On certain bounds for the divisor function

József Sándor
Department of Mathematics, Babeş-Bolyai University
4000840 Cluj-Napoca, Romania
e-mail: jsandor@math.ubbcluj.ro

Received: 10 February 2024
Revised: 20 May 2024
Accepted: 29 May 2024
Online First: 30 May 2024

Abstract

We offer various bounds for the divisor function $d(n)$, in terms of n, or other arithmetical functions.

Keywords: Divisor functions, Arithmetic functions, Inequalities for arithmetic functions, Inequalities for sums.
2020 Mathematics Subject Classification: 11A25, 26D15.

1 Introduction

For a positive integer $n>1$, let $d(n)$ denote the number of all positive divisors of n. Our aim in what follows will be to offer bounds for $d(n)$ in terms of functions of n, or other arithmetic functions, such as the Euler totient function $\varphi(n)$ or $\sigma(n)$, the sum of divisors of n. We will use also the function $\omega(n)$ denoting number of distinct prime factors of n.

If $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ (p_{i} distinct primes, a_{i} positive integers) is the prime factorization of n, then it is well-known that

$$
\begin{equation*}
d(n)=\left(a_{1}+1\right) \cdots\left(a_{r}+1\right) \tag{1}
\end{equation*}
$$

where $a_{i} \geq 1(i=1,2, \ldots, r)$; so (1) immediately gives

$$
\begin{equation*}
2 \leq 2^{\omega(n)} \leq d(n) \tag{2}
\end{equation*}
$$

A classical upper bound for $d(n)$ is

$$
\begin{equation*}
d(n)<2 \sqrt{n} \quad(n>1) \tag{3}
\end{equation*}
$$

Copyright © 2024 by the Author. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/
while it is also known that (see [6])

$$
\begin{equation*}
d(n)<\sqrt{n} \text { for } n \geq 1262 . \tag{4}
\end{equation*}
$$

If n is composite, then it is well-known that [8]

$$
\begin{equation*}
\varphi(n) \leq n-\sqrt{n}, \tag{5}
\end{equation*}
$$

where $\varphi(n)$ denotes the Euler totient function. Thus, from (4) and (5) we get

$$
\varphi(n) \leq n-\sqrt{n}<n-d(n) \text { for } n \geq 1262
$$

composite, so we get

$$
\begin{equation*}
d(n)<\sqrt{n}<n-\varphi(n) \text { for such values of } n \text {. } \tag{6}
\end{equation*}
$$

In [7] it has been shown that

$$
\begin{equation*}
d(n)<4 \sqrt[3]{n}, n>1 \tag{7}
\end{equation*}
$$

and this clearly improves (3) of (4) for sufficiently large values of n.
In what follows, we will offer other bounds which are more precise for certain values of n.

2 Main results

Theorem 1. One has

$$
\begin{equation*}
2 \leq \frac{\omega(n) \sigma(n)+\varphi(n)}{n} \leq d(n) \leq \frac{\sigma(n)-(\sqrt{n}-1)^{2}}{\sqrt{n}}<\frac{\sigma(n)}{\sqrt{n}} \tag{8}
\end{equation*}
$$

for $n \geq 2$, where the second inequality holds true for $n \neq 6$.
Proof. As $\omega(n) \geq 1$, the first inequality of (8) follows by $\sigma(n) \cdot \omega(n)+\varphi(n) \geq \sigma(n)+\varphi(n) \geq 2 n$. This last inequality follows, e.g., by $\sigma(n) \geq \psi(n)$, where

$$
\psi(n)=n \cdot \prod_{p \mid n}\left(1+\frac{1}{p}\right)
$$

denotes the Dedekind arithmetical function. By the algebraic inequality

$$
\prod_{i=1}^{r}\left(1+x_{i}\right)+\prod_{i=1}^{r}\left(1-x_{i}\right) \geq 2
$$

for $x_{i} \in(0,1)$ the result immediately follows (by letting $x_{i}=\frac{1}{p_{i}}$). For the second inequality of (8), use the following result of the author [4]:

$$
\begin{equation*}
\omega(n) \sigma(n)+\varphi(n) \leq n d(n) \tag{9}
\end{equation*}
$$

for any $n \geq 2, n \neq 6$; with equality only for $n=10$ or $n=$ prime.

