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Abstract: The object of this article is to establish the relation between the generating function
of the quadratic form 2m2 + 2mn + 3n2 and the generating functions for the quadratic forms
m2+mn+n2, m2+mn+2n2, m2+mn+4n2 and 2m2+mn+2n2. In the process, we deduce
certain interesting theta function identities.
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1 Introduction

For ω = e
2πi
3 and q = e2πiτ with Im(τ) > 0, let

a3(q) =
∞∑

m,n=−∞

qm
2+mn+n2

,

b(q) =
∞∑

m,n=−∞

ωm−nqm
2+mn+n2

,
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and

c(q) =
∞∑

m,n=−∞

q(m+ 1
3)

2
+(m+ 1

3)(n+
1
3)+(n+

1
3)

2

.

J. M. Borwein and P. B. Borwein [6] proved that

a33(q) = b3(q) + c3(q). (1)

The above identity is the cubic analogue of fourth power of the following theta function identity:

φ4(q) = φ4(−q) + 16qψ4(q2), (2)

where φ(q) and ψ(q) as defined in (17) and (18) respectively below. The Identity (2) is due to
Jacobi and Ramanujan also recorded (2) in Chapter 16 of his second notebook [11, p. 198, Entry
25(vii)]. This identity plays an important role in connecting Ramanujan’s theta functions and the
modular equations. In Chapter 33 of [5, p. 96] one can find the alternative proof of (1) using the
theory of Ramanujan’s theta functions and how these functions a3(q), b(q) and c(q) have been
employed in obtaining the cubic theory of theta functions of Ramanujan.

In 1871, Lorenz [10] proved that

Theorem 1.1. If a3(q) =
∞∑
n=0

Q(n)qn, then

Q(n) = 6[d1,3(n)− d2,3(n)], (3)

where Q(n) represents the number of integer solutions of a positive integer n in the equation
n = x21 + x1x2 + x22 and dk,l(n) denotes the number of divisors of n which are congruent to
k (mod l).

Many mathematicians including Liuoville and Ramanujan worked on this topic and obtained
formulae analogous to ak3(q) for many integral values of k. For details on the work of a3(q) one
may refer to the books written by K. S. Williams [13, p. 224] and S. Cooper [7, p. 171]. Similar
works can be found in the literature [7, 13] on the following functions like:

a7(q) =
∞∑

m,n=−∞

qm
2+mn+2n2

,

a11(q) =
∞∑

m,n=−∞

qm
2+mn+3n2

,

a15(q) =
∞∑

m,n=−∞

qm
2+mn+4n2

,

and

a∗15(q) =
∞∑

m,n=−∞

q2m
2+mn+2n2

.
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Recently S. Cooper and D. Ye [8], proved that

a23(q) + 5a23(q
5) = 3a215(q) + 3a∗215(q). (4)

T. Anusha et.al [3] proved that

a23(q) + a3(q)a3(q
7) + 7a23(q

7) = 9a7(q)a7(q
3) (5)

and

7a23(q
7)− a23(q) = 9a27(q

3)− 3a27(q). (6)

Motivated by the above articles [3, 8], in this article, we consider

a5(q) =
∞∑

m,n=−∞

q2m
2+2mn+3n2

, (7)

and we obtain the following relations between the generating function a5(q) and the generating
functions a3(q), a7(q), a15(a), and a∗15(q):

Theorem 1.2. We have

9a25(q)− 27a25(q
3) = a23(q)− 4a23(q

4) + 5a23(q
5)− 20a23(q

20)

− 12qf 2
2 f

2
10 + 36q3f 2

6 f
2
30,

(8)

3a25(q)− 9a25(q
3) = a215(q) + a∗215(q)− 4(a215(q

4) + a∗215(q
4))

− 4qf 2
2 f

2
10 + 12q3f 2

6 f
2
30,

(9)

3a25(q)− 21a25(q
7) = a27(q) + 5a27(q

5)− 4a27(q
4)− 20a27(q

20)

− 4qf 2
2 f

2
10 + 28q7f 2

14f
2
70,

(10)

and

a5(q)a5(q
3) + a5(−q)a5(−q3) =

2

3
[a3(q

2)a3(q
10) + 2a3(q

4)a3(q
20)]

+ 8q4f4f12f20f60.
(11)

where fn and Pn as defined in (19) and (21) below respectively.

