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Abstract: In a previous author’s paper [1], the mathematical object called “tertion” was discussed.
Some operations over tertions were introduced and their properties were studied. There, it was
showed that the complex numbers and quaternions can be represented by tertions. Here, we
show that the dual numbers also are representable by tertions. The concept of a “0-quaternion” is
introduced and its representation by tertions is given. Ideas for future research are described.
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1 Introduction

The dual numbers were introduced in 1873 by William Clifford in [4] (see also [3, 5–7]). They
have the form a + bε, where a, b are real numbers, and ε is an object that satisfies the equality
ε2 = 0 while ε ̸= 0. For two dual numbers, the following equalities are valid:

(a+ bε) + (c+ ε) = (a+ c) + (b+ d)ε,

(a+ bε)(c+ dε) = ac+ (ad+ bc)ε,

Copyright © 2024 by the Author. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



and for the real number α:
α(a+ bε) = αa+ αbε.

In a series of papers, collected in [2], the author introduced the concept of tertion and discussed
its properties and various operations over tertions. In [1, 2], he gave tertion representations of the
complex numbers.

In the present paper, we first introduce a new operation (◦11) over A- and V -tertions and after
this, we give A- and V -tertion representations of the dual numbers.

2 Operation ◦11 over A-tertions

In [1, 2] A- and V -tertions are defined. They are mathematical object with the forms
�
�

a

b c
A
A

and A
A

b c

a �
� , respectively, over which ten operations (◦1, . . . , ◦10) are defined.

Here, for the first time we introduce the operation ◦11 over A-tertions:

�
�

a

b c
A
A

◦11 �
�

d

e f
A
A

=
�
�

ad+ bf + ce

ae+ bd af + cd
A
A
.

Let everywhere below, as in [1, 2],

E =
�
�

1

0 0
A
A
, I =

�
�

0

1 0
A
A
, J =

�
�

0

0 1
A
A
, O =

�
�

0

0 0
A
A
.

Obviously, the set

A2 =

{
�
�

α

β γ
A
A
| α, β, γ ∈ R

}
is closed with respect to operation “◦11”, where here and hereafter R denotes the set of real
numbers. As it is mentioned in [2], index “2” of the set A2 shows that the elements of this set
are tertions of the present form, i.e., triangles with two levels. In [2] tertions with three and n

levels are discussed and for them, their sets are denoted as A3, . . . , An (the same is for the sets
V2, V3, . . . , Vn).

The left and right identity element of A2 are both
�
�

1

0 0
A
A

, because

�
�

1

0 0
A
A

◦11 �
�

a

b c
A
A

=
�
�

a

b c
A
A

=
�
�

a

b c
A
A

◦11 �
�

1

0 0
A
A
.

Also,

�
�

a

b c
A
A

◦11 �
�

0

1 0
A
A

=
�
�

c

a 0
A
A

=
�
�

0

1 0
A
A

◦11 �
�

a

b c
A
A
,

�
�

a

b c
A
A

◦11 �
�

0

0 1
A
A

=
�
�

b

0 a
A
A

=
�
�

0

0 1
A
A

◦11 �
�

a

b c
A
A
.
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Operation ◦11 is commutative, because

�
�

a

b c
A
A

◦11 �
�

d

e f
A
A

=
�
�

ad+ bf + ce

ae+ bd af + cd
A
A

=
�
�

d

e f
A
A

◦11 �
�

a

b c
A
A
,

but it is not associative. It is distributive with respect to operation “ + ”, because(
�
�

a

b c
A
A

+
�
�

d

e f
A
A

)
◦11 �

�
g

h i
A
A

=
�
�

a+ d

b+ e c+ f
A
A

◦11 �
�

g

h i
A
A

=
�
�

ag + dg + bi+ ei+ ch+ fh

ah+ dh+ bg + eg ai+ di+ cg + fg
A
A

=
�
�

ag + bi+ ch

ah+ bg ai+ cg
A
A

+
�
�

dg + ei+ fh

dh+ eg di+ fg
A
A

=

(
�
�

a

b c
A
A

◦11 �
�

g

h i
A
A

)
+

(
�
�

d

e f
A
A

◦11 �
�

g

h i
A
A

)
.

