Multiplicative Sombor index of trees

Nasrin Dehgardi ${ }^{1, *}$, Zhibin Du ${ }^{2}$ and Yilun Shang ${ }^{3}$
${ }^{1}$ Department of Mathematics and Computer Science, Sirjan University of Technology Sirjan, Iran
e-mail: n.dehgardi@sirjantech.ac.ir
${ }^{2}$ School of Software, South China Normal University
Foshan, Guangdong 528225, China
e-mail: zhibindu@126.com
${ }^{3}$ Department of Computer and Information Sciences, Northumbria University Newcastle NE1 8ST, United Kingdom
e-mail: yilun.shang@northumbria.ac.uk

* Corresponding author

Received: 17 October 2023
Revised: 3 June 2024
Accepted: 18 July 2024
Online First: 20 July 2024
Abstract: For a graph Ω, the multiplicative Sombor index is defined as

$$
\prod_{S O}(\Omega)=\prod_{a b \in \mathcal{E}(\Omega)} \sqrt{d_{\Omega}^{2}(a)+d_{\Omega}^{2}(b)}
$$

where $d_{\Omega}(a)$ is the degree of vertex a. Liu [Liu, H. (2022). Discrete Mathematics Letters, 9 , 80-85] showed that, when \mathcal{T} is a tree of order $n, \prod_{S O}(\mathcal{T}) \geqslant \prod_{S O}\left(P_{n}\right)=5(\sqrt{8})^{n-3}$. We improved this result and show that, if \mathcal{T} is a tree of order n with maximum degree \mathcal{D}, then

$$
\prod_{S O}(\mathcal{T}) \geqslant \begin{cases}\left(5\left(\mathcal{D}^{2}+4\right)\right)^{\frac{D}{2}} 8^{\frac{n-2 \mathcal{D}-1}{2}} & \text { if } \mathcal{D} \leqslant \frac{n-1}{2} \\ \left(\mathcal{D}^{2}+1\right)^{\frac{2 \mathcal{D}+1-n}{2}}\left(5\left(\mathcal{D}^{2}+4\right)\right)^{\frac{n-\mathcal{D}-1}{2}} & \text { if } \mathcal{D}>\frac{n-1}{2}\end{cases}
$$

Also, we show that equality holds if and only if \mathcal{T} is a spider whose all legs have length less than three or all legs have length more than one.

| | Copyright © 2024 by the Authors. This is an Open Access paper distributed under the |
| :--- | :--- | :--- |
| (c) (i) | |
| terms and conditions of the Creative Commons Attribution 4.0 International License | |
| (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ | |

Keywords: Sombor index, Multiplicative Sombor index, Trees.
2020 Mathematics Subject Classification: 05C07.

1 Introduction

Consider a simple graph $\Omega=(\mathcal{V}(\Omega), \mathcal{E}(\Omega))$, where $\mathcal{V}=\mathcal{V}(\Omega)$ and $\mathcal{E}=\mathcal{E}(\Omega)$ are its vertex and edge set of Ω, respectively. The integer $n=n(\Omega)=|\mathcal{V}|$ is the order Ω. The open neighborhood of a vertex a in the graph Ω is the set $N_{\Omega}(a)=\{b \in \mathcal{V}(\Omega): a b \in \mathcal{E}(\Omega)\}$. The degree of a vertex a in Ω is the cardinality of its open neighborhood. The maximum degree is denoted by \mathcal{D}.

Recently, some variants of vertex-degree-based indices such as multiplicative Zagreb indices [9, 20], irregularity [2, 14, 22], Lanzhou index [7, 19], entire Zagreb indices [1, 13] have been introduced.

