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Abstract: It is well known that if n is a Zumkeller number, then the positive divisors of n can be 

partitioned into two disjoint subsets of equal sum. Similarly for unitary Zumkeller number n, the 

unitary divisors of n  can be partitioned into two disjoint subsets of equal sum. In this article, we 

have derived some results related to unitary Zumkeller number, unitary half-Zumkeller number 

and also presented some numerical examples. 
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1 Introduction 

The well-known classical perfect numbers are the solution of the functional equation ( ) 2n n  , 

where the divisor function ( )n  denotes the sum of all positive divisors of n. So far 51  

(till May, 2024) such even perfect numbers are discovered [2]. All even perfect numbers [4] are 

of the form n = 2p–1(2p – 1), where p and 2p – 1 are primes. The prime of the form 2p – 1 is called 

Mersenne prime. There is no example of an odd perfect number. Using the notion of classical 

perfect numbers, a generalized notion of perfect numbers had been developed in recent years. 

Zumkeller numbers are one of the generalizations of the classical perfect numbers. A positive 

integer n is said to be a Zumkeller number if the positive divisors of n can be partitioned into two 
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disjoint subsets A and B such that ( ) ( )A B  , where ( )D  denotes the sum of all elements of 

the set D. For the Zumkeller number n, ( ) ( ) ( )A B n    . In 2003, the idea of Zumkeller 

number was first introduced by Zumkeller, [5]. Some examples of Zumkeller numbers are 6, 12, 

20, 24, 28, 30, 40, etc. A positive integer n is said to be a half-Zumkeller number [3] if the proper 

positive divisors of n can be partitioned into two disjoint non-empty subsets of equal sum. For 

more results on Zumkeller and half-Zumkeller number, see [3]. 

Unitary perfect numbers [4] are also another generalization of perfect numbers. If n is a 

unitary perfect number, then ( ) 2n n   , where the unitary divisor function ( )n   denotes 

the sum of all unitary divisors of n. A positive integer d is a unitary divisor of a positive integer 

n if |d n  and gcd( , ) 1n
d

d  . If n > 1 has the prime factorization 1 2

1 2
r

rn p p p   , then d is a 

unitary divisor of n if and only if 1 2

1 2
ru u u

rd p p p , where 0iu   or i iu   for every 

{1,2,3, , }i r . For example, the unitary divisors of 18 are 1, 2, 9 and 18. Note that ( )n   is a 

multiplicative function, i.e., if gcd(m,n) = 1, then ( ) ( ) ( )nm n m     . 

The following is a standard well-known result for unitary divisor function  
. 

Lemma 1.1. If 1 2

1 2
r

rn p p p    is the prime factorization of the number n > 1, then  

1

( ) (1 )i

r

i

i

n p
 



   and 
1 1

( ) (1 ) 1
( )

i

i

r r
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i ii i

n p p

n p p





 

 

 
   . 

2 Unitary Zumkeller numbers 

Definition 2.1. A positive integer n is said to be a unitary Zumkeller number [6] if the unitary 

positive divisors of n can be partitioned into two disjoint subsets A and B such that ( ) ( ),A B 

where ( )D  denotes the sum of all elements of the set D. Following are some examples of unitary 

Zumkeller numbers, [6]: 

6, 30, 42, 60, 66, 70, 78, 90,102,114,138,150,174,186, ...  

The following proposition gives necessary conditions for a unitary Zumkeller number. 

Proposition 2.1. If n is a unitary Zumkeller number, then 

(i) ( )n   is even. 

(ii) ( ) 2n n   . If ( ) 2 ,n n    then n is a unitary perfect number, i.e., unitary perfect numbers 

are unitary Zumkeller numbers. 

The following proposition gives a necessary and sufficient condition for n to be a unitary 

Zumkeller number. 

Proposition 2.2. The integer n is unitary Zumkeller if and only if  
( )
2

n
n


  is a sum of some 

distinct proper positive unitary divisors of n. 
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Proposition 2.3. If n is a unitary Zumkeller number and p is a prime with gcd(n, p) = 1, then np

is a unitary Zumkeller number for any positive integer  . 

Proof. Let { , }A B  be a unitary Zumkeller partition of n, then { , }A p A B p B    is a unitary 

Zumkeller partition of np .  

