivially solvable.
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4.4 The case 2 ‰ n P P, n ‰ p

Writing q “ n, the congruence (5) reads in this case

xq
” ´1 pmod pq. (13)

Theorem 4.5. The following conditions are equivalent.

(a) The congruence p13q is nontrivially solvable.

(b) p ” 1 pmod qq.

(c) p ” 1 pmod 2qq.

Proof. (a)ô(b). The condition (b) is that of Theorem 4.1.

(b)ô(c). Since p is odd, it follows that p´ 1 is even.

A002476. at is the t-th prime satisfying (b) (equivalently, (c)) for q “ 3.

A030430. As above, but q “ 5.

A140444. As above, but q “ 7.

Let p P P. It is a classical result [5] that if p “ a2 ` ab ` b2 for some a, b ą 0, then p

satisfies the condition (b) (and (c)) of Theorem 4.5. Nair [10, Theorem 8] proved the converse,
and that the representation (with a ě b) is unique. He called p a B-prime. An integer having this
representation is a B-number. Probably the symbol B comes from “binary quadratic form”. We
also apply Nair’s certain other results.

Theorem 4.6. Let 3 ‰ p P P. The following conditions are equivalent to those of Theorem 4.5

for q “ 3.

(d1) p “ a2 ` ab` b2 for some a, b.

(d2) p “ a2 ´ ab` b2 for some a, b.

(e1) p “ a2 ` ab` b2 for some a, b ą 0.

(e2) p “ a2 ´ ab` b2 for some a, b ą 0.

Proof. (b)ô(e1). See above.

(d1)ô(e1). [10, Theorem 3].

(e1)ô(e2). [10, Section 8].

(d1)ô(d2). Proceed as in the proof of [10, Theorem 8].

Can this theorem be extended?

Conjecture 1. The following conditions are equivalent to those of Theorem 4.5.

(d1) p “ aq´1 ` aq´2b` ¨ ¨ ¨ ` abq´2 ` bq´1 for some a, b.

(d2) p “ aq´1 ´ aq´2b` ¨ ¨ ¨ ´ abq´2 ` bq´1 for some a, b.

(e1) p “ aq´1 ` aq´2b` ¨ ¨ ¨ ` abq´2 ` bq´1 for some a, b ą 0.

(e2) p “ aq´1 ´ aq´2b` ¨ ¨ ¨ ´ abq´2 ` bq´1 for some a, b ą 0.
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5 Further results

5.1 The case a Mm

This case can be reduced to a K m through a rather technical process. Because we do not find its
details interesting, we only outline how to study the solvability of (2) if m P K.

Let
m “ upγ, a “ tpα, x “ spξ, u P t1, 2u, p ∤ t, s, γ, α ą 0, ξ ě 0.

Then (2) reads
snpξn ` tnpαn ” 0 pmodupγq, (14)

and we must find s and ξ.
Case 1. αn ě γ. Then x “ a satisfies (14), because

xn
` an “ 2an “ 2tnpαn and upγ | 2tnpαn.

Case 2. αn ă γ, ξ ‰ α. If ξ ă α, then

xn
` an “ psn ` tnppα´ξqn

qpξn ı 0 pmod pγq.

If ξ ą α, then
xn
` an “ psnppξ´αqn

` tnqpαn ı 0 pmod pγq,

so (14) is not solvable.

Case 3. αn ă γ, ξ “ α. Now, (14) reads

psn ` tnqpαn ” 0 pmodupγq,

equivalently
psn ` tnq ” 0 pmodupγ´αn

q. (15)

Writing
x1
“ s, a1

“ t, m1
“ upγ´αn,

(15) reads
px1
q
n
” ´pa1

q
n
pmodm1

q. (16)

If
a1
K m1, (17)

then we can apply Theorem 3.1 to (16).
If u “ 1 or if u “ 2 and t is odd, then (17) holds. If u “ 2 and t is even, then s is even (since

2 | psn ` tnq). So, we can cancel u “ 2 in (15), and (17) becomes satisfied.

5.2 The primitive-rooted factorization

As an alternative to the prime factorization, can we use the primitive-rooted factorization
(“prd-factorization” in short) of m? That is,

m “ m1 ¨ ¨ ¨mk,

where m1, . . . ,mk P Rzt1u are distinct and (pairwise) coprime. We also define that the prd-
factorization of 1 is 1.
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The answer is affirmative. However, the prd-factorization, compared to the prime factorization,
has no advantage but has disadvantages. It may not exist, and if it exits, then it may not be
unique. We can easily prove that m has a prd-factorization if and only 8 ∤ m. For example,
30 “ 2 ¨ 3 ¨ 5 “ 6 ¨ 5 “ 3 ¨ 10. We can also easily prove that m has a unique prd-factorization if
and only if m “ 2 or m pą 0q is odd.

A047501. at is the t-th positive number not divisible by 8. We have a comment to add: at is the
t-th positive number having a prd-factorization.

A004280. The sequence consisting of the number 2 and all odd positive integers. We have a
comment to add: the numbers having a unique prd-factorization.

5.3 The congruence xn ” an pmod mq

Let us have a quick look at the congruence

xn
” an pmodmq, (18)

where n ą 0, m “ upγ P K as in (3), and a K m.

Solvability. The congruence (18) is always solvable, having the trivial solution x ” a pmodmq.
Instead, the congruence (2) is not always solvable if n is even.

Nontrivial solvability, n odd. We can proceed as in Section 4.

Nontrivial solvability, n even. The congruences are modulo p. It is reasonable to say that, besides
the solution x ” a, also the solution x ” ´a is trivial. We show that a ı ´a. An equivalent
claim is that 2a ı 0. If 2a ” 0, then p | a, contradicting a K m. Hence, (18) is nontrivially
solvable if and only if it has more than two incongruent roots. By the last sentence of Lemma 2.4
and the above, this happens if and only if gcd pn, pγ´1pp´ 1qq ą 2. An equivalent condition,

gcd p
n

2
, pγ´1p´ 1

2
q ą 1,

leads to the condition (b) of Theorem 4.1.

A closer look shows that everything in Section 4 hold as such or with minor changes.

6 Discussion

Certain computer experiments [9] led us to (1) and, more generally, to (2). In this paper, we
studied its solvability. If m has a primitive root, then we applied Lemma 2.2, which can be
proved by index calculus. In the general case, we used the prime factorization and the Chinese
remainder theorem. If n is odd, then (2) has always the trivial solution x ” ´a (modm). So, we
got another task: to study nontrivial solvability in this case.

The congruence (2) and related congruences have been considered in the literature. However,
the solvability of (2) has not (according to our knowledge) been studied in all detail, which
motivated us to write this paper. As an additional topic of possible interest, we found many
direct or indirect connections with OEIS sequences. We also encountered Conjecture 1, which is
(according to our knowledge) open.
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