Multiplicative Sombor index of trees

Nasrin Dehgardi¹,*, Zhibin Du² and Yilun Shang³

¹ Department of Mathematics and Computer Science, Sirjan University of Technology
Sirjan, Iran
e-mail: n.dehgardi@sirjantech.ac.ir

² School of Software, South China Normal University
Foshan, Guangdong 528225, China
e-mail: zhibindu@126.com

³ Department of Computer and Information Sciences, Northumbria University
Newcastle NE1 8ST, United Kingdom
e-mail: yilun.shang@northumbria.ac.uk

* Corresponding author

Received: 17 October 2023
Accepted: 18 July 2024
Online First: 20 July 2024

Abstract: For a graph Ω, the multiplicative Sombor index is defined as

\[\prod_{SO}(\Omega) = \prod_{ab \in E(\Omega)} \sqrt{d_{\Omega}^2(a) + d_{\Omega}^2(b)}, \]

where \(d_{\Omega}(a) \) is the degree of vertex \(a \). Liu [Liu, H. (2022). Discrete Mathematics Letters, 9, 80–85] showed that, when \(T \) is a tree of order \(n \), \(\prod_{SO}(T) \geq \prod_{SO}(P_n) = 5(\sqrt{8})^{n-3} \). We improved this result and show that, if \(T \) is a tree of order \(n \) with maximum degree \(D \), then

\[\prod_{SO}(T) \geq \begin{cases} (5(D^2 + 4)) \frac{8^{\frac{n-2D-1}{2}}}{2} & \text{if } D \leq \frac{n-1}{2}, \\ (D^2 + 1)^{\frac{2D+1-n}{2}} (5(D^2 + 4)) \frac{n-D-1}{2} & \text{if } D > \frac{n-1}{2}. \end{cases} \]

Also, we show that equality holds if and only if \(T \) is a spider whose all legs have length less than three or all legs have length more than one.
Keywords: Sombor index, Multiplicative Sombor index, Trees.

2020 Mathematics Subject Classification: 05C07.

1 Introduction

Consider a simple graph $\Omega = (\mathcal{V}(\Omega), \mathcal{E}(\Omega))$, where $\mathcal{V} = \mathcal{V}(\Omega)$ and $\mathcal{E} = \mathcal{E}(\Omega)$ are its vertex and edge set of Ω, respectively. The integer $n = n(\Omega) = |\mathcal{V}|$ is the order Ω. The open neighborhood of a vertex a in the graph Ω is the set $N_\Omega(a) = \{b \in \mathcal{V}(\Omega) : ab \in \mathcal{E}(\Omega)\}$. The degree of a vertex a in Ω is the cardinality of its open neighborhood. The maximum degree is denoted by D.

Recently, some variants of vertex-degree-based indices such as multiplicative Zagreb indices [9, 20], irregularity [2, 14, 22], Lanzhou index [7, 19], entire Zagreb indices [1, 13] have been introduced.

In 2021, a new degree-based topological index was put forward by Gutman [10], referred to as the Sombor index. Its definition for a graph Ω is

$$SO(\Omega) = \sum_{ab \in E(\Omega)} \sqrt{d^2_\Omega(a) + d^2_\Omega(b)}.$$

For more information see [3–6, 8, 11, 15–18, 21].

Recently Liu [12] defined the multiplicative version of the Sombor index. The multiplicative Sombor index is defined as:

$$\prod_{SO}(\Omega) = \prod_{ab \in E(\Omega)} \sqrt{d^2_\Omega(a) + d^2_\Omega(b)}.$$

In this paper, we establish some new lower bounds on the multiplicative Sombor index and determine the extremal trees attaining these bounds.

2 Trees

A leaf of a tree T is a vertex of degree 1. A tree with a vertex recognized as the root is called a rooted tree. If a is a non-root vertex of a tree, the vertex adjacent to a on the path joining a and the root vertex is known as the parent of a. Throughout this paper, let $T_{n,D}$ be the set of trees of order n and maximum degree D.

Lemma 2.1. Let $T \in T_{n,D}$ and T have non-root vertices of degrees greater than or equal to three. Then, there is $T' \in T_{n,D}$ such that $\prod_{SO}(T') < \prod_{SO}(T)$.