Example 2.1. {1,2,5,9,10,18,45}A   and {90}B   are unitary Zumkeller partitions of 90.  

Since gcd(90, 7) = 1, so A p A  = {1,2,5,9,10,18,45,49,98,245,441,490,882,2205}   and 

{90,4410}B p B   are unitary Zumkeller partitions of 
24410 90 7  . 

From the Proposition 2.3, we have the following corollary. 

Corollary 2.1. If the integer n is unitary Zumkeller and w is relatively prime to n, then nw is a 

unitary Zumkeller number. 

The following proposition follows from Lemma 1.1 which was mentioned earlier before the 

beginning of Section 2 and Proposition 2.1. 

Proposition 2.4. If 
1

i

r

i

i

n p




 is the prime factorization of the unitary Zumkeller number n, then 

1

1
2

r
i

i i

p

p


 . 

Proposition 2.5. There is no unitary Zumkeller number of the form n p , where p is prime and 

1  . 

Proposition 2.6. The only unitary Zumkeller number n of the form 1 2

1 2p p   is 6 , where ip  are 

distinct primes and 1i   , 1,2i  . 

Proof. Let 1 2

1 2n p p   be a unitary Zumkeller number. Without loss of generality, let 1 2p p . By 

Proposition 2.1, ( ) 2n n   . That is,  1 2 1 2

1 2 1 2( ) 2p p p p      . 

This leads us to 1 2 2

1 2 2( 1) 1p p p     . This inequality can be written as 

1

2
1

2

2
1

( 1)
p

p




 


. 

11   and since 1 22 p p  , we see that 23 p . But, if 23 p  or 21  , then  

2

2

2
1 2

( 1)p
 


. 

Hence 2 3p   and 2 1  . Going back to the same inequality, we get that  

1

1

2
1 2

(3 1)
p

  


. 

This gives us that 1 2p   and 2 1  . This completes the proof.   
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The above proposition tells us in particular that the only unitary Zumkeller number of the 

form 1

12 p  is 6 . It would be interesting to investigate other unitary Zumkeller numbers of the 

form 1 2

1 22 r

rp p p
   . We provide one such result. 

Proposition 2.7. Let 31 2

1 2 32 r

rn p p p p
    be a unitary Zumkeller number, where 

1 2 33 rp p p p      and i  are positive integers, then 

(i) if 1 3p  , then 5ip  , where 2 i r  . 

(ii) if 2r   and 1 5p  , then 2 7p  .  

Proof. If 1 2

1 22 r

rn p p p
    is a unitary Zumkeller number, then from Proposition 2.4 it is 

evident that  

1 2

1 2

1 1 13
2 ( )( ) ( )

2

r

r

p p p

p p p

  
 . 

(i) Any prime p , 
1

1 1
p

  . If 1 3p  , then from the above inequality we can write 

2 3 2 3

3 4 1 1 1 1 1 1
2 . (1 )(1 ) (1 ) 2(1 )(1 ) (1 )

2 3 r rp p p p p p
        . 

The last inequality is true for any odd prime 5ip  , where 2 i r  . 

(ii) If 1 5p   and 2 7p  , then 
3 6 12

2 . . 1.93636636 2
2 5 11

   , which is a contradiction. 

Therefore, we must have 2 7p  .  

Moreover, from this proposition we have the following result. 

Corollary 2.2. Let ip , 1  i  r, be distinct primes and 1  . If 1 22 rn p p p  is a unitary 

Zumkeller number, then 1 3p   or 1 5p   and 2 7p  . 

3 Unitary half-Zumkeller numbers 

Definition 3.1. A positive integer n  is said to be a unitary half-Zumkeller number [7] if the proper 

unitary positive divisors of n  can be partitioned into two disjoint non-empty subsets C and D

such that ( ) ( )C D  .  

The numbers 6, 12, 20, 30, 42, 56, 60, 66, 70, 72, 78, 84, 90, 120 are some examples of unitary 

half-Zumkeller number [7]. Unitary half-Zumkeller numbers may not be unitary Zumkeller 

number. For n = 120, ( ) 216 2n n    , so 120 is not a unitary Zumkeller number, but the 

proper unitary divisors of 120  can be partitioned into two disjoint sets {8,40}C   and 

{1,3,5,15,24}D  of equal sums, i.e., 120 is a half-Zumkeller number. 