Finally, the third inequality of (8) is a consequence of another result by the author [3]:

$$
\begin{equation*}
\sigma(n) \geq n+1+\sqrt{n} \cdot[d(n)-2] . \tag{10}
\end{equation*}
$$

This follows by $n+1-2 \sqrt{n}=(\sqrt{n}-1)^{2}$, and simple computations. The last inequality of (8) is trivial, but we note that it improves the classical result $d(n)<\frac{\sigma(n)}{\sqrt{n}}$, i.e.,

$$
\begin{equation*}
\sigma(n)>d(n) \cdot \sqrt{n} \quad(n>1) \tag{11}
\end{equation*}
$$

due to Sivaramakrishnan and Venkataraman.
Remark 1. Particularly, we get the new inequality

$$
\frac{\omega(n) \sigma(n)+\varphi(n)}{\sqrt{n}} \leq \frac{\sigma(n)-(\sqrt{n}-1)^{2}}{\sqrt{n}} \quad(n \neq 6),
$$

or written equivalently :

$$
\begin{equation*}
\sigma(n) \cdot[\sqrt{n}-\omega(n)] \geq \varphi(n)+\sqrt{n} \cdot(\sqrt{n}-1)^{2} \tag{12}
\end{equation*}
$$

for $n \neq 6 ; n \geq 2$.
Theorem 2. One has

$$
\begin{equation*}
\sigma(n) \geq \sqrt{d(n)[d(n)-1] \cdot n+\sigma_{2}(n)} \geq[d(n)-1] \sqrt{n}+\sqrt{\frac{\sigma_{2}(n)}{d(n)}} \tag{13}
\end{equation*}
$$

for any $n \geq 2$; where $\sigma_{2}(n)$ denotes the sum of squares of divisors of n.
Proof. Let $a_{i}(i=\overline{1, n})$ be positive real numbers, and let A_{n}, respectively, G_{n} denote their arithmetic, respectively, geometric means of $\left(a_{i}\right)$. Let $Q_{n}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} a_{i}^{2}}$. In paper [5] is proved among others the inequalities:

$$
\begin{equation*}
n^{2} \cdot A_{n}^{2} \geq n \cdot\left[(n-1) \cdot G_{n}^{2}+Q_{n}^{2}\right] \geq\left[(n-1) \cdot G_{n}+Q_{n}\right]^{2} \tag{14}
\end{equation*}
$$

Let $n=d(k)$, where $k \geq 2$; and $a_{i}=d_{i}$, where $1=d_{1}<d_{2}<\cdots<d_{n}$ are the distinct divisors of k. Then, it is immediate that $A_{n}=\frac{\sigma(k)}{d(k)}, G_{n}=\left(d_{1} \cdots d_{n}\right)^{1 / n}=\sqrt{k}$ which is well-known, see e.g. [6]), $\left(Q_{n}\right)^{2}=\frac{\sigma_{2}(k)}{d(k)}$. After some elementary computations, from (14), we get inequality (13), where the inequality (13) is considered for k (in place of n.)

Remark 2. From the first inequality of (13) we get

$$
\begin{equation*}
d(n) \cdot[d(n)-1] \leq \frac{\sigma^{2}(n)-\sigma_{2}(n)}{n} \tag{15}
\end{equation*}
$$

We now consider extensions of inequalities of type (7). We will use the method of [7]. One has the following similar inequalities.

Theorem 3. One has

$$
\begin{align*}
d(n) & <k_{1} \cdot \sqrt[4]{n}, \text { where } k_{1} \approx 9.1118 \ldots, \tag{16}\\
d(n) & <k_{2} \cdot \sqrt[5]{n}, \text { where } k_{2} \approx 33.4725 \ldots, \tag{17}\\
d(n) & <k_{3} \cdot \sqrt[6]{n}, \text { where } k_{3} \approx 188.7496 \ldots, \tag{18}\\
d(n) & <k_{4} \cdot \sqrt[7]{n}, \text { where } k_{4} \approx 2539.882 \ldots, \tag{19}
\end{align*}
$$

for any $n \geq 2$.
The following auxiliary result will be used:
Lemma 1. One has

$$
\begin{equation*}
(a+1) \cdot p^{-a / k} \leq M_{k}(p), \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{k}(p)=\frac{k}{\log p} \cdot p^{(\log p-k) / k \log p} \tag{21}
\end{equation*}
$$

for all $a \geq 1, p \geq 2 ; k \geq 2$.
Proof of Lemma 1. Let us consider the real variable function $f(a)=(a+1) \cdot p^{-a / k}$. This function has a derivative

$$
f^{\prime}(a)=p^{-a / k} \cdot\left[1-\frac{(a+1) \log p}{k}\right]=0
$$

if and only if $a=a_{0}=\frac{k}{\log p}-1$. If is immediate that a_{0} is maximum point to f, the maximum being attained at a_{0}. We get that $f(a) \leq f\left(a_{0}\right)=M_{k}(p)$, so inequality (21) follows.