Proof. Assume that T denotes a rooted tree with root x such that $d_T(x) = D$ and $N_T(x) = \{x_1, x_2, \ldots, x_D\}$. Let y be a vertex with maximum distance from x among all the non-root vertices of T of degrees greater than or equal to three, and let $d_T(y) = \kappa \geq 3$. Assume that $N_T(y) = \{y_1, y_2, \ldots, y_{\kappa-1}, y_\kappa\}$ where y_κ is the parent of y. By our assumption, all vertices adjacent to y except of z are of degree one or two in T. We have the following cases.

454
Case 1. At least two vertices adjacent to y in \mathcal{T} are leaves.
We can assume that y_1 and y_2 are leaves and \mathcal{T}' is the tree derived from $\mathcal{T} - \{y_1\}$ by adding the path $y_1 y_2$. Assume that

$$Q = \mathcal{E}(\mathcal{T}) - \{yy_1, yy_2, \ldots, yy_{\kappa-1}, y y_{\kappa}\},$$

and

$$Q' = \mathcal{E}(\mathcal{T}') - \{y_1 y_2, yy_2, \ldots, yy_{\kappa-1}, y y_{\kappa}\}.$$

We can see that

$$\beta = \prod_{a b \in Q} \sqrt{d_{\mathcal{T}}^2(a) + d_{\mathcal{T}}^2(b)} = \prod_{a b \in Q'} \sqrt{d_{\mathcal{T}'}^2(a) + d_{\mathcal{T}'}^2(b)}.$$

Then

$$\prod_{SO} (\mathcal{T}) - \prod_{SO} (\mathcal{T}') = \prod_{a b \in Q} \sqrt{d_{\mathcal{T}}^2(a) + d_{\mathcal{T}}^2(b)} \prod_{a b \in Q'} \sqrt{d_{\mathcal{T}'}^2(a) + d_{\mathcal{T}'}^2(b)}$$

$$- \prod_{a b \in Q'} \sqrt{d_{\mathcal{T}'}^2(a) + d_{\mathcal{T}'}^2(b)} \prod_{a b \in Q} \sqrt{d_{\mathcal{T}}^2(a) + d_{\mathcal{T}}^2(b)}$$

$$= \beta \sqrt{d_{\mathcal{T}}^2(y) + d_{\mathcal{T}'}^2(y_1)} \sqrt{d_{\mathcal{T}}^2(y) + d_{\mathcal{T}'}^2(y_2)} \prod_{i=3}^{\kappa} \sqrt{d_{\mathcal{T}}^2(y) + d_{\mathcal{T}'}^2(y_i)}$$

$$- \beta \sqrt{d_{\mathcal{T}'}^2(y) + d_{\mathcal{T}'}^2(y_2)} \sqrt{d_{\mathcal{T}'}^2(y_1) + d_{\mathcal{T}'}^2(y_2)} \prod_{i=3}^{\kappa} \sqrt{d_{\mathcal{T}}^2(y) + d_{\mathcal{T}'}^2(y_i)}$$

$$= \beta (\kappa^2 + 1) \prod_{i=3}^{\kappa} \sqrt{\kappa^2 + d_{\mathcal{T}'}^2(y_i)}$$

$$- \beta \sqrt{5(\kappa - 1)^2 + 20} \prod_{i=3}^{\kappa} \sqrt{(\kappa - 1)^2 + d_{\mathcal{T}'}^2(y_i)}$$

$$\geq \beta (\kappa^2 + 1 - \sqrt{5(\kappa - 1)^2 + 20}) \prod_{i=3}^{\kappa} \sqrt{(\kappa - 1)^2 + d_{\mathcal{T}'}^2(y_i)}$$

$$> 0.$$

Case 2. Exactly one vertex adjacent to y in \mathcal{T} is a leaf.
We can assume that y_1 is a leaf adjacent to y and $yu_1 u_2 \ldots u_k$ is a path in \mathcal{T} for $k \geq 2$ and $y_2 = u_1$.
Let \mathcal{T}' be the tree derived from $\mathcal{T} - \{y_1\}$ by adding the path $u_k y_1$. Suppose

$$Q = \mathcal{E}(\mathcal{T}) - \{yy_1, yy_2, \ldots, yy_{\kappa-1}, y y_{\kappa}, u_k y_1\},$$

and

$$Q' = \mathcal{E}(\mathcal{T}') - \{y_1 u_k, yy_2, \ldots, yy_{\kappa-1}, y y_{\kappa}, u_k - 1 u_k\}.$$

