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Abstract: The Euler sine product and the continued fraction of π are discussed in this article.
Some of the infinite series for cotangent and its derivative are obtained by implementing the
concept of Euler sine product and some of the standard series are derived as the immediate
consequence of the main results. Furthermore, the continued fraction for odd powers of π similar
to the expression of π derived by Brouncker is presented in this article. Meanwhile, an expression
relating the Basel’s constant and the cotangent function is obtained as follows:
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1 Introduction

Euler’s sine product formula is typically discussed in the context of complex numbers, but it
can also be applied in the field of real numbers. When the formula is applied to real numbers,
it provides a useful representation of the product of two sine functions in terms of exponential
functions. For x, y ∈ R, the formula can be written as:

2 sinx sin y = cos (x− y)− cos (x+ y).

This formula is useful in various areas of mathematics and engineering, including trigonometry,
differential equations, signal processing, etc. For example, in trigonometry, Euler’s sine product
can be used to evaluate products of sine functions, which are important in many applications, such
as in the solution of boundary-value problems in differential equations. In signal processing,
Euler’s sine product can be used to represent signals in terms of their frequency components,
which are then used for processing and analysis. Overall, while the formula is most commonly
discussed in the context of complex numbers, it has important applications in the field of real
numbers, as well. Oscar [12] mentions that Euler conjectured

sinx

x
=
∏
n∈N

(
1− x2

n2π2

)
,

which was obtained by factorizing sinx into a product over its roots as one would a polynomial.
Further, Holst [4] proved the infinite sine product of Euler using the Gamma function and the
elementary probability theory. Sandifer [14] also described Euler’s sine product and gave some
Euler’s earlier results that led up to some interesting discoveries.

An expression of a number as the sum of an integer and a quotient, the denominator of which
is the sum of an integer and a quotient, and so on is called a continued fraction. In general, the
continued fraction for some n ∈ N is given by

n = a0 +
b0

a1 +
b1

a2 +
b2

a3 + · · ·

,

where ai and bi are integers. The continued fraction is called simple continued fraction if all
bi are equal to 1 and all the ai are positive integers. The unusual patterns of the continued
fractions have always fascinated mathematicians and created an interest for them to continue
their discoveries. Among such fascinated mathematicians, Lord William Brouncker was the one
who gave a beautiful formula for π in terms of a continued fraction:

π =
4

1 +
12

2 +
32

2 +
52

2 + · · ·

. (1)
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In the year 1982, Dutka [3] proved Brouncker’s continued fraction where he made use of
various methods to obtain the Brouncker’s continued fraction. Furthermore, Lange [10] also
derived a continued fraction for π as

π = 3 +
12

6 +
32

6 +
52

6 +
72

6 + · · ·

.

Osler [13] mentioned some of the formulas for π in terms of continued fractions and also discussed
various techniques to derive them.

In 1735, after solving the Basel’s problem, Euler started to generalize the Reimann Zeta
function for 2n and obtained the following expression [15]

ζ(2n) =
(−1)n−1(2π)2n

2 · (2n)!
B2n. (2)

Ayoub [1] has briefed the work of Euler on the Reimann–zeta function. Debnath [2] talks
about Euler’s contribution to the mathematical world and has provided a generalized proof for
Equation (2).

Mathematicians say that series are the heart of real analysis, it has many real-world applications
which were only possible due to many great works of mathematicians in history. The most
valuable contribution in the field of series was given by Jacobi and Ramanujan. Nimbran [11] has
derived a new product expansion for sinnπ and has also derived many algebraic irrational–free
infinite products for π. Varadarajan [16] has proved some of Euler’s important series. Many new
series of Euler’s works have been discussed by Kim’s [5]. Kim [8] has also shown the value
of moments of Poisson random variable associated with degenerate special numbers. There are
also some work by Kim [7] which suggest the probabilistic extension of Bernoulli polynomials
and Euler polynomials. There are also some new classes of sequences related to fully degenerate
Bernoulli numbers and polynomials discussed by Kim [6]. From those sequences, he derive some
formulae for the degenerate Bernoulli and Euler polynomials. There is also extended or fully
degenerate Bernoulli polynomials and numbers, which are a degenerate version of Bernoulli
polynomials and numbers and arise naturally from the Volkenborn integral of the degenerate
exponential functions studied by Kim [9].