As $a+1=d\left(p^{a}\right)$, we get from (21) that

$$
\begin{equation*}
d\left(p^{a}\right) \leq p^{a / k} \cdot M_{k}(p) . \tag{22}
\end{equation*}
$$

This completes the proof of the Lemma.
Proof of Theorem 3. Now, remark that $p^{a}>(a+1)^{4}$ follows by $p^{a} \geq 17^{a}$ if $17^{a}>(a+1)^{4}$. Since $17^{1}>2^{4}=16$, by an easy induction argument the inequality holds true for any $a \geq 1$. As

$$
n=\prod_{p \leq 13} p^{a} \cdot \prod_{p \geq 17} p^{a},
$$

we get that $d(n) \leq M_{4}(2) M_{4}(3) M_{4}(5) M_{4}(7) M_{4}(11) M_{4}(13) \cdot \prod_{p \geq 2} p^{a / 4}=k_{4} \cdot n^{1 / 4}$. Now, by a computer we get that $M_{4}(2)=2.524 \ldots, M_{4}(3)=1,762 \ldots, M_{4}(5)=1.367 \ldots, M_{4}(7)=$ $1.230 \ldots, M_{4}(11)=1.117 \ldots, M_{4}(13)=1.089 \ldots$ and we get that $k_{4} \approx 9.11 \ldots$, so inequality (16) follows.

For the proof of (17) we will use the inequality $37^{a / 5}>a+1$, and proceed in the same manner, as in the case $k=4$.

A computer computation gives us

$$
\prod_{2 \leq p \leq 31} M_{5}(p) \approx 33.4725 \ldots,
$$

and the inequality (17) follows.
The proofs of (18) and (19) can be derived in the same manner, and we omit the details.

Remark 3. If n is odd, the above inequalities can be further sharpened. For example, when $k=3$, (when $M_{3}(2)=1$) we get

$$
\begin{equation*}
d(n)<(1.842 \ldots) \sqrt[3]{n}<2 \sqrt[3]{n}(n \text { odd }) \tag{23}
\end{equation*}
$$

and for $k=4$ and 5 ,

$$
\begin{array}{r}
d(n)<4 \cdot \sqrt[4]{n}(n \text { odd }) \\
d(n)<11 \cdot \sqrt[5]{n}(n \text { odd }) \tag{25}
\end{array}
$$

Remark 4. The method of Theorem 3 can be used also for $k=2$, and as $M_{2}(2) \cdot M_{2}(3)=$ $1.7413 \ldots$ we get

$$
\begin{equation*}
d(n)<(1.75) \sqrt{n} \quad(n \geq 2) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
d(n)<(1.16) \sqrt{n}(n \text { odd }) \tag{27}
\end{equation*}
$$

which further improve relation (3).
Lemma 2. Let $k, l>0$ and $a_{i} \geq 1(i=1,2, \ldots, n)$. Then

$$
\begin{equation*}
n \cdot \sum_{i=1}^{n} a_{i}^{k+1}-\sum_{i=1}^{n} a_{i}^{k} \cdot \sum_{i=1}^{n} a_{i}^{l} \geq \sum_{i=1}^{n} a_{i}^{k} \cdot \sum_{i=1}^{n} \frac{1}{a_{i}^{l}}-n \cdot \sum_{i=1}^{n} a_{i}^{k-l} \tag{28}
\end{equation*}
$$

Proof. We will use the classical Chebysheff inequality

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} y_{i}-n \cdot \sum_{i=1}^{n} x_{i} y_{i} \leq 0 \tag{29}
\end{equation*}
$$

for the sequences $\left(x_{i}\right)$ and $\left(y_{i}\right)$ having the property $\left(x_{i}-x_{j}\right) \cdot\left(y_{i}-y_{j}\right) \geq 0$ for all $i, j \in$ $\{1,2, \ldots, n\}$. Let $x_{i}=a_{i}^{k}, y_{i}=a_{i}^{l}+\frac{1}{a_{i}^{l}}$. Remark that $y_{i}-y_{j}=a_{i}^{l}+\frac{1}{a_{i}^{l}}-a_{j}^{l}-\frac{1}{a_{j}^{l}}=\left(a_{i}^{l} \cdot a_{j}^{l}\right)$. $\left(a_{i}^{l}-a_{j}^{l}\right) \cdot\left(a_{i}^{l} \cdot a_{j}^{l}-1\right)$ and as $\left(a_{i}^{k}-a_{j}^{k}\right) \cdot\left(a_{i}^{l}-a_{j}^{l}\right) \geq 0$ and $a_{i}^{l} \cdot a_{j}^{l}-1 \geq 0$ by $a_{i} \geq 1, a_{j} \geq 1$, inequality (29) can be applied. After simple computations, we get relation (28).