It is easy to see that

$$\beta = \prod_{a b \in Q} \sqrt{d_{\mathcal{T}}^2(a) + d_{\mathcal{T}}^2(b)} = \prod_{a b \in Q'} \sqrt{d_{\mathcal{T}'}^2(a) + d_{\mathcal{T}'}^2(b)}.$$
Then

\[
\prod_{ab \in Q} (\mathcal{T}) - \prod_{ab \in Q} (\mathcal{T}') = \prod_{ab \in Q} \sqrt{d_{\mathcal{T}}^2(a) + d_{\mathcal{T}}^2(b)} \prod_{ab \in Q'} \sqrt{d_{\mathcal{T}'}^2(a) + d_{\mathcal{T}'}^2(b)} \\
- \prod_{ab \in Q'} \sqrt{d_{\mathcal{T}'}^2(a) + d_{\mathcal{T}'}^2(b)} \prod_{ab \in Q'} \sqrt{d_{\mathcal{T}'}^2(a) + d_{\mathcal{T}'}^2(b)}
\]

\[
= \beta \sqrt{d_{\mathcal{T}}^2(y) + d_{\mathcal{T}}^2(y_1)} \sqrt{d_{\mathcal{T}}^2(u_k) + d_{\mathcal{T}}^2(u_{k-1})} \prod_{i=2}^{\kappa} \sqrt{d_{\mathcal{T}}^2(y) + d_{\mathcal{T}}^2(y_i)}

- \beta \sqrt{d_{\mathcal{T}'}^2(y_1) + d_{\mathcal{T}'}^2(u_k)} \sqrt{d_{\mathcal{T}'}^2(u_k) + d_{\mathcal{T}'}^2(u_{k-1})} \prod_{i=2}^{\kappa} \sqrt{d_{\mathcal{T}'}^2(y) + d_{\mathcal{T}'}^2(y_i)}
\]

\[
= \beta \sqrt{5(\kappa^2 + 1)} \prod_{i=2}^{\kappa} \sqrt{\kappa^2 + d_{\mathcal{T}}^2(y_i)} - \beta \sqrt{40} \prod_{i=2}^{\kappa} \sqrt{(\kappa - 1)^2 + d_{\mathcal{T}'}^2(y_i)}
\]

\[
\geq \beta (\sqrt{5(\kappa^2 + 1)} - \sqrt{40}) \prod_{i=2}^{\kappa} \sqrt{(\kappa - 1)^2 + d_{\mathcal{T}'}^2(y_i)}
\]

> 0.

Case 3. None of the vertices adjacent to \(y \) are leaves.

Let \(yu_1u_2 \ldots u_t, wv_1v_2 \ldots v_s \ (t, s \geq 2) \) be two paths in \(\mathcal{T} \) with \(y_1 = u_1 \) and \(y_2 = v_1 \) and let \(\mathcal{T}' \) be the tree derived from \(\mathcal{T} - \{y_1\} \) by adding the path \(v_s y_1 \). Assume that

\[
Q = \mathcal{E}(\mathcal{T}) - \{yy_1, yy_2, \ldots, yy_{\kappa-1}, yy_\kappa, v_{s-1}v_s\},
\]

and

\[
Q' = \mathcal{E}(\mathcal{T}') - \{y_1v_s, y_2y_\kappa, \ldots, yy_{\kappa-1}, yy_\kappa, v_{s-1}v_s\}.
\]

We can see that

\[
\beta = \prod_{ab \in Q} \sqrt{d_{\mathcal{T}}^2(a) + d_{\mathcal{T}}^2(b)} = \prod_{ab \in Q'} \sqrt{d_{\mathcal{T}'}^2(a) + d_{\mathcal{T}'}^2(b)}.
\]