Let a ̸= 0. The solutions of the equation

�
�

a

b c
A
A

◦11 �
�

x

y z
A
A

=
�
�

p

q r
A
A

are equivalent to the solutions of the following linear system
ax +cy +bz = p

bx +ay = q

cx +az = r

.

Let

∆ =

∣∣∣∣∣∣∣
a c b

b a 0

c 0 a

∣∣∣∣∣∣∣ = a3 − 2abc ̸= 0,

i.e.,

�
�

a

b c
A
A

∈ A2,◦11 ≡

{
�
�

α

β γ
A
A
|α, β, γ ∈ R & α(α2 − 2βγ) ̸= 0

}
,

then

�
�

x

y z
A
A

=
�
�

a2p−acq−abr
∆

−abp+a2q−bcq+b2r
∆

−acp+c2q+a2r−bcr
∆

A
A
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and, in particular,

�
�

a

b c
A
A

◦11 �
�

a2

∆
−ab
∆

−ac
∆

A
A

=
�
�

1

0 0
A
A
,

�
�

a

b c
A
A

◦11 �
�

−ac
∆

a2−bc
∆

c2

∆

A
A

=
�
�

0

1 0
A
A
,

�
�

a

b c
A
A

◦11 �
�

−ab
∆

b2

∆
a2−bc
∆

A
A

=
�
�

0

0 1
A
A
.

Due to the commutativity of operation “◦11”, the solutions of

�
�

x

y z
A
A

◦11 �
�

a

b c
A
A

=
�
�

p

q r
A
A

are the same.
We also see that

�
�

a

b c
A
A

(2,◦11) =
�
�

a2 + 2bc

2ab 2ac
A
A

and in particular

�
�

a

b 0
A
A

(2,◦11) =
�
�

a2

2ab 0
A
A

= a
�
�

a

2b 0
A
A
,

�
�

a

0 c
A
A

(2,◦11) =
�
�

a2

0 2ac
A
A

= a
�
�

a

0 2c
A
A
.

Proposition. For each natural number n and every two real numbers a, b:

�
�

a

b 0
A
A

(n,◦11) = an−1

�
�

a

nb 0
A
A
,

�
�

a

0 c
A
A

(n,◦11) = an−1

�
�

a

0 nc
A
A
.

Proof. For n = 1 the assertion is obvious. Let us assume that the two equalities are valid for
some natural number n. Then

�
�

a

b 0
A
A

(n+1,◦11) =
�
�

a

b 0
A
A

(n,◦11) ◦11 �
�

a

b 0
A
A

= an−1

�
�

a

nb 0
A
A

◦11 �
�

a

b 0
A
A

= an−1

�
�

a2

ab+ nab 0
A
A

= an−1

�
�

a2

(n+ 1)ab 0
A
A

= an
�
�

a

(n+ 1)b 0
A
A
.

The second equality is checked in the same manner. This completes the proof.
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It is interesting to mention the following equalities

�
�

a

b 0
A
A

◦11

(
�
�

c

d 0
A
A

◦11 �
�

e

f 0
A
A

)
=

�
�

a

b 0
A
A

◦11 �
�

ce

cf + de 0
A
A

=
�
�

ace

acf + ade+ bce 0
A
A

=
�
�

ac

ad+ bc 0
A
A

◦11 �
�

e

f 0
A
A

=

(
�
�

a

b 0
A
A

◦11 �
�

c

d 0
A
A

)
◦11 �

�
e

f 0
A
A

,

i.e., in this case the operation ◦11 is associative. Similarly,

A
A

b 0

a �
� ◦11

(
A
A

d 0

c �
� ◦11 A

A

f 0

e �
�

)
=

(
A
A

b 0

a �
� ◦11 A

A

d 0

c �
�

)
◦11 A

A

f 0

e �
� .

In addition,

�
�

0

b c
A
A

◦11 �
�

0

c b
A
A

=
�
�
2bc

0 0
A
A
,

A
A

b c

0 �
� ◦11 A

A

c b

0 �
� = A

A

0 0

2bc �
� .

Finally, we note that the following table is valid for operation “◦11”:

◦11 E I J

E E I J

I I O E

J J E O

.