2 Main results

Lemma 1. For any x ∈ R,

1

2x2
− cotx

2x
=

1

(π − x)(π + x)
+

1

(2π − x)(2π + x)
+

1

(3π − x)(3π + x)
+ · · · (3)
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Proof.

sinx = x

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)(
1− x2

16π2

)
· · ·

ln sinx = ln (x) + ln

(
1− x2

π2

)
+ ln

(
1− x2

4π2

)
+ ln

(
1− x2

9π2

)
+ · · · (4)

Differentiating Equation (4) with respect to x, we get:

cotx =
1

x
+

(
1

1− x2

π2

)(
−2x

π2

)
+

(
1

1− x2

4π2

)(
−2x

π2

)
+

(
1

1− x2

9π2

)(
−2x

16π2

)
+ · · ·

cotx =
1

x
− 2x

π2 − x2
− 2x

4π2 − x2
− 2x

9π2 − x2
− 2x

16π2 − x2
− · · ·

cotx

2x
− 1

2x2
= −

[
1

π2 − x2
+

1

4π2 − x2
+

1

9π2 − x2
+

1

16π2 − x2
+ · · ·

]
1

2x2
− cotx

2x
=

1

(π − x)(π + x)
+

1

(2π − x)(2π + x)
+

1

(3π − x)(3π + x)
+ · · · (5)

Hence the proof.

Lemma 2. The alternating series for 6− π

4
is

6− π

4
= 1− 1

1 · 3
+

1

3 · 5
− 1

5 · 7
+

1

7 · 9
− · · · .

Proof. Upon substituting x =
π

2
in Equation (5), we get

2

π2
=

22

π · 3π
+

22

3π · 5π
+

22

5π · 7π
+ · · ·

1

2
=

1

1 · 3
+

1

3 · 5
+

1

5 · 7
+ · · · (6)

Again by substituting x =
π

4
in Equation (5) we get,

8

π2
−

cot π
4

π
2

=
42

π2(3 · 5)
+

42

π2(7 · 9)
+

42

π2(11 · 13)
+ · · ·

1

2
− π

8
=

1

3 · 5
+

1

7 · 9
+

1

11 · 13
+ · · · (7)

Subtracting Equation (6) from Equation (7), we get

π

8
=

1

1 · 3
+

1

5 · 7
+

1

11 · 13
+

1

13 · 15
+ · · · (8)

Subtracting Equation (7) from Equation (8), we get

π

4
− 1

2
=

1

1 · 3
− 1

3 · 5
+

1

5 · 7
− 1

7 · 9
+ · · ·

6− π

4
= 1− 1

1 · 3
+

1

3 · 5
− 1

5 · 7
+

1

7 · 9
− · · · (9)

Hence the theorem.
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Theorem 1. The term 4

6− π
can be expressed as the following continued fraction:

4

6− π
= 1 +

1

1 · 2 +
(1 · 3)2

3 · 4 +
(3 · 5)2

5 · 4 +
(5 · 7)2

7 · 4 + · · ·

.

Proof. The term 4

6− π
can be expressed as the reciprocal of 6− π

4
whose alternating series is

determined in Lemma 2. Upon adding −1 we get,

4

6− π
− 1 =

1

6− π

4

− 1 =
1−

6− π

4

6− π

4

. (10)

Incorporating Lemma 2 here we get:

1−
6− π

4

6− π

4

=
1− 1 +

1

1 · 3
−

1

3 · 5
+

1

5 · 7
−

1

7 · 9
+ · · ·

1−
1

1 · 3
+

1

3 · 5
−

1

5 · 7
+

1

7 · 9
− · · ·

Upon adding and subtracting − 2
3·5 +

2
5·7 −

2
7·9 +

2
9·11 − · · · in the denominator we get:

=

1

1 · 3
−

1

3 · 5
+

1

5 · 7
−

1

7 · 9
+ · · ·

2

1 · 3
+


[
−

2

3 · 5
+

2

5 · 7
−

2

7 · 9
+ · · ·

]
+[

2

3 · 5
−

2

5 · 7
+

2

7 · 9− · · ·

]
+

1

3 · 5
−

1

5 · 7
+ · · ·

=

1

1 · 3
−

1

3 · 5
+

1

5 · 7
−

1

7 · 9
+ · · ·

2

[
1

1 · 3
−

1

3 · 5
+

1

5 · 7
−

1

7 · 9
+ · · ·

]
+

3

3 · 5
−

3

5 · 7
+ · · ·

=
1

2 + (1 · 3)2
1

3 · 5
−

1

5 · 7
+

1

7 · 9
− · · ·

1−
3

3 · 5
+

3

5 · 7
−

3

7 · 9
− · · ·
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=
1

2 +
(1 · 3)2

3 · 4 + (3 · 5)2

[
1

5 · 7
−

1

5 · 7
+

1

7 · 9
−

1

9 · 11
+ · · ·

]

1−
3 · 5
5 · 7

+
3 · 5
7 · 9

−
3 · 5
9 · 11

+ · · ·

.

