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1 Introduction

Variations of the identities of Simson, Cassini, Catalan and Vajda have provided opportunities for
extensions and generalizations [10]. In its simplest Fibonacci form, the Simson identity can be
expressed as

FLF. —F =(-1)". (1.1)

n-1" n+l n

More specifically, the Catalan identity is usually [16, 20] expressed as

F F —F2 — (_1)n—r+1 F2 ’

and a generalization of (1.1), the Gelin-Cesaro identity [5, 15]

F..F.F.F. —F'=-1,

n-2" n+2" n-1" n+l n
with a variation by Mangon [ 14]

FoF.-FFR, = (_1)n ’
and the related Vajda identity [20]

F

n+i

F.. -FF... =(-1)"FF,.

n+j ' n'on+i+j il

Knuth [10] and others have restated (1.1) neatly in its determinant form

=(-1)" (1.2)

and proceeded to generalize this format by induction to an elegant arbitrary order, with examples
from a variety of well-known sequences. This, for the third-order Tribonacci sequences {Tn } , his

generalization was, in effect,

Tn+2 Tn+l Tn 1 1 O
T, T T.|l=[1 0 o, (1.3)
T T, T, [0 01

which is a neat extension of (1.1) and (1.2); but, the left-hand side of (1.3) when expanded is

Tn+2 Tn+1 Tn
Tn+l Tn Tn—l - Tn+2 (TnTn—Z _Tnz—l ) _Tn+1 (Tn+lTn—2 _Tnz )+Tn (Tn+1Tn—2 _Tn2 )
Tn Tn—l Tn—2

This raises the question which we seek to answer: whether there can be a succinct and elegant
generalization to arbitrary order, with connections to other recursive sequences, which includes
a format such as either of the following for arbitrary order r,
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F (r) F(r) —( Fn(r) )2 or Fn(J[glen(Rfs _( Fn(IZfZ )2 ’

n+l" n-1

both of which would have the format of the left-hand side of (1.1) when » = 2, such as conjectured
in (3.4) and (3.5) below, rather than the longer determinantal expansion when » = 3 as above,
which obviously becomes less simple as 7 increases.

2 Some preliminary notation

r is the order of the recurrence relation which, with its initial terms, defines a recursive sequence
[17]. Let {Xr(f)} symbolize an “r-related sequence of order s, which satisfies the s-th order

recurrence relation with yet to be initial terms

S i n >0,
Xr(15) = Z(_l) Qr |Xr(15—)|

i=1
X =0, n<o,

in which the Q,; are integer functions of a; (Equation (3.5)), and s= (rj with f, (X) as its
2

auxiliary equation, in which

f,(x) = r[l(x_ar,iar,j) 2.2)
i j=
i<j

and o are the roots, assumed distinct, of the other auxiliary equation for the sequence of
generalized Fibonacci numbers of arbitrary order 7, {ur(]r) }, represented by

r

f(x)=]T(x-a,)- (2.3)

i1

When r =2, s =1, and xY = —Xr(i)l =-1, and for the fundamental sequence of Lucas [10],

n

Simson’s identity then takes the form
(u) ~(uf2) () = %2, (2.4

which is what we seek to generalize. Table 1 is the incentive for our conjecture. We are seeking
relations with other recurrence relations, if they exist, in a consistent manner. To put the discussion

in a broader context, we utilize » “basic” sequences of order r, {Ugn)}, s=1,2, ..., r by the

recurrence relation

r)_.

vl =S (-1 P U n>, (2.5)

)]
j=1

with initial terms defined by the Kronecker delta: Uir)Z 1)

,n s,n?

n=12,...,r, and where the P,;
are arbitrary integers [16]. The adjective “basic” is used by analogy with the corresponding third
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order sequences of Bell [2]. To correspond with the second order “primordial” sequence of Lucas,

we define U'") =v!") | which also satisfies (2.1) but has initial terms given by

0, n<l

U (M _Jr
on Za”’l 1<n<r, (2.6)
-1

rj!

where the arj are the distinct roots of fi(x) in (1.3). In the literature, generally only one basic
sequence is mentioned, namely the fundamental one, but Gootherts [7] has shown a need for two
basic second order sequences as well as the primordial sequence [12].