In the process of proving the above relations, we also obtain the following interesting theta
function identities:

Theorem 1.3. We have

φ2(q)φ2(q5) =
1

6

(
φ4(q) + 5φ4(q5)

)
+

8

3
qf 2

2 f
2
10, (12)

q3ψ2(q2)ψ2(q10) =
1

6

(
qψ4(q2) + 5q5ψ4(q10)

)
− 1

6
qf 2

2 f
2
10, (13)
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a25(q) =
1

6

(
φ4(q) + 5φ4(q5)

)
− 4

3
qf 2

2 f
2
10, (14)

and
φ2(q)φ2(q5) = a25(q) + 4qf 2

2 f
2
10. (15)

Theorem 1.4. We have

q3ψ(q)ψ(q3)ψ(q5)ψ(q15) =
1

4

(
φ(q)φ(q3)φ(q5)φ(q15)− φ(−q2)φ(−q6)φ(−q10)φ(−q30)

)
(16)

− 1

2

(
qf1f3f5f15 + 2q2f2f6f10f30 + 4q4f4f12f20f60

)
.

The identity (12) was given by Alaca, Alaca and Williams [2]; both (12) and (13) are given as
Exercise 3 in Chapter 10 of Cooper’s book [7], and (13) was proved by Kang [9]. The identities
(14) and (15) are proved by Williams [14].

In Section 2, we prove the Theorem 1.2, which is the main object of this article. Also, in the
process, we give a different proof of the Identity (14) and we prove Theorem 1.4.

We close this section by recalling some of the definitions and results which are required to
prove our main results. Let q = e2πiτ with Im(τ) > 0. As usual, for any complex number a, we
define

(a; q)∞ =
∞∏
n=0

(1− aqn).

In Chapter 16 of his second notebook [11, p. 197], Ramanujan defined the following theta
functions:

φ(q) =
∞∑

n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞, (17)

ψ(q) =
∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

, (18)

f(−q) =
∞∑

n=−∞

(−1)nq
n(3n−1)

2 = (q; q)∞

and
χ(q) = (−q; q2)∞.

For convenience, we set

fn := f(−qn) = (qn; qn)∞, (19)

for any positive integer n. It is easy to see that

χ(−q) = f1
f2

and χ(q) =
f 2
2

f1f4
. (20)

The Eisenstein series of weight 2, Pn, is defined by

Pn = P (qn) := 1− 24
∞∑
k=1

kqnk

1− qnk
. (21)
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For convenience, we set h(q) = 1
3
(P1 − 2P2 + 4P4) .

For α1, α2, α3, β1, β2, β3 ∈ N and x1, x2, y1, y2 ∈ Z, we define

N(α1, α2, α3, β1, β2, β3;n) =

card{(x1, y1, x2, y2)|n = α1x
2
1 + α2x1y1 + α3y

2
1 + β1x

2
2 + β2x2y2 + β3y

2
2}.

(22)

Alaca [1] has deduced the following identities using the theory of modular forms:

φ2(q)φ2(q15) =
−1

12
[h(q)− 3h(q3) + 5h(q5)− 15h(q15)]

+
2

3
(qf1f3f5f15 − 2q2f2f6f10f30

+ 4q4f4f12f20f60 + 4qf3f5f6f10 + 8qf6f10f12f20),

(23)

φ2(q3)φ2(q5) =
−1

12
[h(q)− 3h(q3) + 5h(q5)− 15h(q15)]

− 2

3
(5qf1f3f5f15 + 14q2f2f6f10f30 + 20q4f4f12f20f60

− 4qf3f5f6f10 − 8q2f6f10f12f20),

(24)

and

φ(q)φ(q3)φ(q5)φ(q15) =
−1

16
[h(q) + 3h(q3)− 5h(q5)− 15h(q15)] +

3

2
qf1f3f5f15

+ q2f2f6f10f30 + 6q4f4f12f20f60.
(25)

Ramanujan [11, p. 247, Entry 11 (xiv)] recorded a modular equation of degree 15, which is
equivalent to the following theta function identity:

4q3ψ(q)ψ(q3)ψ(q5)ψ(q15) = φ(q)φ(q3)φ(q5)φ(q15)

− φ(−q2)φ(−q6)φ(−q10)φ(−q30)
− 2qf(q)f(q3)f(q5)f(q15).