In 2021, a new degree-based topological index was put forward by Gutman [10], referred to as the Sombor index. Its definition for a graph Ω is

$$
S O(\Omega)=\sum_{a b \in \mathcal{E}(\Omega)} \sqrt{d_{\Omega}^{2}(a)+d_{\Omega}^{2}(b)}
$$

For more information see [3-6, 8, 11, 15-18, 21].
Recently Liu [12] defined the multiplicative version of the Sombor index. The multiplicative Sombor index is defined as:

$$
\prod_{S O}(\Omega)=\prod_{a b \in \mathcal{E}(\Omega)} \sqrt{d_{\Omega}^{2}(a)+d_{\Omega}^{2}(b)}
$$

In this paper, we establish some new lower bounds on the multiplicative Sombor index and determine the extremal trees attaining these bounds.

2 Trees

A leaf of a tree \mathcal{T} is a vertex of degree 1 . A tree with a vertex recognized as the root is called a rooted tree. If a is a non-root vertex of a tree, the vertex adjacent to a on the path joining a and the root vertex is known as the parent of a. Throughout this paper, let $\mathcal{T}_{n, \mathcal{D}}$ be the set of trees of order n and maximum degree \mathcal{D}.

Lemma 2.1. Let $\mathcal{T} \in \mathcal{T}_{n, \mathcal{D}}$ and \mathcal{T} have non-root vertices of degrees greater than or equal to three. Then, there is $\mathcal{T}^{\prime} \in \mathcal{T}_{n, \mathcal{D}}$ such that $\prod_{S O}\left(\mathcal{T}^{\prime}\right)<\prod_{S O}(\mathcal{T})$.

Proof. Assume that \mathcal{T} denotes a rooted tree with root x such that $d_{\mathcal{T}}(x)=\mathcal{D}$ and $N_{\mathcal{T}}(x)=$ $\left\{x_{1}, x_{2}, \ldots, x_{\mathcal{D}}\right\}$. Let y be a vertex with maximum distance from x among all the non-root vertices of \mathcal{T} of degrees greater than or equal to three, and let $d_{\mathcal{T}}(y)=\kappa \geq 3$. Assume that $N_{T}(y)=\left\{y_{1}, y_{2}, \ldots, y_{\kappa-1}, y_{\kappa}\right\}$ where y_{κ} is the parent of y. By our assumption, all vertices adjacent to y except of z are of degree one or two in \mathcal{T}. We have the following cases.

Case 1. At least two vertices adjacent to y in \mathcal{T} are leaves.
We can assume that y_{1} and y_{2} are leaves and \mathcal{T}^{\prime} is the tree derived from $\mathcal{T}-\left\{y_{1}\right\}$ by adding the path $y_{1} y_{2}$. Assume that

$$
Q=\mathcal{E}(\mathcal{T})-\left\{y y_{1}, y y_{2}, \ldots, y y_{\kappa-1}, y y_{\kappa}\right\}
$$

and

$$
Q^{\prime}=\mathcal{E}\left(\mathcal{T}^{\prime}\right)-\left\{y_{1} y_{2}, y y_{2}, \ldots, y y_{\kappa-1}, y y_{\kappa}\right\}
$$

We can see that

$$
\beta=\prod_{a b \notin Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)}=\prod_{a b \notin Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)} .
$$