3 Operation ◦11 over V -tertions

As it is discussed in [1, 2], the object having the form

A
A

b c

a �
�

is called “V -tertion”. For it, we can define all operations defined over the A-tertions (in particular,
operation “◦11”), but now, over V -tertions.

We will only mention the definition of operation “◦11” now over V -tertions that are elements
of set

V2 =

{
A
A

β γ

α �
� |α, β, γ,∈ R

}
.
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The operation is as follows:

A
A

b c

a �
� ◦11 A

A

e f

d �
� = A

A

ae+ bd af + cd

ad+ bf + ce �
� .

Let everywhere below, as defined in [1, 2],

E = A
A

0 0

1 �
� , I = A

A

1 0

0 �
� , J = A

A

0 1

0 �
� , O = A

A

0 0

0 �
� .

4 On the representations of the dual numbers
by A- and V-tertions

Let us juxtapose the A-tertion
�
�

a

b 0
A
A

to the dual number a + bε. Then, we can immediately

see that the dual number equalities mentioned in the Introduction have the following respective
A-tertion forms:

�
�

a

b 0
A
A

+
�
�

c

d 0
A
A

=
�
�

a+ c

b+ d 0
A
A
,

�
�

a

b 0
A
A

◦11 �
�

c

d 0
A
A

=
�
�

ac

ad+ bc 0
A
A

=
�
�

c

d 0
A
A

◦11 �
�

a

b 0
A
A
,

α
�
�

a

b 0
A
A

=
�
�

αa

αb 0
A
A
.

For the representation of the fourth basic dual number equality

(a+ bε)−1 =
1

a
− b

a2
ε,

using the equality

�
�

a

b c
A
A

◦11 �
�

a
a2−2bc

−b
a2−2bc

−c
a2−2bc

A
A

=
�
�

1

0 0
A
A
,

we can define

�
�

a

b c
A
A
−1 =

�
�

a
a2−2bc

−b
a2−2bc

−c
a2−2bc

A
A
.

Therefore, its representation is

�
�

a

b 0
A
A
−1 =

�
�

1
a

−b
a2

0
A
A
.
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By analogy, we can represent the dual number a + bε with the A-tertion
�
�

a

0 b
A
A

. Then,

the above formulas obtain, respectively, the forms

�
�

a

0 b
A
A

+
�
�

c

0 d
A
A

=
�
�

a+ c

0 b+ d
A
A
,

�
�

a

0 b
A
A

◦11 �
�

c

0 d
A
A

=
�
�

ac

0 ad+ bc
A
A
,

α
�
�

a

0 b
A
A

=
�
�

αa

0 αb
A
A
,

�
�

a

0 b
A
A

−1 =
�
�

1
a

0 −b
a2

A
A
.

Therefore, each dual number can be represented by an A-tertion. The opposite is not valid,
since the A- (and V -) tertions are composed of three components each while the dual numbers,
as well as the complex numbers, are composed of just two.

With respect to V2-tertions, we will mention that a V2-tertion A
A

b 0

a �
� can be juxtaposed to

each dual number a+ bε. Therefore, the above expressions for A-tertions will obtain the forms

A
A

b 0

a �
� + A

A

d 0

c �
� = A

A

b+ d 0

a+ c �
� ,

A
A

b 0

a �
� ◦11 A

A

d 0

c �
� = A

A

ad+ bc 0

ac �
� ,

α A
A

b 0

a �
� = A

A

αb 0

αa �
� ,

A
A

b 0

a �
� −1 = A

A

−b
a2

0
1
a

�
� .

Again, as above, we can represent the dual number a + bε with the V -tertion A
A

0 b

a �
� and

the respective formulas are the following:

A
A

0 b

a �
� + A

A

0 d

c �
� = A

A

0 b+ d

a+ c �
� ,

A
A

0 b

a �
� ◦11 A

A

0 d

c �
� = A

A

0 ad+ bc

ac �
� ,

α A
A

0 b

a �
� = A

A

0 αb

αa �
� ,

A
A

0 b

a �
� −1 = A

A

0 −b
a2

1
a

�
� .