Remark 5. For $k=l$ we get from (28)

$$
\begin{equation*}
n \cdot \sum_{i=1}^{n} a_{i}^{2 k}-\left(\sum_{i=1}^{n} a_{i}^{k}\right)^{2} \geq\left(\sum_{i=1}^{n} a_{i}^{k}\right) \cdot\left(\sum_{i=1}^{n} \frac{1}{a_{i}^{k}}\right)-n^{2} \geq 0 \tag{30}
\end{equation*}
$$

where the last inequality is well-known.
Lemma 3. Let $\left(a_{i}\right),\left(b_{i}\right),(i=1,2, \ldots, n)$ be two sequences with the property $\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right) \leq 0$ $(i, j \in\{1,2, \ldots, n\})$. Then one has the inequalities

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} b_{i} \leq \frac{1}{n} \sum_{i=1}^{n} a_{i} \cdot \sum_{i=1}^{n} b_{i} \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2} \cdot \sum_{i=1}^{n} b_{i}^{2}} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} b_{i} \leq \sqrt{n \cdot \sum_{i=1}^{n} a_{i}^{2} b_{i}^{2}} \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2} \cdot \sum_{i=1}^{n} b_{i}^{2}} \tag{32}
\end{equation*}
$$

Proof. First remark that, the converse of inequality (29) is true now, so the first inequality of (31); and also the second inequality of (32) (applied to $x_{i}=a_{i}^{2}, y_{i}=b_{i}^{2}$) follows. The classical inequality $\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq n \cdot \sum_{i=1}^{n} y_{i}^{2}$ applied first to $x_{i}=a_{i}$, then $x_{i}=b_{i}$ gives the second inequality of (31), while applying it to $x_{i}=a_{i} b_{i}$ we get the first inequality of (32).

Remark 6. Both inequalities offer a refinement of the classical Cauchy inequality

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) .
$$

Theorem 4. For any $m \geq 2$ and $k, l>0$ one has

$$
\begin{equation*}
d(m) \cdot\left[\sigma_{k+l}(m)+\sigma_{k-l}(m)\right] \geq \sigma_{k}(m) \cdot \sigma_{l}(m) \cdot\left(1+\frac{1}{m^{l}}\right) \tag{33}
\end{equation*}
$$

where $\sigma_{a}(m)$ denotes the sum of a-th powers of divisors of m.
Proof. Let $1=d_{1}<d_{2}<\cdots<d_{n}=m$ be the distinct divisors of m, where $n=d(m)$. Applying Lemma 2 for $a_{i}=d_{i}$, after simple computations we get relation (33) by remarking that $\sigma_{-l}(n)=\sigma_{l}(n) / n^{l}$.

Remark 7. For $k=l$ we get from (33)

$$
\begin{equation*}
d(m) \cdot\left[\sigma_{2 k}(m)+d(m)\right] \geq\left(\sigma_{k}(m)\right)^{2} \cdot\left(1+\frac{1}{m^{k}}\right) \tag{34}
\end{equation*}
$$

Theorem 5. For $m \geq 2$ one has

$$
\begin{equation*}
m^{l} \cdot \sigma_{k-l}(m) \leq \frac{1}{d(m)} \cdot \sigma_{k}(m) \cdot \sigma_{l}(m) \leq \sqrt{\sigma_{2 k}(m) \cdot \sigma_{2 l}(m)} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
m^{l} \cdot \sigma_{k-l}(m) \leq m^{l} \sqrt{d(m) \cdot \sigma_{2 k-2 l}(m)} \leq \sqrt{\sigma_{2 k}(m) \cdot \sigma_{2 l}(m)} \tag{36}
\end{equation*}
$$

Proof. Apply relation (31) to $a_{i}=d_{i}^{k}$ and $b_{i}=\left(n / d_{i}\right)^{l}$ where $1 \leq d_{1}<\cdots<d_{n}=m$ are the distinct divisors of m. Remark that $1 \leq d_{1}^{k}<\cdots<d_{n}^{k}$, while $\left(\frac{m}{d_{1}}\right)^{l} \geq\left(\frac{m}{d_{2}}\right)^{l} \geq \cdots \geq\left(\frac{m}{d_{n}}\right)^{l}$, so Lemma 2 can be applied. After simple computations, inequality (34) follows. The proof of (35) follows in the same manner from relation (32).