Then

$$
\begin{aligned}
\prod_{S O}(\mathcal{T})-\prod_{S O}\left(\mathcal{T}^{\prime}\right)= & \prod_{a b \notin Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)} \prod_{a b \in Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)} \\
& -\prod_{a b \notin Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)} \prod_{a b \in Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)} \\
= & \beta \sqrt{d_{\mathcal{T}}^{2}(y)+d_{\mathcal{T}}^{2}\left(y_{1}\right)} \sqrt{d_{\mathcal{T}}^{2}(y)+d_{\mathcal{T}}^{2}\left(y_{2}\right)} \prod_{i=3}^{\kappa} \sqrt{d_{\mathcal{T}}^{2}(y)+d_{\mathcal{T}}^{2}\left(y_{i}\right)} \\
& -\beta \sqrt{d_{\mathcal{T}^{\prime}}^{2}(y)+d_{\mathcal{T}^{\prime}}^{2}\left(y_{2}\right)} \sqrt{d_{\mathcal{T}^{\prime}}^{2}\left(y_{1}\right)+d_{\mathcal{T}^{\prime}}^{2}\left(y_{2}\right)} \prod_{i=3}^{\kappa} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(y)+d_{\mathcal{T}^{\prime}}^{2}\left(y_{i}\right)} \\
= & \beta\left(\kappa^{2}+1\right) \prod_{i=3}^{\kappa} \sqrt{\kappa^{2}+d_{\mathcal{T}}^{2}\left(y_{i}\right)} \\
& -\beta \sqrt{5(\kappa-1)^{2}+20} \prod_{i=3}^{\kappa} \sqrt{(\kappa-1)^{2}+d_{\mathcal{T}}^{2}\left(y_{i}\right)} \\
\geqslant & \beta\left(\kappa^{2}+1-\sqrt{5(\kappa-1)^{2}+20}\right) \prod_{i=3}^{\kappa} \sqrt{(\kappa-1)^{2}+d_{\mathcal{T}}\left(y_{i}\right)} \\
> & 0 .
\end{aligned}
$$

Case 2. Exactly one vertex adjacent to y in \mathcal{T} is a leaf.
We can assume that y_{1} is a leaf adjacent to y and $y u_{1} u_{2} \ldots u_{k}$ is a path in \mathcal{T} for $k \geq 2$ and $y_{2}=u_{1}$.
Let \mathcal{T}^{\prime} be the tree derived from $\mathcal{T}-\left\{y_{1}\right\}$ by adding the path $u_{k} y_{1}$. Suppose

$$
Q=\mathcal{E}(\mathcal{T})-\left\{y y_{1}, y y_{2}, \ldots, y y_{\kappa-1}, y y_{\kappa}, u_{k-1} u_{k}\right\},
$$

and

$$
Q^{\prime}=\mathcal{E}\left(\mathcal{T}^{\prime}\right)-\left\{y_{1} u_{k}, y y_{2}, \ldots, y y_{\kappa-1}, y y_{\kappa}, u_{k-1} u_{k}\right\}
$$

It is easy to see that

$$
\beta=\prod_{a b \notin Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)}=\prod_{a b \notin Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)}
$$

Then

$$
\begin{aligned}
\prod_{S O}(\mathcal{T})-\prod_{S O}\left(\mathcal{T}^{\prime}\right)= & \prod_{a b \notin Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)} \prod_{a b \in Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)} \\
& -\prod_{a b \notin Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)} \prod_{a b \in Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)} \\
= & \beta \sqrt{d_{\mathcal{T}}^{2}(y)+d_{\mathcal{T}}^{2}\left(y_{1}\right)} \sqrt{d_{\mathcal{T}}^{2}\left(u_{k}\right)+d_{\mathcal{T}}^{2}\left(u_{k-1}\right)} \prod_{i=2}^{\kappa} \sqrt{d_{\mathcal{T}}^{2}(y)+d_{\mathcal{T}}^{2}\left(y_{i}\right)} \\
& -\beta \sqrt{d_{\mathcal{T}^{\prime}}^{2}\left(y_{1}\right)+d_{\mathcal{T}^{\prime}}^{2}\left(u_{k}\right)} \sqrt{d_{\mathcal{T}^{\prime}}^{2}\left(u_{k}\right)+d_{\mathcal{T}^{\prime}}^{2}\left(u_{k-1}\right)} \prod_{i=2}^{\kappa} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(y)+d_{\mathcal{T}^{\prime}}^{2}\left(y_{i}\right)} \\
= & \beta \sqrt{5\left(\kappa^{2}+1\right)} \prod_{i=2}^{\kappa} \sqrt{\kappa^{2}+d_{\mathcal{T}}^{2}\left(y_{i}\right)}-\beta \sqrt{40} \prod_{i=2}^{\kappa} \sqrt{(\kappa-1)^{2}+d_{\mathcal{T}}^{2}\left(y_{i}\right)} \\
\geqslant & \beta\left(\sqrt{5\left(\kappa^{2}+1\right)}-\sqrt{40}\right) \prod_{i=2}^{\kappa} \sqrt{(\kappa-1)^{2}+d_{\mathcal{T}}^{2}\left(y_{i}\right)} \\
> & 0 .
\end{aligned}
$$