One of the basic sequences is labelled “fundamental” by analogy with Lucas’ “fundamental”
(r)

sequence, ngr: The sequence of arbitrary order, r, is labelled {U

}. Since, this sequence is

used frequently, we let U () ={ur(]r)} for notational convenience. The fundamental nature of the

r,n+r

sequence {ur(]r)} was illustrated by d’Ocagne (Dickson [5]) who effectively established that any
element {Wr(]r)} of the set Q=Q(P, ,P,,,...,P, ) of all sequences which satisfy (2.1) can be

expressed in terms of the fundamental sequence and the initial terms of {Wr(]r)} [8]:

r-1r-1 )
WO =33 (1) B, uw), n=0,p, =1, @.7)

3 Simson’s identity

We define sequences
x? ——x? —q1 (3.1)
and

X ==x% =X, +x%, n>3, (3.2)
with initial terms —1, 1, 0, so that the first few terms of {X,(f’)} are
{x¥} = {~1,1,0,-2,3,-1,-4,8,-5,-7,20,18,-9,.. }. (3.3)
which is effectively { Xf{o’) } = A057597 of Sloane [19]. For example, when r = 2,

x? = —x(?) =1,

n

and for the fundamental sequence of Lucas [12], Simson’s identity then takes the form
2
() (2 (u2) = 5, 04

For the Tribonacci sequence {W¥}={1,0,0,1,1,2,4,7,13,24,44,81,149,..} (A000073) of

Sloane [19]), we have Table 1 which seems to support the conjecture that

2
U (U =x? (3.5)

n+1 n n °*
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Table 1. Simson conjecture for Tribonacci numbers

wo | [ o) | el [y [ R0
0 1 1 — — -1
1 0 0 0 0 1
2 0 0 0 0 0
3 1 1 0 -1 -2
4 1 1 2 1 3
5 2 4 4 0 -1
6 4 16 14 -2 -4
7 7 49 52 3 8
8 13 169 168 -1 -5
9 24 576 572 -4 -7
10 44 1936 1944 8 20
11 81 6561 6556 -5 -18
12 149 22201 22194 -7 -9
13 274 75096 75076 -20 47

These equations do not tell us much about the specific terms of {Xr(f)} , but it seems that we

can relate them to the initial terms of {ur(]r)}, such as,
2
(u((J )) —ufl)ul( ) =1= x(() ),

2
() e = Y, =

i<m

2 r
(ugr)) —uuf = 3 e = %

YA=4 i=1

4  Related combinatorial properties

We see this in the following because we can also express {ur(]r)} in multinomial terms from
(r)

Macmahon [13], namely, u,

is the product sum of weight n of the terms of PF,,,

and P, ; is the
product sum, j together of the terms of P, ;. By the product sum of weight n of the quantities
a,,a,,..., we mean

h =Sal +Sa e, +Sal a8l +--,
in which each h, is the sum of a number of symmetric functions each of which is related to a

partition of the number n. Thus,
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= u2n Z arlarz

n<A<2n

Zarlarz T Zarﬂilajzz

> A=2n n<A<2n

and so

= 2 L @.1)

> A=2ni=1

For example, when » = 3, s = 3, which seems to work for the cases listed in Table 1,

3
X1( ) = ZaS,laS,Z

ng) =2 a;laéz +2 a;,las,zas,a (4.2)

(@) _ 3 3 3 2 2 2 2
X' = zas,las,z +za3,1a3,2a3,3 T Q3,053,054

Each term X(S) of the r-related sequence of order s seems to be the product sum of weight » of the

quantities «, (i <J), such that

ri I'j

=2 ﬁ“fi

YA=2ni=1
and
Z [l
Y A=ni=1
so that

Zar+2n—1 /Hm(ar'i _ar’j) (4.3)

which is expressed entirely in terms of the zeros of f1(X) rather than f2(x). Thus, we seem to have
the format

d 4.4

o= 3 (e s,

Zigg=n :u1|:un s =l
the first few terms of which are

X1(S) = Qr,l’
X£S) = Qr2,1_ erza
X = Q% -2Q,,Q,,+Q, 5,

which conform with (4.2) when the terms are simplified, such as when » = 3, as follows,
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Xi(s) = 23,0,
ng) = (z 03103, )2 - (Z asz,las,zas,s )