(26)

A proof of (26) can be found in [4, p. 395]. Again, from [11, p. 245, Entry 9(v, vi)], we have

φ(q)φ(q15)− φ(q3)φ(q5) = 2qf2f30χ(q
3)χ(q5) (27)

and
φ(q)φ(q15) + φ(q3)φ(q5) = 2f6f10χ(q)χ(q

15). (28)

From [12, pp. 46, 47], we find
−P1 + 4P4 = 3φ4(q) (29)

and
−P1 + 2P2 = φ4(q) + 16qψ4(q2). (30)

In [7] and [8], we find that

a23(q) =
1

2
(−P1 + 3P3) , (31)
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a27(q) =
1

2
(−P1 + 7P7) , (32)

a3(q)a3(q
5) =

1

16
(−P1 − 3P3 + 5P5 + 15P15) +

9

2
qf1f3f5f15, (33)

a215(q) =
1

12
(−P1 + 3P3 − 5P5 + 15P15) + 2qf1f3f5f15, (34)

and
a∗215(q) =

1

12
(−P1 + 3P3 − 5P5 + 15P15)− 2qf1f3f5f15. (35)

2 Main results

Proof of (14). From the definition of a5(q), we have

a5(q) =
∞∑

m,n=−∞

q2m
2+2mn+3n2

=
∞∑

m,n=−∞

q2m
2+2m(2n)+3(2n)2 +

∞∑
m,n=−∞

q2m
2+2m(2n+1)+3(2n+1)2

=
∞∑

m,n=−∞

q2((m+n)2+5n2) +
∞∑

m,n=−∞

q
4

(
(m+n)2+(m+n)+5(n2+n)

2

)
+3

This implies that
a5(q) = φ(q2)φ(q10) + 4q3ψ(q4)ψ(q20). (36)

On squaring the above equation and employing φ(q)ψ(q2) = ψ2(q) repeatedly, we obtain

a25(q) = φ2(q2)φ2(q10) + 16q6ψ2(q4)ψ2(q20) + 8q3ψ2(q2)ψ2(q10). (37)

On employing (12) and (13) in the above equation, we obtain the required result. □

Corollary 2.1. Let n ∈ N and N(α1, α2, α3, β1, β2, β3;n) as defined in (22). Then

N(2, 2, 3, 2, 2, 3;n) =
4

3
(γ(n)− 4γ(n/4) + 5γ(n/5)− 20γ(n/20)− t1(n)) , (38)

where γ(n) =
∑
m|n
m>0

m and qf 2
2 f

2
10 =

∞∑
n=1

t1(n)q
n.

Proof. On employing (29) in the identity (14) and then comparing the coefficients of qn in the
resulting identity, we obtain (38). □

Proof of (15): From (12) and (14), we obtain (15). □

Proof of (16). From (23) and (24), it follows that

φ2(−q)φ2(−q15)− φ2(−q3)φ2(−q5) =− 4qf(q)f(q3)f(q5)f(q15)

+ 8q2f2f6f10f30

+ 8q4f4f12f20f60.

(39)
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On multiplying the identity (27) by (28) and then changing q to −q, we find that

φ2(−q)φ2(−q15)− φ2(−q3)φ2(−q5) = −4qf1f3f5f15. (40)

From (39) and (40), we have

qf(q)f(q3)f(q5)f(q15) = qf1f3f5f15 + 2q2f2f6f10f30 + 4q4f4f12f20f60. (41)

Employing the above identity in (26), we obtain (16). □

Proof of (8). From (12) and (29), we have

a25(q)− 3a25(q
3) =

1

18
[−P1 + 4P4 − 5P5 + 20P20 + 3P3 − 12P12

+ 15P15 − 60P60]−
4

3
qf 2

2 f
2
10 + 4q3f 2

6 f
2
30.

