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Abstract: For a graph Ω, the multiplicative Sombor index is defined as∏
SO

(Ω) =
∏

ab∈E(Ω)

√
d2Ω(a) + d2Ω(b),

where dΩ(a) is the degree of vertex a. Liu [Liu, H. (2022). Discrete Mathematics Letters, 9,
80–85] showed that, when T is a tree of order n,

∏
SO(T ) ⩾

∏
SO(Pn) = 5(

√
8)n−3. We

improved this result and show that, if T is a tree of order n with maximum degree D, then

∏
SO

(T ) ⩾

{
(5(D2 + 4))

D
2 8

n−2D−1
2 if D ⩽ n−1

2
,

(D2 + 1)
2D+1−n

2 (5(D2 + 4))
n−D−1

2 if D > n−1
2
.

Also, we show that equality holds if and only if T is a spider whose all legs have length less than
three or all legs have length more than one.
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1 Introduction

Consider a simple graph Ω = (V(Ω), E(Ω)), where V = V(Ω) and E = E(Ω) are its vertex and
edge set of Ω, respectively. The integer n = n(Ω) = |V| is the order Ω. The open neighborhood
of a vertex a in the graph Ω is the set NΩ(a) = {b ∈ V(Ω) : ab ∈ E(Ω)}. The degree of a vertex
a in Ω is the cardinality of its open neighborhood. The maximum degree is denoted by D.

Recently, some variants of vertex-degree-based indices such as multiplicative Zagreb indices
[9, 20], irregularity [2, 14, 22], Lanzhou index [7, 19], entire Zagreb indices [1, 13] have been
introduced.

In 2021, a new degree-based topological index was put forward by Gutman [10], referred to
as the Sombor index. Its definition for a graph Ω is

SO(Ω) =
∑

ab∈E(Ω)

√
d2Ω(a) + d2Ω(b).

For more information see [3–6, 8, 11, 15–18, 21].
Recently Liu [12] defined the multiplicative version of the Sombor index. The multiplicative

Sombor index is defined as: ∏
SO

(Ω) =
∏

ab∈E(Ω)

√
d2Ω(a) + d2Ω(b).

In this paper, we establish some new lower bounds on the multiplicative Sombor index and
determine the extremal trees attaining these bounds.

2 Trees

A leaf of a tree T is a vertex of degree 1. A tree with a vertex recognized as the root is called a
rooted tree. If a is a non-root vertex of a tree, the vertex adjacent to a on the path joining a and
the root vertex is known as the parent of a. Throughout this paper, let Tn,D be the set of trees of
order n and maximum degree D.

Lemma 2.1. Let T ∈ Tn,D and T have non-root vertices of degrees greater than or equal to
three. Then, there is T ′ ∈ Tn,D such that

∏
SO(T ′) <

∏
SO(T ).

Proof. Assume that T denotes a rooted tree with root x such that dT (x) = D and NT (x) =

{x1, x2, . . . , xD}. Let y be a vertex with maximum distance from x among all the non-root
vertices of T of degrees greater than or equal to three, and let dT (y) = κ ≥ 3. Assume that
NT (y) = {y1, y2, . . . , yκ−1, yκ} where yκ is the parent of y. By our assumption, all vertices
adjacent to y except of z are of degree one or two in T . We have the following cases.
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Case 1. At least two vertices adjacent to y in T are leaves.
We can assume that y1 and y2 are leaves and T ′ is the tree derived from T − {y1} by adding the
path y1y2. Assume that

Q = E(T )− {yy1, yy2, . . . , yyκ−1, yyκ},

and
Q′ = E(T ′)− {y1y2, yy2, . . . , yyκ−1, yyκ}.

We can see that
β =

∏
ab ̸∈Q

√
d2T (a) + d2T (b) =

∏
ab̸∈Q′

√
d2T ′(a) + d2T ′(b).