Then

\[
\prod_{ab \in Q} (\mathcal{T}) - \prod_{ab \in Q} (\mathcal{T}') = \prod_{ab \in Q} \sqrt{d_{\mathcal{T}}^2(a) + d_{\mathcal{T}}^2(b)} \prod_{ab \in Q'} \sqrt{d_{\mathcal{T}'}^2(a) + d_{\mathcal{T}'}^2(b)} \\
- \prod_{ab \in Q'} \sqrt{d_{\mathcal{T}'}^2(a) + d_{\mathcal{T}'}^2(b)} \prod_{ab \in Q'} \sqrt{d_{\mathcal{T}'}^2(a) + d_{\mathcal{T}'}^2(b)}
\]

\[
= \beta \sqrt{d_{\mathcal{T}}^2(y) + d_{\mathcal{T}}^2(y_1)} \sqrt{d_{\mathcal{T}}^2(v_s) + d_{\mathcal{T}}^2(v_{s-1})} \prod_{i=2}^{\kappa} \sqrt{d_{\mathcal{T}}^2(y) + d_{\mathcal{T}}^2(y_i)}

- \beta \sqrt{d_{\mathcal{T}'}^2(y_1) + d_{\mathcal{T}'}^2(v_s)} \sqrt{d_{\mathcal{T}'}^2(v_s) + d_{\mathcal{T}'}^2(v_{s-1})} \prod_{i=2}^{\kappa} \sqrt{d_{\mathcal{T}'}^2(y) + d_{\mathcal{T}'}^2(y_i)}
\]

\[
= \beta \sqrt{5(\kappa^2 + 4)} \prod_{i=2}^{\kappa} \sqrt{\kappa^2 + d_{\mathcal{T}}^2(y_i)} - 8\beta \prod_{i=2}^{\kappa} \sqrt{(\kappa - 1)^2 + d_{\mathcal{T}'}^2(y_i)}
\]

\[
\geq \beta (\sqrt{5(\kappa^2 + 4)} - 8) \prod_{i=2}^{\kappa} \sqrt{(\kappa - 1)^2 + d_{\mathcal{T}'}^2(y_i)}
\]

> 0.

This completes the proof. \(\square \)
A spider is a tree that has no more than one vertex of degree greater than 2. Such a vertex is known as the center of the spider. A path connecting the center of a spider to one of its pendant vertices is called a leg of the spider. For example, a star with \(n \) vertices, \(S_n \), is a spider with \(n - 1 \) legs, each of length 1.

Proposition 2.1. Let \(T \) be a spider of order \(n \) and \(D \geq 3 \) legs. Assume that \(T \) contains a leg with length 1 and another leg with length greater than 2. Then there is a spider \(T' \) of order \(n \) and \(D \) legs with \(\prod_{SO}(T') < \prod_{SO}(T) \).

Proof. Let \(x \) be the center of \(T \) and \(N_T(x) = \{ x_1, \ldots, x_D \} \). Root \(T \) at \(x \). We may assume that \(d(x_1) = 1 \) and let \(xy_1y_2 \ldots y_t, t \geq 3 \) be the longest leg of \(T \) such that \(y_1 = x_2 \). Assume that \(T' \) is the tree derived from \(T - \{ y_{t-1} \} \) by adding the path \(x_1 y_t \). Assume that

\[
Q = \mathcal{E}(T) - \{ xx_1, y_{t-1}y_{t-2}, y_{t}y_{t-1} \},
\]

and

\[
Q' = \mathcal{E}(T') - \{ xx_1, y_{t-1}y_{t-2}, y_{t}x_1 \}.
\]

We can see that

\[
\beta = \prod_{ab \notin Q} \sqrt{d_T^2(a) + d_T^2(b)} = \prod_{ab \notin Q'} \sqrt{d_T^2(a) + d_T^2(b)}.
\]