(s) — 3 2 2 2 2
5= (Z U313, ) +(a3,1a3,20‘3,3) -2 (z U303, ) (Z 0‘3,10‘3,20‘3,3) -

(4.5)

5 Reciprocals

The following theorems harmonize with, and are developed in the style of the family of reciprocal
series involving Fibonacci and harmonic numbers [6], which also carries recent developments of
the Riemann Zeta function, referred to in the next section.

Theorem 1. (Reciprocal of Simson [3, 10]): Let N ={0, 1, 2, ...} and A: N —> N on application
such that A(O) =1, A(l) =2, and

A(n-1).A(n+1)—(A(n)) =(-1)" for n=1, .1)
then

A(n+1):A(n)+A(n—1) vn=>1. (5.2)

Proof- Applying (5.1) for n =1, we get A(Z) =3, 50 (5.2) is true for n = 1. Now assume that (5.2)

is valid for n, and we shall prove it for n + 1. Applying (5.1) for n and n — n +1, one has in turn

A(n+1).A(n-1)=(A(n)) +(-1)", (5.3)

n+1

A(n+2).A(n)=(A(n+1)) +(-1)". (53"
On adding (5.3) and (5.3"), we get

2

A(n+2).A(n)+A(n+1).A(n-1)=(A(n+1)) +(A(n))

50
A(n)(A(n+2)—A(n))=A@+1)(A(n+1)- A(n-1)). 64
By the inductive hypothesis, one then has
A(n+1)—-A(n-1)=A(n),
s0 by (5.4) we obtain
A(n)(A(n+2)-A(n))=A(n+1).A(n). (5.5)

Now as A(n)>1Vn (which follows from (5.1) and also from a simple induction), by (5.5) we get
A(n+2)—A(n)=A(n+1), so that (5.2) holds for “n + 1" too. O
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Theorem 2 (Reciprocal of Mangan [14]). Assume that A: N — N satisfies A(0) =1, A(1) = 2,
A2)=3, and

A(n-1).A(n-2)-A(n).A(n-3)=(-1)" for n>3, (5.6)
then

A(n+1)=A(n)+A(n-1)vn=1. (5.7)

Proof. From (5.6) we get A(3) =5, 50 (5.7) holds true for n =1 and n = 2. Assume that (5.7)
holds true for n — 1 and n. We shall prove that (5.7) also holds for n + 1. Thus assume

A(n+1)-A(n-1)=A(n)
and

A(n)-A(n-2)=A(n-1).

Applying (5.6) for n + 1 and n + 2, one has

n+1

A(n).A(n-1)-A(n+1).A(n-2)=(-1)

(5.8)
A(n+1).A(n)-A(n+2).A(n-1)=(-1)""
By adding the two relations of (5.8), we find
A(n+1)[ A(n)—A(n-2)]+A(n-1)[ A(n)-A(n+2)]=0,
and reducing with A(n—1)>1, we get
A(n+1)= A(n+2)—A(n);
that is, (5.7) is valid for n + 1. O

Theorem 3 (Reciprocal of Gelin-Cesaro identity [5, 15]). Assume that A: N — N satisfies
A(0)=1,A(1)=2,A(2)=3,A(3) =5, and if

A(n-2)A(n+2)A(n-1)A(n+1)=(A(n))' -1 for n>2, (5.9)
then we also have

A(n+1)=A(n)+A(n-1) vn>1, (5.10)