Continuing this process, we arrive at the following continued fraction

4

6− π
− 1 =

1

1 · 2 +
(1 · 3)2

3 · 4 +
(3 · 5)2

5 · 4 +
(5 · 7)2

· · ·
By rearranging the terms we arrive at the result.

Theorem 2. For any n ∈ N, ∀ k ≥ 1 and x ∈ R, we have

1

2xk

d

dx

(
1

2(k − 1)x

d

dx

(
· · ·
(

1

2x

d

dx

(
1

2x2
− cotx

2x

))))
=
∑
n∈N

[
1

(nπ − x)(nπ + x)

]k+1

. (11)

Proof. By differentiating Equation (5) once with respect to x we get the case for k = 1 and it
is observed that the result holds true. Let m < k, then we arrive at the following expression
∀m ≥ 1:

1

2xm

d

dx

(
1

2(m− 1)x

d

dx

(
· · ·
(

1

2x

d

dx

(
1

2x2
− cotx

2x

))))
=
∑
n∈N

[
1

(nπ − x)(nπ + x)

]m+1

.

(12)
Replacing m by m+ 1,∀m > 1 on the left-hand side of Equation (12), we get

1

2x(m+ 1)

d

dx

(
1

2mx

d

dx

(
· · ·
(

1

4x

d

dx

(
1

2x

d

dx

(
1

2x2
− cotx

2x

)))))
. (13)

Incorporating Equation (12) in Equation (13) we arrive at

1

2x(m+ 1)

d

dx

(∑
n∈N

[
1

(nπ − x)(nπ + x)

]m+1
)

. (14)

Upon simplifying the above equation, we arrive at∑
n∈N

[
1

(nπ − x)(nπ + x)

]m+2

. (15)

Thus by induction, we prove that ∀ k ≥ 1

1

2xk

d

dx

(
1

2(k − 1)x

d

dx

(
· · ·
(

1

2x

d

dx

(
1

2x2
− cotx

2x

))))
=
∑
n∈N

[
1

(nπ − x)(nπ + x)

]k+1

.

The convergence of Equation (11) is shown in Figure 1.
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Figure 1. The graph showing the convergence of
∑

n∈N

[
1

(nπ−x)(nπ+x)

]k+1

Observation 1. For n, k ∈ N and x =
π

2
, the above theorem gives the following infinite series:

(
π2

4

)k+1
1

2xk

d

dx

(
· · ·
(

1

4x

d

dx

(
1

2x

d

dx

(
1

2x2
− cotx

2x

))))
=
∑
n∈N

[
1

(2n+ 1)(2n− 1)

]k+1

.

Observation 2. For n, k ∈ N and x = π
4
, the above theorem gives the following infinite series:(

π2

16

)k+1
1

2xk

d

dx

(
· · ·
(

1

4x

d

dx

(
1

2x

d

dx

(
1

2x2
− cotx

2x

))))
=
∑
n∈N

[
1

(4n+ 1)(4n− 1)

]k+1

.

Theorem 3. For any x ∈ R and n ∈ N, the following equation holds true:

1

(2n− 2)!

(
d2n−2

dx2n−2
cotx

)
=

∞∑
k=0

(
1

kπ + x

)2n−1

−
∑
k∈N

(
1

kπ − x

)2n−1

. (16)

Proof. For the case when n = 1, it can be concluded that the equality holds true as we get
cotx = 1

x
− 1

π−x
+ 1

π+x
− 1

2π−x
+ 1

2π−x
− · · · . Thus it can be assumed that for some m < n,

1

(2m− 2)!

(
d2m−2

dx2m−2
cotx

)
=

∞∑
k=0

(
1

kπ + x

)2m−1

−
∑
k∈N

(
1

kπ − x

)2m−1

(17)

We now proceed with the induction process by considering the (m+1)th iteration on the left-hand
side of Equation (17) as follows:

1

(2m)!