Case 3. None of the vertices adjacent to y are leaves.
Let $y u_{1} u_{2} \ldots u_{t}, u v_{1} v_{2} \ldots v_{s},(t, s \geq 2)$ be two paths in \mathcal{T} with $y_{1}=u_{1}$ and $y_{2}=v_{1}$ and let \mathcal{T}^{\prime} be the tree derived from $\mathcal{T}-\left\{y_{1}\right\}$ by adding the path $v_{s} y_{1}$. Assume that

$$
Q=\mathcal{E}(\mathcal{T})-\left\{y y_{1}, y y_{2}, \ldots, y y_{\kappa-1}, y y_{\kappa}, v_{s-1} v_{s}\right\},
$$

and

$$
Q^{\prime}=\mathcal{E}\left(\mathcal{T}^{\prime}\right)-\left\{y_{1} v_{s}, y y_{2}, \ldots, y y_{\kappa-1}, y y_{\kappa}, v_{s-1} v_{s}\right\} .
$$

We can see that

$$
\beta=\prod_{a b \notin Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)}=\prod_{a b \notin Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)} .
$$

Then

$$
\begin{aligned}
\prod_{S O}(\mathcal{T})-\prod_{S O}\left(\mathcal{T}^{\prime}\right)= & \prod_{a b \notin Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)} \prod_{a b \in Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)} \\
& -\prod_{a b \notin Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)} \prod_{a b \in Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)} \\
= & \beta \sqrt{d_{\mathcal{T}}^{2}(y)+d_{\mathcal{T}}^{2}\left(y_{1}\right)} \sqrt{d_{\mathcal{T}}^{2}\left(v_{s}\right)+d_{\mathcal{T}}\left(v_{s-1}\right)} \prod_{i=2}^{\kappa} \sqrt{d_{\mathcal{T}}^{2}(y)+d_{\mathcal{T}}^{2}\left(y_{i}\right)} \\
& -\beta \sqrt{d_{\mathcal{T}^{\prime}}^{2}\left(y_{1}\right)+d_{\mathcal{T}^{\prime}}^{2}\left(v_{s}\right)} \sqrt{d_{\mathcal{T}^{\prime}}^{2}\left(v_{s}\right)+d_{\mathcal{T}^{\prime}}^{2}\left(v_{s-1}\right)} \prod_{i=2}^{\kappa} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(y)+d_{\mathcal{T}^{\prime}}^{2}\left(y_{i}\right)} \\
= & \beta \sqrt{5\left(\kappa^{2}+4\right)} \prod_{i=2}^{\kappa} \sqrt{\kappa^{2}+d_{\mathcal{T}}^{2}\left(y_{i}\right)}-8 \beta \prod_{i=2}^{\kappa} \sqrt{(\kappa-1)^{2}+d_{\mathcal{T}}\left(y_{i}\right)} \\
\geqslant & \beta\left(\sqrt{5\left(\kappa^{2}+4\right)}-8\right) \prod_{i=2}^{\kappa} \sqrt{(\kappa-1)^{2}+d_{\mathcal{T}}\left(y_{i}\right)} \\
> & 0 .
\end{aligned}
$$

This completes the proof.

A spider is a tree that has no more than one vertex of degree greater than 2 . Such a vertex is known as the center of the spider. A path connecting the center of a spider to one of its pendent vertices is called a leg of the spider. For example, a star with n vertices, S_{n}, is a spider with $n-1$ legs, each of length 1.