Then

\[
\prod_{SO}(T) - \prod_{SO}(T') = \prod_{ab \notin Q} \sqrt{d_T^2(a) + d_T^2(b)} \prod_{ab \in Q} \sqrt{d_T^2(a) + d_T^2(b)}
\]

\[
- \prod_{ab \notin Q'} \sqrt{d_T^2(a) + d_T^2(b)} \prod_{ab \in Q'} \sqrt{d_T^2(a) + d_T^2(b)}
\]

\[
= \beta \sqrt{d_T^2(x) + d_T^2(x_1)} \sqrt{d_T^2(y_t) + d_T^2(y_{t-1})} \sqrt{d_T^2(y_{t-1}) + d_T^2(y_{t-2})}
\]

\[
- \beta \sqrt{d_T^2(x) + d_T^2(x_1)} \sqrt{d_T^2(y_t) + d_T^2(x)} \sqrt{d_T^2(y_{t-1}) + d_T^2(y_{t-2})}
\]

\[
= 2\beta \sqrt{10(D^2 + 1) - 5\beta \sqrt{D^2 + 4}} > 0.
\]

Theorem 2.1. Let \(T \in \mathcal{T}_{n,D} \). Then

\[
\prod_{SO}(T) \geq \begin{cases}
(5(D^2 + 4))^\frac{D}{2} \frac{n-2D-1}{2} & \text{if } D \leq \frac{n-1}{2}, \\
(D^2 + 1)^{\frac{D+1-n}{2}} (5(D^2 + 4))^\frac{n-D-1}{2} & \text{if } D > \frac{n-1}{2}.
\end{cases}
\]

The equality holds if and only if \(\Omega \) is a spider whose all legs have length less than three or all legs have length more than one.

Proof. Let \(T' \in \mathcal{T}_{n,D} \) such that \(\prod_{SO}(T') \leq \prod_{SO}(T) \) for each \(T \in \mathcal{T}_{n,D} \). Choose a vertex \(x \) of \(T' \) with degree \(D \) as the root of \(T' \). If \(D = 2 \), then \(T \) is a path of order \(n \) and \(\prod_{SO}(P_n) = 5(\sqrt{8})^{n-3} \).

Let \(D \geq 3 \). By the choice of \(T' \), it can be deduced from Lemma 2.1 that \(T' \) is a spider with center \(x \). By Proposition 2.1 and the selection of \(T' \), all legs of \(T' \) either have length less than

457
three or have length more than one. We let first all legs of \(T' \) have length more than 1. Clearly, \(\mathcal{D} \leq \frac{n-1}{2} \). Then
\[
\prod_{SO} (T') = (5(D^2 + 4))^{\frac{\mathcal{D}}{2}} 8^{\frac{n-2\mathcal{D}-1}{2}}.
\]
Next we assume that all legs of \(T' \) have length less than three. Considering the previous case, it might be assumed that \(T' \) has a leg of length 1. The number of leaves adjacent to \(x \) is \(2\mathcal{D} + 1 - n \), and thus
\[
\prod_{SO} (T') = (D^2 + 1)^{\frac{2\mathcal{D}+1-n}{2}} (5(D^2 + 4))^{\frac{n-\mathcal{D}-1}{2}}.
\]

The following observation is immediately achieved from the definitions of multiplicative Sombor index.

Observation 2.1. Let \(\Omega \) be a graph and \(e \notin \mathcal{E}(\Omega) \). Then
\[
\prod_{SO} (\Omega + e) > \prod_{SO} (\Omega).
\]

Applying Theorem 2.1 and Observation 2.1, we yield the next result.

Corollary 2.1. If \(\Omega \) is a graph of order \(n \) with maximum degree \(\mathcal{D} \), then
\[
\prod_{SO} (\Omega) \geq \begin{cases}
(5(D^2 + 4))^{\frac{\mathcal{D}}{2}} 8^{\frac{n-2\mathcal{D}-1}{2}} & \text{if } \mathcal{D} \leq \frac{n-1}{2}, \\
(D^2 + 1)^{\frac{2\mathcal{D}+1-n}{2}} (5(D^2 + 4))^{\frac{n-\mathcal{D}-1}{2}} & \text{if } \mathcal{D} > \frac{n-1}{2}.
\end{cases}
\]
The equality holds if and only if \(\Omega \) is a spider whose all legs have length less than three or all legs have length more than one.

References