449



5 Dual quaternions and their representations
by A- and V -tertions

As we mentioned in [1, 2], when we have an A-tertion and a V -tertion, we can construct the new
object

�
�

A
A

a

b c

d

A
A

�
�

,

which in practice is the well-known object “quaternion”. It can be represented by A- and V -tertions,
e.g., as follows

�
�

a

b x
A
A

∗1 A
A

x c

d �
� = �

�

A
A

a

b c

d

A
A

�
�

,

�
�

a

b c
A
A

∗2 A
A

b c

d �
� = �

�

A
A

a

b c

d

A
A

�
�

,

�
�

a

b c
A
A

∗3 A
A

d e

f �
� = �

�

A
A

a(d+ e)

be cd

(b+ c)f

A
A

�
�

.

Let

E∗ = �
�

A
A

1

0 0

0

A
A

�
�

, I∗ = �
�

A
A

0

1 0

0

A
A

�
�

, J∗ = �
�

A
A

0

0 1

0

A
A

�
�

, K∗ = �
�

A
A

0

0 0

1

A
A

�
�

, O∗ = �
�

A
A

0

0 0

0

A
A

�
�

.

Therefore,

E∗ = E ∗1 O = E ∗2 O = E ∗3 I = E ∗3 J = E ∗3 E
I∗ = I ∗1 O = I ∗2 I = I ∗3 J
J∗ = O ∗1 J = J ∗2 J = J ∗3 I
K∗ = O ∗1 E = O ∗2 E = O ∗3 E = I ∗3 E = J ∗3 E
O∗ = O ∗1 O = J ∗1 I = O ∗2 O = O ∗3 O.

Now, we can define

�
�

A
A

a

b c

d

A
A

�
�

+ �
�

A
A

e

f g

h

A
A

�
�

= �
�

A
A

a+ e

b+ f c+ g

d+ h

A
A

�
�

.

In [1] we gave four interpretations of the concept of a quaternion, but in all of them (E∗)2,

(I∗)2, (J∗)2, (K∗)2 ̸= O∗.
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Now, following the idea of Clifford, we will define the concept of a “0-quaternion”. Obviously,
the name “dual quaternion” is more suitable, but it is reserved for another concept (see, e.g.,
[3, 5–7]). The 0-quaternion will be an object of the form

�
�

A
A

a

b c

d

A
A

�
�

,

for which (I∗)2, (J∗)2, (K∗)2 = O∗. For this aim, we can define the operation # between two
0-quaternions by:

�
�

A
A

a

b c

d

A
A

�
�

# �
�

A
A

e

f g

h

A
A

�
�

= �
�

A
A

ae

af + be+ ch+ dg ag + bh+ ce+ dfc

ah+ bg + cf + de

A
A

�
�

Then the following table is valid for the operation #:

# E∗ I∗ J∗ K∗

E∗ E∗ I∗ J∗ K∗

I∗ I∗ O∗ ∗K J∗

J∗ J∗ K∗ O∗ I∗

K∗ K∗ J∗ I∗ O∗

.

Therefore,
(I∗)2 = (J∗)2 = (K∗)2 = O∗

I∗J∗K∗ = J∗K∗I∗ = K∗I∗J∗ = I∗K∗J∗ = K∗J∗I∗ = J∗I∗K∗ = O∗.

Now, we see that

�
�

A
A

a

b c

d

A
A

�
�

= aE∗ + bI∗ + cJ∗ + dK∗

and

�
�

A
A

a

b c

d

A
A

�
�

# �
�

A
A

e

f g

h

A
A

�
�

=



a �
�

A
A

e

f g

h

A
A

�
�

+ b �
�

A
A

0

e h

g

A
A

�
�

+ c �
�

A
A

0

h e

f

A
A

�
�

+ d �
�

A
A

0

g f

e

A
A

�
�

e �
�

A
A

a

b c

d

A
A

�
�

+ f �
�

A
A

0

a d

c

A
A

�
�

+ g �
�

A
A

0

d a

b

A
A

�
�

+ h �
�

A
A

0

c b

a

A
A

�
�

.
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6 Conclusion

Above, we showed first that the dual numbers, similarly to the complex numbers are representable
by tertions, and second, we gave an example that quaternions with unit elements I∗, J∗ and K∗

so that (I∗)2 = (J∗)2 = (K∗)2 = O∗ are representable by tertions. We called these objects
0-quaternions. In a next part of the present research, we will discuss the remaining forms of the
0-quaternions.
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