Proposition 2.1. Let \mathcal{T} be a spider of order n and $\mathcal{D} \geq 3$ legs. Assume that \mathcal{T} contains a leg with length 1 and another leg with length greater than 2 . Then there is a spider \mathcal{T}^{\prime} of order n and \mathcal{D} legs with $\prod_{S O}\left(\mathcal{T}^{\prime}\right)<\prod_{S O}(\mathcal{T})$.

Proof. Let x be the center of \mathcal{T} and $N_{\mathcal{T}}(x)=\left\{x_{1}, \ldots, x_{\mathcal{D}}\right\}$. Root \mathcal{T} at x. We may assume that $d\left(x_{1}\right)=1$ and let $x y_{1} y_{2} \ldots y_{t}, t \geq 3$ be the longest leg of \mathcal{T} such that $y_{1}=x_{2}$. Assume that \mathcal{T}^{\prime} is the tree derived from $\mathcal{T}-\left\{y_{t} y_{t-1}\right\}$ by adding the path $x_{1} y_{t}$. Assume that

$$
Q=\mathcal{E}(\mathcal{T})-\left\{x x_{1}, y_{t-1} y_{t-2}, y_{t} y_{t-1}\right\}
$$

and

$$
Q^{\prime}=\mathcal{E}\left(\mathcal{T}^{\prime}\right)-\left\{x x_{1}, y_{t-1} y_{t-2}, y_{t} x_{1}\right\} .
$$

We can see that

$$
\beta=\prod_{a b \notin Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)}=\prod_{a b \notin Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)} .
$$

Then

$$
\begin{aligned}
\prod_{S O}(\mathcal{T})-\prod_{S O}\left(\mathcal{T}^{\prime}\right)= & \prod_{a b \notin Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)} \prod_{a b \in Q} \sqrt{d_{\mathcal{T}}^{2}(a)+d_{\mathcal{T}}^{2}(b)} \\
& -\prod_{a b \notin Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)} \prod_{a b \in Q^{\prime}} \sqrt{d_{\mathcal{T}^{\prime}}^{2}(a)+d_{\mathcal{T}^{\prime}}^{2}(b)} \\
= & \beta \sqrt{d_{\mathcal{T}}^{2}(x)+d_{\mathcal{T}}^{2}\left(x_{1}\right)} \sqrt{d_{\mathcal{T}}^{2}\left(y_{t}\right)+d_{\mathcal{T}}^{2}\left(y_{t-1}\right)} \sqrt{d_{\mathcal{T}}^{2}\left(y_{t-1}\right)+d_{\mathcal{T}}^{2}\left(y_{t-2}\right)} \\
& -\beta \sqrt{d_{\mathcal{T}^{\prime}}^{2}(x)+d_{\mathcal{T}^{\prime}}^{2}\left(x_{1}\right)} \sqrt{d_{\mathcal{T}^{\prime}}^{2}\left(y_{t}\right)+d_{\mathcal{T}^{\prime}}^{2}\left(x_{1}\right)}\left[\sqrt{d_{\mathcal{T}^{\prime}}^{2}\left(y_{t-1}\right)+d_{\mathcal{T}^{\prime}}^{2}\left(y_{t-2}\right)}\right] \\
= & 2 \beta \sqrt{10\left(\mathcal{D}^{2}+1\right)}-5 \beta \sqrt{\mathcal{D}^{2}+4} \\
> & 0 .
\end{aligned}
$$

Theorem 2.1. Let $\mathcal{T} \in \mathcal{T}_{n, \mathcal{D}}$. Then

$$
\prod_{S O}(\mathcal{T}) \geqslant \begin{cases}\left(5\left(\mathcal{D}^{2}+4\right)\right)^{\frac{D}{2}} 8^{\frac{n-2 \mathcal{D}-1}{2}} & \text { if } \mathcal{D} \leqslant \frac{n-1}{2} \\ \left(\mathcal{D}^{2}+1\right)^{\frac{2 \mathcal{D}+1-n}{2}}\left(5\left(\mathcal{D}^{2}+4\right)\right)^{\frac{n-\mathcal{D}-1}{2}} & \text { if } \mathcal{D}>\frac{n-1}{2}\end{cases}
$$

The equality holds if and only if Ω is a spider whose all legs have length less than three or all legs have length more than one.