Proof: From (5.9) we get A(4)=8, so (5.10) holds true for n = 1, 2 and 3. Assume that (5.10)

holds true for n — 1, n and n + 1, and we shall prove it true for n + 2. Thus, assume
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A(
n)+A(n-1) (5.11)

and we wish to prove that
A(n+3)=A(n+2)+A(n+1).
Using (5.9) for n and n + 1, one has
A(n-2)A(n+2)A(n-1)A(n+1)=(A(n))’ -1
4 5.12
A(n—-1)A(n+3)A(n)A(n+2)=(A(n+1)) -1. 512

By subtraction in (5.12), we get
A(n+2)A(n—-1)[ A(n+3)A(n)-A(n+1)A(n-2) ]
=(A(n+1))' ~(A(n))’
= [A(+1)— AM)].[A(n+1) + A()] [( (n+1))° +(A(n )} (5.13)
~[A(n-1))[A(n+2)]{ (A(n+2))" +(A(m))']

from which we can obtain

A(n+3)A(n)= A(n+1)A(n—2)+(A(n+1))2+(A(n))2 - (5.14)

From (5.11) we obtain
A(n-2)=A(n)-A(n-1)=2A(n)-A(n+1),

So, from (5.14), we have
A(n+3)A(n)= A(n+1)[2A () < +1)J+(A(n+2))" +(A(n))
= A(n+1)[2A(n)- A(n+1) ]+(A(n+1)) +[ A(n+2) - A(n+1)]
=2A(n) <n+> (A <n+1>>2+<A<n+1>> +(A(n+2))

—2A(n+2)A(n+1) (A(n+1))
=2A(n)A(n+1)+(A(n+1)) +(A(n+2)) +2A(n+2) A(n+1)

= +1)+[A(n+2)-A(n+1)T

=2A(n)A(n+1) +(A )

By reducing with A(n) up to
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A(n+3)=2A(n+1)+A(n)
= A(n+1)+(A(n+1)+A(n))
=A(n+1)+A(n+2);

thus, (5.10) is valid also for n + 2. [

6 Conclusion

Vajda [16, 21] has supplied other elegant generalizations which are worth extending, such as

F

n+i

F. —FF. =(-1) FF,. (6.1)

n+j "nln+ivj T
The story is not over though, because in this vein, van der Poorten [22] proved that (in our

J with

i i+r-1
notation) the sequence {(W,(f))'} satisfies a linear recurrence relation of order (I +f
1
auxiliary polynomial
f, (ﬂ,x)=H(x—af}laff2~-af}), (6.2)
S ap=i

the zeros of which are the roots of f1(x) = 0 taken i at a time. If ;i = 2 and A1 = A2 = 1, then
fi(11x) = f2(x), and if i = 1 and A1 = 1, then fi(41X) = f1(x), as in Section 1. The point of
mentioning these is for the interested reader to search whether Williams’ [23, 24] generalized

Lucas numbers can lead to a more elegant generalized Simson’s identity. These numbers, {L(Srr)1 }

are defined in effect by

r . 6.3
Ly =d7 >t =0, 1, r= 1, -
=1

' i
in which ¢, = exp(27zi / m) , the Riemann Zeta Function i’ = —1, is a modification of Carlitz [4],

and d is some real number for r > 2; for » = 2, d is the difference between the roots, a2 1 and
a2, of the auxiliary equation, as usual. Thus, when r = 2, Equation 5.2 becomes an ordinary
Lucas number, as in Section 2,

L?) =ap, +ap, =v. (6.4)

These generalized Lucas numbers, {L(;zl }, arerelated to {H irn) }, another arbitrary order recursive
sequence defined by Williams [22, 23] in an additive formula
r-1r-1
H i =2 2 U HIHT, (6.5)
h=0j-0

which was simplified by Shannon [18]

488



Hl = DUIHT. (6.6)

of which the main properties (in the sense of current fashions) have yet to be explored.
Finally, the Simson Identity is sometimes presented in disguise as a Fibonacci puzzle of how

a rectangle of area 65 cm” can apparently be transformed into a square of 64 cm?. What is the

geometry of any generalized Simson’s identity [1, 3, 9]?

A 8 5 B A 8 FE
3
5 |:>
D 5 8 C 5
D 3 5 B
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