Following is a necessary and sufficient condition for n to be a unitary half-Zumkeller number.  
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Proposition 3.1. A positive integer n  is a unitary half-Zumkeller number if and only if  

( )

2

n n  
 

is a sum of some distinct proper positive unitary divisors of n. 

Proposition 3.2. If m and n are unitary half-Zumkeller numbers with gcd(m, n) = 1, then mn is a 

unitary half-Zumkeller number. 

Proposition 3.3. If 2n p  is a unitary half-Zumkeller number, then p must be a Mersenne prime 

or Fermat prime. 

Proof. The proper unitary divisors of the number 2n p  are 1, 2  and p. Let C  and D  be two 

partitions of n. Then {2 }C   and {1, }D p  or {1,2 }C   and { }D p . 

Case 1. If {2 }C   and {1, }D p , then 2 1 2 1p p      . The prime number of the form 

2 1p    is called Mersenne prime, where   must be a prime number. 

Case 2. If {1,2 }C   and { }D p , then 2 1 p   . The prime number of the form 2 1p    

is called Fermat prime, where   must be a power of 2.  

From the above proposition, we have the following corollary. 

Corollary 3.1. If  12 2 1p pn    is a perfect number, where 2 1p   is Mersenne prime, then 2n 

is a unitary half-Zumkeller number. 

Proposition 3.4. If 1 2

1 2n p p   with 1 2p p  is a unitary half-Zumkeller number, then n = 72, 

i.e., 1 1 2 22, 3, 3, 2p p     .  

Proof. If 1 2

1 2n p p  is an odd and unitary half-Zumkeller number, then ( )n n    must be even. 

Since the difference between two odd numbers is always even, so ( )n   must be odd. But 

1 2

1 2( ) (1 )(1 )n p p      , which is an even integer. Therefore, ( )n n    cannot be even if 

1 2

1 2n p p   is odd. Thus, there does not exist any odd unitary half-Zumkeller number of the form 

1 2

1 2n p p  . This implies that 1 2p   and 1 1  . 

Let 1 22n p
 

 . Using Proposition 3.3, we assume without loss of generality that 
2 2  . Now 

the unitary divisors of n are 1 21,2 , p  and 1 22 p 
. For n to be unitary half-Zumkeller, either 

1 21 2 p    or 2 11 2p   . 

Case 1. 1 21 2 p   and 
2 2m  . In this case, 1 22 1mp


  . Hence 12 ( 1)( 1)m mp p


   . This 

implies that ( 1) 2m ap    and ( 1) 2m bp    for some positive integers a and b. Hence, 

2 2 2a b  . This implies that 2a   and 1b  . This in turn implies that p = 3 and m = 1. 

This further implies that 
1 3  . 
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Case 2. 1 21 2 p    and 
2 2 1m   . Here 1 2 12 1 mp

   . In this case, 1 (2 1)2 1mp
    and 

hence 1 2 (2 1)2 ( 1)( 1).m mp p p p
        But 2 (2 1)( 1)m mp p p     is odd for 

any odd prime p. Therefore, 1 2 (2 1)2 ( 1)( 1)m mp p p p
        is impossible. 

Case 3. 2 11 2p    and 
2 2 1m   . Here 1 (2 1)2 1mp    2 (2 1)( 1)( 1)m mp p p     . But 

2 (2 1)( 1)m mp p     is odd for any odd prime p. Hence, 1 2 (2 1)2 ( 1)( 1)m mp p p
       

is impossible. 

Case 4. 2 11 2p    and 
2 2m  . Here 1 22 1mp   . Clearly, 

1 1,2  . Since p is an odd 

prime, p is of the form 4 1t   for some positive integer t. Then, 2 1mp  (mod 4).  

Hence, 2 1 2mp   (mod 4). But for 
1 3  , 12 0  (mod 4). Hence 1 22 1mp    is 

impossible.   

Proposition 3.5. There does not exist any odd unitary half-Zumkeller number. 

We leave the following problem for other researchers to solve. 

Conjecture 3.1. If n is even and Unitary Zumkeller number, then n  is unitary half-Zumkeller 

number. 

4 Conclusion 

We have studied unitary Zumkeller numbers and unitary half-Zumkeller numbers in this paper.  

Similarly, it would be interesting to study generalizations of Zumkeller numbers of other forms. 
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