Proof. Let $\mathcal{T}^{\prime} \in \mathcal{T}_{n, \mathcal{D}}$ such that $\prod_{S O}\left(\mathcal{T}^{\prime}\right) \leqslant \prod_{S O}(\mathcal{T})$ for each $\mathcal{T} \in \mathcal{T}_{n, \mathcal{D}}$. Choose a vertex x of \mathcal{T}^{\prime} with degree \mathcal{D} as the root of \mathcal{T}^{\prime}. If $\mathcal{D}=2$, then \mathcal{T} is a path of order n and $\prod_{S O}\left(P_{n}\right)=5(\sqrt{8})^{n-3}$. Let $\mathcal{D} \geqslant 3$. By the choice of \mathcal{T}^{\prime}, it can be deduced from Lemma 2.1 that \mathcal{T}^{\prime} is a spider with center x. By Proposition 2.1 and the selection of \mathcal{T}^{\prime}, all legs of \mathcal{T}^{\prime} either have length less than
three or have length more than one. We let first all legs of \mathcal{T}^{\prime} have length more than 1. Clearly, $\mathcal{D} \leqslant \frac{n-1}{2}$. Then

$$
\prod_{S O}\left(\mathcal{T}^{\prime}\right)=\left(5\left(\mathcal{D}^{2}+4\right)\right)^{\frac{\mathcal{D}}{2}} 8^{\frac{n-2 \mathcal{D}-1}{2}}
$$

Next we assume that all legs of \mathcal{T}^{\prime} have length less than three. Considering the previous case, it might be assumed that \mathcal{T}^{\prime} has a leg of length 1 . The number of leaves adjacent to x is $2 \mathcal{D}+1-n$, and thus

$$
\prod_{S O}\left(\mathcal{T}^{\prime}\right)=\left(\mathcal{D}^{2}+1\right)^{\frac{2 \mathcal{D}+1-n}{2}}\left(5\left(\mathcal{D}^{2}+4\right)\right)^{\frac{n-\mathcal{D}-1}{2}}
$$

The following observation is immediately achieved from the definitions of multiplicative Sombor index.

Observation 2.1. Let Ω be a graph and $e \notin \mathcal{E}(\Omega)$. Then

$$
\prod_{S O}(\Omega+e)>\prod_{S O}(\Omega)
$$

Applying Theorem 2.1 and Observation 2.1, we yield the next result.

Corollary 2.1. If Ω is a graph of order n with maximum degree \mathcal{D}, then

$$
\prod_{S O}(\Omega) \geqslant \begin{cases}\left(5\left(\mathcal{D}^{2}+4\right)\right)^{\frac{\mathcal{D}}{2}} 8^{\frac{n-2 \mathcal{D}-1}{2}} & \text { if } \mathcal{D} \leqslant \frac{n-1}{2} \\ \left(\mathcal{D}^{2}+1\right)^{\frac{2 \mathcal{D}+1-n}{2}}\left(5\left(\mathcal{D}^{2}+4\right)\right)^{\frac{n-\mathcal{D}-1}{2}} & \text { if } \mathcal{D}>\frac{n-1}{2}\end{cases}
$$

The equality holds if and only if Ω is a spider whose all legs have length less than three or all legs have length more than one.