(
d2k

dx2k
cotx

)
=

1

(2m)!

(
d2

dx2

(
d2m−2

dx2m−2
cotx

))
(18)
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By incorporating Equation (17) into the above equation we arrive at the following expression

(2m− 2)!

(2m)!

[
d2

dx2

(
∞∑
k=0

(
1

kπ + x

)2m−1

−
∑
k∈N

(
1

kπ − x

)2m−1
)]

=
(2m− 2)!

(2m)!

(2m)(2m− 1)


1

x2k+1
− 1

(π − x)2m+1
+

1

(π + x)2m+1
−

1

(2π − x)2m+1
+

1

(2π + x)2m+1
− · · ·




=
1

x2m+1
− 1

(π − x)2m+1
+

1

(π + x)2m+1
− 1

(2π − x)2m+1
+

1

(2π + x)2m+1
+ · · ·

Thus by induction, it can be concluded that the equality described in Equation (16) holds true.
The convergence of 1

(2n−2)!

(
d2n−2

dx2n−2 cotx
)
=
∑∞

k=0

(
1

kπ+x

)2n−1 −
∑

k∈N
(

1
kπ−x

)2n−1 is shown in
Figure 2.

Figure 2. The graph showing the convergence of
∑∞

k=0

(
1

kπ+x

)2n−1 −
∑

k∈N
(

1
kπ−x

)2n−1

Observation 3. The famous infinite π−series described as π

4
= 1− 1

3
+ 1

5
− 1

7
+ 1

9
− · · · can be

obtained by evaluating Equation (16) at x =
π

4
whenever n = 1.

Observation 4. Upon substituting x =
π

4
in Equation (16) we arrive at the following alternating

series:(π
4

)2n−1 1

(2n− 2)!

[
d2n−2

dx2n−2 cotx

]
x=π

4

= 1− 1

32n−1
+

1

52n−1
− 1

72n−1
+

1

92n−1
− 1

112n−1
+ · · ·

(19)
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With the help of the previous theorem and its observations, we now head towards arriving at
a continued fraction for odd powers of π similar to that of Brouncker’s fraction for π given in
Equation (1).

Theorem 4. For any natural number n ≥ 1 and x = π
4

the Equation (19) will satisfy the following
continued fraction:

π2n−1 =

42n−1(2n− 2)![
d2n−2

dx2n−2
cotx

]
x=π

4

1n +
12(2n−1)

3n − 1n +
32(2n−1)

5n − 3n +
52(2n−1)

7n − 5n +
72(2n−1)

9n − 7n + · · ·

. (20)

Proof. From observation (19) we have,

42n−1(2n− 2)!

π2n−1
d2n−2

dx2n−2
cotx

− 1 =
1

π2n−1
d2n−2

dx2n−2
cotx

42n−1(2n− 2)!

− 1 =

1−
π2n−1

d2n−2

dx2n−2
cotx

42n−1(2n− 2)!

π2n−1
d2n−2

dx2n−2
cotx

42n−1(2n− 2)!

(21)

By implementing observation 19 to the above equation we arrive at the following equation:

42n−1(2n− 2)!

π2n−1
d2n−2

dx2n−2
cotx

− 1 =

1

32n−1
−

1

52n−1
+

1

72n−1
· · ·

1−
1

32n−1
+

1

52n−1
−

1

72n−1
· · ·

Upon adding and subtracting −32n−1−1
52n−1 + 32n−1−1

72n−1 − 32n−1−1
92n−1 + 32n−1−1

112n−1 − · · · in the denominator
of the right-hand side of (21) we get:

=

1

32n−1
−

1

52n−1
+

1

72n−1
· · ·

32n−1 − 1

32n−1
+


[
−
32n−1 − 1

52n−1
+

32n−1 − 1

72n−1
+ · · ·

]
+[

32n−1 − 1

52n−1
−

32n−1 − 1

72n−1
− · · ·

]
+

1

52n−1
+ · · ·

=
1

32n−1 +

32n−1

(
1

52n−1
−

1

72n−1

1

92n−1
−

1

112n−1
+ · · ·

)
1

32n−1 −
1

52n−1
+

1

72n−1
−

1

92n−1
+ · · ·
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=
1

32n−1 − 1 +

32(2n−1)

(
1

52n−1
−

1

72n−1
+

1

92n−1
−

1

112n−1
+ · · ·

)