Then∏
SO

(T )−
∏
SO

(T ′) =
∏
ab/∈Q

√
d2T (a) + d2T (b)

∏
ab∈Q

√
d2T (a) + d2T (b)

−
∏
ab/∈Q′

√
d2T ′(a) + d2T ′(b)

∏
ab∈Q′

√
d2T ′(a) + d2T ′(b)

= β
√
d2T (y) + d2T (y1)

√
d2T (y) + d2T (y2)

κ∏
i=3

√
d2T (y) + d2T (yi)

− β
√
d2T ′(y) + d2T ′(y2)

√
d2T ′(y1) + d2T ′(y2)

κ∏
i=3

√
d2T ′(y) + d2T ′(yi)

= β(κ2 + 1)
κ∏

i=3

√
κ2 + d2T (yi)

− β
√
5(κ− 1)2 + 20

κ∏
i=3

√
(κ− 1)2 + d2T (yi)

⩾ β(κ2 + 1−
√
5(κ− 1)2 + 20)

κ∏
i=3

√
(κ− 1)2 + d2T (yi)

> 0.

Case 2. Exactly one vertex adjacent to y in T is a leaf.
We can assume that y1 is a leaf adjacent to y and yu1u2 . . . uk is a path in T for k ≥ 2 and y2 = u1.
Let T ′ be the tree derived from T − {y1} by adding the path uky1. Suppose

Q = E(T )− {yy1, yy2, . . . , yyκ−1, yyκ, uk−1uk},

and
Q′ = E(T ′)− {y1uk, yy2, . . . , yyκ−1, yyκ, uk−1uk}.

It is easy to see that

β =
∏
ab/∈Q

√
d2T (a) + d2T (b) =

∏
ab/∈Q′

√
d2T ′(a) + d2T ′(b).
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Then∏
SO

(T )−
∏
SO

(T ′) =
∏
ab/∈Q

√
d2T (a) + d2T (b)

∏
ab∈Q

√
d2T (a) + d2T (b)

−
∏
ab/∈Q′

√
d2T ′(a) + d2T ′(b)

∏
ab∈Q′

√
d2T ′(a) + d2T ′(b)

= β
√
d2T (y) + d2T (y1)

√
d2T (uk) + d2T (uk−1)

κ∏
i=2

√
d2T (y) + d2T (yi)

− β
√
d2T ′(y1) + d2T ′(uk)

√
d2T ′(uk) + d2T ′(uk−1)

κ∏
i=2

√
d2T ′(y) + d2T ′(yi)

= β
√
5(κ2 + 1)

κ∏
i=2

√
κ2 + d2T (yi)− β

√
40

κ∏
i=2

√
(κ− 1)2 + d2T (yi)

⩾ β(
√
5(κ2 + 1)−

√
40)

κ∏
i=2

√
(κ− 1)2 + d2T (yi)

> 0.

Case 3. None of the vertices adjacent to y are leaves.
Let yu1u2 . . . ut, uv1v2 . . . vs, (t, s ≥ 2) be two paths in T with y1 = u1 and y2 = v1 and let T ′

be the tree derived from T − {y1} by adding the path vsy1. Assume that

Q = E(T )− {yy1, yy2, . . . , yyκ−1, yyκ, vs−1vs},

and
Q′ = E(T ′)− {y1vs, yy2, . . . , yyκ−1, yyκ, vs−1vs}.

We can see that
β =

∏
ab/∈Q

√
d2T (a) + d2T (b) =

∏
ab/∈Q′

√
d2T ′(a) + d2T ′(b).

Then∏
SO

(T )−
∏
SO

(T ′) =
∏
ab/∈Q

√
d2T (a) + d2T (b)

∏
ab∈Q

√
d2T (a) + d2T (b)

−
∏
ab/∈Q′

√
d2T ′(a) + d2T ′(b)

∏
ab∈Q′

√
d2T ′(a) + d2T ′(b)

= β
√

d2T (y) + d2T (y1)
√
d2T (vs) + d2T (vs−1)

κ∏
i=2

√
d2T (y) + d2T (yi)

− β
√
d2T ′(y1) + d2T ′(vs)

√
d2T ′(vs) + d2T ′(vs−1)

κ∏
i=2

√
d2T ′(y) + d2T ′(yi)

= β
√
5(κ2 + 4)

κ∏
i=2

√
κ2 + d2T (yi)− 8β

κ∏
i=2

√
(κ− 1)2 + d2T (yi)

⩾ β(
√

5(κ2 + 4)− 8)
κ∏

i=2

√
(κ− 1)2 + d2T (yi)

> 0.