Applying (31) four times in the right side of the above with q = q, q4, q5, q20, we obtain the
required result. □

Proof of (9). Applying (4) in the right side of the (8) with q = q, q4, we obtain the required
result. □

Proof of (10). From (12) and (29), we have

a25(q)− 7a25(q
7) =

1

18
[−P1 + 4P4 − 5P5 + 20P20 + 7P7 − 28P28

+ 35P35 − 140P140]−
4

3
qf 2

2 f
2
10 +

28

3
q7f 2

14f
2
70.

Applying (32) four times in the right side of the above with q = q, q4, q5, q20, we obtain the
required result. □

Proof of (11). From (36), one can easily establish that

a5(q) + a5(−q) = 2φ(q2)φ(q10) (42)

and
a5(q)− a5(−q) = 8q3ψ(q4)ψ(q20). (43)

Changing q to q3 for the above identities, we get

a5(q
3) + a5(−q3) = 2φ(q6)φ(q30) (44)

and
a5(q

3)− a5(−q3) = 8q9ψ(q12)ψ(q60). (45)

On multiplying equation (42) with (44) and equation (43) with (45), then adding the resulting
identities, we obtain

a5(q)a5(q
3) + a5(−q)a5(−q3) = 2[φ(q2)φ(q10)φ(q6)φ(q30)

+ 16q12ψ(q4)ψ(q20)ψ(q12)ψ(q60)].
(46)
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Employing (25) and (16) in the above, we find that

a5(q)a5(q
3) + a5(−q)a5(−q3) =

−1

24
[P2 + 2P4 + 3P6 + 6P12 − 5P10

− 10P20 − 15P30 − 30P60]

+ 3q2f2f6f10f30 − 2q4f4f12f20f60.

(47)

Changing q to q2 and q to q4 in (33) respectively, we obtain

a3(q
2)a3(q

10) =
1

16
(−P2 − 3P6 + 5P10 + 15P30) +

9

2
q2f2f6f10f30 (48)

and
a3(q

4)a3(q
20) =

1

16
(−P4 − 3P12 + 5P20 + 15P60) +

9

2
q4f4f12f20f60. (49)

Applying (48) and (49) in the right side of the equation (47), we obtain the required result. □

The following corollary follows from the identities (8)–(11).

Corollary 2.2. Let n ∈ N and N(α1, α2, α3, β1, β2, β3;n) as defined in (22). Then

i) 9N(2, 2, 3, 2, 2, 3;n)−27N(6, 6, 9, 6, 6, 9;n)

= N(1, 1, 1, 1, 1, 1;n)− 4N(4, 4, 4, 4, 4, 4;n)

+ 5N(5, 5, 5, 5, 5, 5;n)− 20N(20, 20, 20, 20, 20, 20;n)

− 12t1(n) + 36t2(n),

ii) 3N(2, 2, 3, 2, 2, 3;n)−9N(6, 6, 9, 6, 6, 9;n)

= N(1, 1, 4, 1, 1, 4;n) +N(2, 1, 2, 2, 1, 2;n)

− 4N(4, 4, 16, 4, 4, 16;n)− 4N(8, 4, 8, 8, 4, 8;n)− 4t1(n) + 12t2n,

iii) 3N(2, 2, 3, 2, 2, 3;n)−21N(14, 14, 21, 14, 14, 21;n)

= N(1, 1, 2, 1, 1, 2;n) + 5N(5, 5, 10, 5, 5, 10;n)

− 4N(4, 4, 8, 4, 4, 8;n)− 20N(20, 20, 40, 20, 20, 40;n)

− 4t1(n) + 28t3(n),

iv) N(2, 2, 3, 6, 6, 9;n)+(−1)x1+y1N(2, 2, 3, 6, 6, 9;n)

=
2

3
[N(2, 2, 2, 10, 10, 10;n) + 5N(4, 4, 4, 20, 20, 20;n)] + 8t4(n),

where qif2if10i =
∞∑
k=0

ti(k)q
k with i = 1, 3, 7 and q4f4f12f20f60 =

∞∑
k=0

t4(k)q
k.
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