1−
32n−1

52n−1
+

32n−1

72n−1
−

32n−1

92n−1 + · · ·

Upon adding and subtracting − 1
72n−1 +

1
92n−1 − 1

112n−1 + · · · in the denominator we get:

=
1

32n−1 − 1 +

32(2n−1)

[
1

52n−1
−

1

72n−1
+

1

92n−1
−

1

112n−1
+ · · ·

]

(52n−1 − 32n−1)

 1

52n−1
+

[
−

1

72n−1
+

1

92n−1
− · · ·

]
+[

1

72n−1
−

1

92n−1
+ · · ·

]
+

32n−1

72n−1
−

32n−1

92n−1
+ · · ·

=
1

32n−1 − 1 +
32(2n−1)

52n−1 − 32n−1 +

52(2n−1)

[
1

72n−1
−

1

92n−1
+

1

112n−1

]

1−
52n−1

72n−1
+

52n−1

92n−1
−

52n−1

112n−1
+ · · ·

Continuing this process infinitely we get the following continued fraction:

42n−1(2n− 2)!

π2n−1
d2n−2

dx2n−2
cotx

− 1 =
1

32n−1 − 1 +
32(2n−1)

52n−1 − 32n−1 +
52(2n−1)

72n−1 − 52n−1 + · · ·

(22)

Thus by rearranging the terms of the above equation we arrive at a continued fraction for π2n−1

and hence the theorem.

Theorem 5. For any natural number k ∈ N, we have

π2 = n2 sin2 π

n

(
1 + 2

∑
k∈N

1 + k2n2

(1− k2n2)2

)
. (23)

Proof. Differentiating Equation (5) with respect to x we get

1

2
cscx− 1

2x2
=

x2 + π2

(x2 − π2)2
+

x2 + 4π2

(x2 − 4π2)2
+

x2 + 9π2

(x2 − 9π2)2
+ · · · (24)

By substituting x =
π

n
, where n(> 1) ∈ N, we get

1

2
csc2

π

n
− n2

2π2
=

π2

n2 + π2(
π2

n2 − π2
)2 +

π2

n2 + 4π2(
π2

n2 − 4π2
)2 +

π2

n2 + 9π2(
π2

n2 − 9π2
)2 + · · ·
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⇒π2

n2

(
1

2
csc2

π

n
− n2

2π2

)
=

1 + n2

(1− n2)2
+

1 + 4n2

(1− 4n2)2
+

1 + 9n2

(1− 9n2)2
+ · · ·

⇒ π2

2n2
csc2

π

n
− 1

2
=
∑
k∈N

1 + k2n2

(1− k2n2)2

⇒π2 = n2 sin2 π

n

(
1 + 2

∑
k∈N

1 + k2n2

(1− k2n2)2

)
.

The convergence of π2 = n2 sin2 π
n

(
1 + 2

∑
k∈N

1+k2n2

(1−k2n2)2

)
is shown in Figure 3.

Figure 3. The graph showing the convergence of n2 sin2 π
n

(
1 + 2

∑
k∈N

1+k2n2

(1−k2n2)2

)
Observation 5. If n = i is substituted in Equation (23), then

π2 = i sinh π

(
1 + 2

∑
k∈N

1− k2

(1 + k2)2

)
. (25)

Observation 6. For any natural number k ∈ N and n = 2, we have

π

2
=

√
1 + 2

∑
k∈N

1 + (2k)2

(1− (2k)2)2
. (26)

Lemma 3. For any real number γ the following product holds true:

sinh γ · sin γ
γ2

=
∏
n∈N

[
1− γ4

n4π4

]
(27)
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Proof. According to the expansion of sinx, we have

sinx

x
=
∏
n∈N

(
1− x2

n2π2

)
(28)

Upon substituting x = iγ in the above equation, we obtain sinh γ

γ
=
∏

n∈N

(
1 + γ2

n2π2

)
. Now, by

substituting x = γ in Equation (28) we get sin γ

γ
=
∏

n∈N

(
1− γ2

n2π2

)
. By multiplying these two

expressions we get:

sinh γ · sin γ
γ2

=
∏
n∈N

(
1− γ2

n2π2

)
·
∏
n∈N

(
1 +

γ2

n2π2

)
=
∏
n∈N

(
1− γ4

n4π4

)
. (29)

This completes the proof.