This completes the proof.
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A spider is a tree that has no more than one vertex of degree greater than 2. Such a vertex is
known as the center of the spider. A path connecting the center of a spider to one of its pendent
vertices is called a leg of the spider. For example, a star with n vertices, Sn, is a spider with n− 1

legs, each of length 1.

Proposition 2.1. Let T be a spider of order n and D ≥ 3 legs. Assume that T contains a leg with
length 1 and another leg with length greater than 2. Then there is a spider T ′ of order n and D
legs with

∏
SO(T ′) <

∏
SO(T ).

Proof. Let x be the center of T and NT (x) = {x1, . . . , xD}. Root T at x. We may assume that
d(x1) = 1 and let xy1y2 . . . yt, t ≥ 3 be the longest leg of T such that y1 = x2. Assume that T ′ is
the tree derived from T − {ytyt−1} by adding the path x1yt. Assume that

Q = E(T )− {xx1, yt−1yt−2, ytyt−1},

and
Q′ = E(T ′)− {xx1, yt−1yt−2, ytx1}.

We can see that
β =

∏
ab/∈Q

√
d2T (a) + d2T (b) =

∏
ab/∈Q′

√
d2T ′(a) + d2T ′(b).

Then∏
SO

(T )−
∏
SO

(T ′) =
∏
ab/∈Q

√
d2T (a) + d2T (b)

∏
ab∈Q

√
d2T (a) + d2T (b)

−
∏
ab/∈Q′

√
d2T ′(a) + d2T ′(b)

∏
ab∈Q′

√
d2T ′(a) + d2T ′(b)

= β
√
d2T (x) + d2T (x1)

√
d2T (yt) + d2T (yt−1)

√
d2T (yt−1) + d2T (yt−2)

− β
√
d2T ′(x) + d2T ′(x1)

√
d2T ′(yt) + d2T ′(x1)[

√
d2T ′(yt−1) + d2T ′(yt−2)]

= 2β
√
10(D2 + 1)− 5β

√
D2 + 4

> 0.

Theorem 2.1. Let T ∈ Tn,D. Then

∏
SO

(T ) ⩾

{
(5(D2 + 4))

D
2 8

n−2D−1
2 if D ⩽ n−1

2
,

(D2 + 1)
2D+1−n

2 (5(D2 + 4))
n−D−1

2 if D > n−1
2
.

The equality holds if and only if Ω is a spider whose all legs have length less than three or all legs
have length more than one.

Proof. Let T ′ ∈ Tn,D such that
∏

SO(T ′) ⩽
∏

SO(T ) for each T ∈ Tn,D. Choose a vertex x of T ′

with degree D as the root of T ′. If D = 2, then T is a path of order n and
∏

SO(Pn) = 5(
√
8)n−3.

Let D ⩾ 3. By the choice of T ′, it can be deduced from Lemma 2.1 that T ′ is a spider with
center x. By Proposition 2.1 and the selection of T ′, all legs of T ′ either have length less than
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three or have length more than one. We let first all legs of T ′ have length more than 1. Clearly,
D ⩽ n−1

2
. Then ∏

SO

(T ′) = (5(D2 + 4))
D
2 8

n−2D−1
2 .

Next we assume that all legs of T ′ have length less than three. Considering the previous case, it
might be assumed that T ′ has a leg of length 1. The number of leaves adjacent to x is 2D+1−n,
and thus ∏

SO

(T ′) = (D2 + 1)
2D+1−n

2 (5(D2 + 4))
n−D−1

2 .

The following observation is immediately achieved from the definitions of multiplicative
Sombor index.

Observation 2.1. Let Ω be a graph and e /∈ E(Ω). Then∏
SO

(Ω + e) >
∏
SO

(Ω).

Applying Theorem 2.1 and Observation 2.1, we yield the next result.

Corollary 2.1. If Ω is a graph of order n with maximum degree D, then

∏
SO

(Ω) ⩾

 (5(D2 + 4))
D
2 8

n−2D−1
2 if D ⩽ n−1

2
,

(D2 + 1)
2D+1−n

2 (5(D2 + 4))
n−D−1

2 if D > n−1
2
.

The equality holds if and only if Ω is a spider whose all legs have length less than three or all legs
have length more than one.
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