References

[1] Alwardi, A., Alqesmah, A., Rangarajan, R., \& Cangul, I. N. (2018). Entire Zagreb indices of graphs. Discrete Mathematics, Algorithms and Applications, 10(3), Article ID 1850037, 16 pages.
[2] Azari, M., Dehgardi, N., \& Došlić, T. (2023). Lower bounds on the irregularity of trees and unicyclic graphs. Discrete Applied Mathematics, 324, 136-144.
[3] Cruz, R., \& Rada, J. (2021). Extremal values of the Sombor index in unicyclic and bicyclic graphs. Journal of Mathematical Chemistry, 59, 1098-1116.
[4] Das, K. C., Çevik, A.S., Cangul, I. N., \& Shang, Y. (2021). On Sombor index. Symmetry, 13(1), Article ID 140, 12 pages.
[5] Das, K. C., \& Shang, Y. (2021). Some extremal graphs with respect to Sombor index. Mathematics, 9(11), Article ID 1202, 15 pages.
[6] Dehgardi, N. (2023). Lower bounds on the entire Sombor index. Iranian Journal of Mathematical Chemistry, 14(4), 195-205.
[7] Dehgardi, N., \& Liu, J.-B. (2021). Lanzhou index of trees with fixed maximum degree. MATCH Communications in Mathematical and in Computer Chemistry, 86(1), 3-10.
[8] Dehgardi, N., \& Shang, Y. (2024). First irregularity Sombor index of trees with fixed maximum degree. Research in Mathematics, 11(1), Article ID 2291933.
[9] Gutman, I. (2011). Multiplicative Zagreb indices of trees. Bulletin of the International Mathematical Virtual Institute, 1, 13-19.
[10] Gutman, I. (2021). Geometric approach to degree-based topological indices: Sombor indices. MATCH Communications in Mathematical and in Computer Chemistry, 86, 11-16.
[11] Kosari, S., Dehgardi, N., \& Khan, A. (2023). Lower bound on the KG-Sombor index. Communications in Combinatorics and Optimization, 8(4), 751-757.
[12] Liu, H. (2022). Multiplicative Sombor index of graphs. Discrete Mathematics Letters, 9, 80-85.
[13] Luo, L., Dehgardi, N., \& Fahad, A. (2020). Lower bounds on the entire Zagreb indices of trees.Discrete Dynamics in Nature and Society, 2020, Article ID 8616725, 8 pages.
[14] Ma, Y., Cao, S., Shi, Y., Dehmer, M., \& Xia, C. (2019). Nordhaus-Gaddum type results for graph irregularities. Applied Mathematics and Computation, 343(1), 268-272.
[15] Phanjoubam, C., Mawiong, S.M., \& Buhphang, A.M. (2023). On Sombor coindex of graphs. Communications in Combinatorics and Optimization, 8(3), 513-529.
[16] Ramane, H. S., Gutman, I., Bhajantri, K., \& Kitturmath, D. V. (2023). Sombor index of some graph transformations. Communications in Combinatorics and Optimization, 8 (2023) 193-205.
[17] Réti, T., Došlić, T., \& Ali, A. (2021). On the Sombor index of graphs. Contributions to Mathematics, 3, 11-18.
[18] Shang, Y. (2022). Sombor index and degree-related properties of simplicial networks. Applied Mathematics and Computation, 419, Article ID 126881.
[19] Vukičević, D., Li, Q., Sedlar, J., \& Došlić, T. (2018). Lanzhou Index. MATCH Communications in Mathematical and in Computer Chemistry, 80(3), 863-876.
[20] Xu, K., \& Hua, H. (2012). A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs. MATCH Communications in Mathematical and in Computer Chemistry, 68(1), 241-256.
[21] Wang, Z., Mao, Y., Li, Y., \& Furtula, B. (2022). On relations between Sombor and other degree-based indices. Journal of Applied Mathematics and Computing, 68, 1-17.
[22] Zhou, B., \& Luo, W. (2008). On irregularity of graphs. Ars Combinatoria, 88, 55-64.