Lemma 4. For any natural number n the following π series holds true:

π

2n

[
coth

π

n
+ cot

π

n

]
= 1−

∑
k∈N

1

k2n2 − 1
+
∑
k∈N

1

k2n2 + 1
. (30)

Proof. With the help of the Lemma 4 we can see that:

ln

(
sinh γ · sin γ

γ2

)
= ln

(
1− γ2

π2

)
+ ln

(
1 +

γ2

π2

)
+ ln

(
1− γ2

4π2

)
+

ln

(
1 +

γ2

4π2

)
+ ln

(
1− γ2

9π2

)
+ · · ·

(31)

by differentiating the above equation with respect to γ, we arrive at:

coth γ + cot γ − 2

γ
= − 2γ

π2 − γ2
+

2γ

π2 + γ2
− 2γ

4π2 − γ2
+

2γ

4π2 + γ2
− · · ·

coth γ + cot γ

2γ
=

1

γ2
− 1

π2 − γ2
+

1

π2 + γ2
− 1

4π2 − γ2
+

1

4π2 + γ2
+ · · · (32)

Replace γ by π

n
, where n (> 1) ∈ N, then,

coth π
n
+ cot π

n

2π
n

=
n2

π2
− n2

n2π2 − π2
+

n2

n2π2 + π2
− n2

4n2π2 + π2
+

n2

4n2π2 − π2
− · · ·

π

2n

[
coth

π

n
+ cot

π

n

]
= 1− 1

n2 − 1
+

1

n2 + 1
− 1

4n2 − 1
+

1

4n2 + 1
− · · · (33)

Hence the proof.

Theorem 6. For any natural number n the continued fraction for π can be expressed as

π =
2n

coth π
n
+ cot π

n

1 +
1

n2 − 2 +
(n2 − 1)2

2 +
(n2 + 1)2

3n2 − 2 +
(4n2 − 1)2

2 + · · ·

. (34)
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Proof. In Lemma 4, an expression is derived for π
2n

[
coth π

n
+ cot π

n

]
which is further utilized to

arrive at the continued fraction for π as stated in the statement. Consider

2n

π
[
coth π

n
+ cot π

n

]− 1 =
1

π
[
coth π

n
+ cot π

n

]
2n

− 1 =
1−

π
[
coth π

n
+ cot π

n

]
2n

π
[
coth π

n
+ cot π

n

]
2n

(35)

Now by implementing the expression obtained in Lemma 4 we get:

1−
π
[
coth π

n
+ cot π

n

]
2n

π
[
coth π

n
+ cot π

n

]
2n

=
1− 1 +

1

n2 − 1
−

1

n2 + 1
+

1

4n2 − 1
−

1

4n2 + 1
+ · · ·

1−
1

n2 − 1
+

1

n2 + 1
−

1

4n2 − 1
+

1

4n2 + 1
− · · ·

(36)

Now, add and subtract −n2−1−1
n2+1

+ n2−1−1
4n2+1

+ · · · in the denominator of the right-hand side of (36)
we get:

1

n2 − 1
−

1

n2 + 1
+

1

4n2 − 1
−

1

4n2 + 1
+ · · ·

n2 − 1− 1

n2 − 1
+

(
−
n2 − 1− 1

n2 + 1
+

n2 − 1− 1

4n2 − 1
+ · · ·

)
+(

n2 − 2

n2 + 1
−

n2 − 2

n2 + 1
+ · · ·

)
+

1

n2 + 1
−

1

4n2 − 1
+ · · ·


(37)

By dividing the numerator and denominator by 1
n2−1

− 1
n2+1

+ 1
4n2+1

− 1
4n2−1

+ · · · Thus the above
equation further extends to:

=
1

n2 − 2 +

(n2 − 1)

(
1

n2 + 1
−

1

4n2 − 1
+ · · ·

)

1−
n2 − 1

n2 + 1
+

n2 − 1

4n2 − 1
− · · ·

=
1

n2 − 2 +

(n2 − 1)2

(
1

n2 + 1
−

1

4n2 − 1
+ · · ·

)


2

n2 + 1
+

(
−

2

4n2 − 1
+

2

4n2 + 1
+ · · ·

)
+(

2

4n2 − 1
−

2

4n2 + 1
+ · · ·

)
+

n2 − 1

4n2 − 1
−

n2 − 1

4n2 + 1
+ · · ·


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=
1

n2 − 2 +
(n2 − 1)2

2 +

(n2 + 1)2

(
1

4n2 − 1
−

1

4n2 + 1
+

1

9n2 − 1
−

1

9n2 + 1
+ · · ·

)

1−
n2 + 1

4n2 − 1
+

n2 + 1

4n2 + 1
+ · · ·

Continuing this process further, we arrive at the following expression:

2n

π
[
coth π

n
+ cot π

n

]− 1 =
1

n2 − 2 +
(n2 − 1)2

2 +
(n2 + 1)2

3n2 − 2 +
4n2 − 1

2 + · · ·

.

Thus by rearranging the terms, we prove the theorem.

Theorem 7. For r ∈ R and n ∈ N, the complex sine product and Basel’s problems are related as
follows:

ln

(
sinh r

r

)
=
∑
n∈N

22n

(2n)(2n)!
B2nr

2n. (38)

Furthermore, the hyperbolic cotangent function is related to the Basel constants as follows:

− 1

2r
+

coth r

2
=
∑
n∈N

22n

2(2n)!
B2nr

2n−1. (39)

Proof. From the π−series of the sine function we have:

sinx

x
=

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)(
1− x2

16π2

)
· · · . (40)

Upon substituting x = ir for some r ∈ R, we get the hyperbolic sine function as follows:

sinh r

r
=

(
1 +

r2

π2

)(
1 +

r2

4π2

)(
1 +

r2

9π2

)(
1 +

r2

16π2

)
· · · (41)

⇒ ln

(
sinh r

r

)
= ln

(
1 +

r2

π2

)
+ ln

(
1 +

r2

4n2π2

)
+ ln

(
1 +

r2

9n2π2

)
+ · · · (42)

⇒ ln

(
sinh r

r

)
=

r2

π2

∑
n∈N

1

n2
+

r4

2π4

∑
n∈N

1

n4
+

r6

3π6

∑
n∈N

1

n6
+

r8

4π8

∑
n∈N

1

n8
+ · · · , (43)

where the terms
∑

n∈N
1
n2 ,
∑

n∈N
1
n4 ,
∑

n∈N
1
n6 ,
∑

n∈N
1
n8 , ... are the Basel’s problems discovered

by Euler [15]. Therefore, the above equation can be reduced to

ln

(
sinh r

r

)
=

r2

6
− r4

180
+

r6

2833
− · · · =

∑
n∈N

22n

2n(2n)!
B2nr

2n. (44)
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Observation 7. For the case when r = π and raising Equation (44) to the power of e on both
sides, we get

sinhπ

π
=

e
π2

6

(
√
e)

π4

90

·
3
√
e

π6

945

( 4
√
e)

π8

9450

·
5
√
e

π10

93555

( 6
√
e)

691π12

638512875

(45)

We now eliminate the term n from the denominator of Equation (44) by differentiating it with
respect to r and then we arrive at an expression having Basel constants.

d

dr

[
ln

(
sinh r

r

)]
=

2r

6
− 4r3

2 · 90
+

6r5

3 · 945
− 8r7

4 · 9450
+ · · · ,

r cosh r − sinh r

2r sinh r
=

r

6
− r3

90
+

r5

945
− r7

9450
+ · · · ,

where 6, 90, 945, 9450, . . . are the Basel constants. Thus, we arrive at the following expression

r cosh r − sinh r

2r sinh r
= − 1

2r
+

coth r

2
=
∑
n∈N

22n

2(2n)!
B2nr

2n−1.

Hence the theorem.

Remark 1. The continued fraction for cothx is as follows:

1− cothx

2
+

1

2x
=

1

1 +
1

6
x
− 1 +

62

x2

90

x3
−

6

x
+

902

x6

945

x3
−

90

x3
+ · · ·

.

3 Conclusion

In this paper, a few results related to the Euler sine product and continued fractions are derived.
Also, some of the special cases were observed where the infinite series were expressed in terms of
Basel constants. Furthermore, Brouncker’s expression for π was extended to obtain the continued
fraction for the odd powers of π in terms of cotx where x ∈ R. Also, the convergence of the
expression:

1

2xk

d

dx

(
1

2(k − 1)x

d

dx

(
· · ·
(

1

2x

d

dx

(
1

2x2
− cotx

2x

))))
=
∑
n∈N

[
1

(nπ − x)(nπ + x)

]k+1

and
∞∑
k=0

(
1

kπ + x

)2n−1

−
∑
k∈N

(
1

kπ − x

)2n−1

was visualized through the graphs.
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