Remark 8. For $k=l$ we get

$$
\begin{align*}
& m^{k} \cdot(m) \leq \frac{\left(\sigma_{k}(m)\right)^{2}}{d(m)} \leq \sigma_{2 k}(m) \tag{37}\\
& m^{k} \cdot d(m) \leq m^{k} \cdot d(m) \leq \sigma_{2 k}(m) \tag{38}
\end{align*}
$$

where the first inequality of (38) is trivial.

Remark 9. For $l=k-1$, we get

$$
\begin{align*}
& m^{k-1} \cdot \sigma(m) \leq \frac{1}{d(m)} \cdot \sigma_{k}(m) \cdot \sigma_{k-1}(m) \leq \sqrt{\sigma_{2 k}(m) \sigma_{2 k-2}(m)} \tag{39}\\
& m^{k-1} \cdot \sigma(m) \leq m^{k-1} \cdot \sqrt{d(m) \cdot \sigma_{2 k-2}(m)} \leq \sqrt{\sigma_{2 k}(m) \sigma_{2 k-2}(m)} \tag{40}
\end{align*}
$$

The first inequalities of (39) and (40) provide:

$$
\begin{equation*}
\frac{\sigma^{2}(m)}{\sigma_{2}(m)} \leq d(m) \leq \frac{\sigma_{k}(m) \cdot \sigma_{k-1}(m)}{m^{k-1} \cdot \sigma(m)} \tag{41}
\end{equation*}
$$

Finally, we prove:
Theorem 6. For $n \geq 0, k$ arbitrary one has

$$
\begin{align*}
& \frac{\sigma_{k d(m)+1}(m)}{\sigma_{k}(m)} \geq m^{k d(m) / 2} \tag{42}\\
& \sigma_{k}(m) \cdot \sigma_{k(d(m)-1)}(m) \leq[d(m)-1] \cdot \sigma_{k d(m)}(m)+d(m) \cdot m^{k d(m) / 2} \tag{43}\\
& \sigma_{k \cdot d(m)}(m)+d(m) \cdot[d(m)-1] m^{k d(m) / 2} \geq m^{k d(m) / 2} \cdot \frac{\left(\sigma_{k}(m)\right)^{2}}{m^{k}} \tag{44}
\end{align*}
$$

Proof. For the proof of (42) we will use the Faiziev's inequality (see [2]):

$$
\begin{equation*}
a_{1}^{n+1}+\cdots+a_{n}^{n+1} \geq\left(a_{1} \cdots a_{n}\right) \cdot\left(a_{1}+\cdots+a_{n}\right) . \tag{45}
\end{equation*}
$$

Put $a_{i}=d_{i}^{k}$ (where $1 \leq d_{1}<\cdots<d_{n}=m$ the distinct divisors of m. As it is well-known that $d_{1} \cdots d_{n}=m^{d(m) / 2}$, the left side of (45) is $\sigma_{k d(m)+1}(m)$, so relation (42) follows.

For the proof of (43) we will use J. Surányi's inequality (see [1])

$$
\begin{equation*}
\left(a_{1}+\cdots+a_{n}\right) \cdot\left(a_{1}^{n-1}+\cdots+a_{n}^{n-1}\right) \leq(n-1) \cdot\left(a_{1}^{n}+\cdots+a_{n}^{n}\right)+n a_{1} \cdots a_{n} \tag{46}
\end{equation*}
$$

while for the proof of (44) we will apply V. Cârtoaje's inequality [1]

$$
\begin{equation*}
a_{1}^{m}+\cdots+a_{n}^{n}+n(n-1) a_{1} \cdots a_{n} \geq a_{1} \cdots a_{n}\left(a_{1}+\cdots+a_{n}\right) \cdot\left(\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}\right) . \tag{47}
\end{equation*}
$$

The proofs are similar to that of (42), and we omit the details.
Remark 10. For $k=1$ we get from (44):

$$
\begin{equation*}
d(m) \cdot[d(m)-1] \geq \frac{(\sigma(m))^{2}}{m}-\sigma_{d(m)}(m) \tag{48}
\end{equation*}
$$

References

[1] Cârtoaje, V. (2007). The equal variable method. Journal of Inequalities in Pure and Applied Mathematics, 8(1), Article 15.
[2] Faiziev, R. F. (1989). A series of new general inequalities and identities. Doklady Akademii Nauk Tadzhikskol̆ SSR, 32(9), 577-581 (in Russian).
[3] Sándor, J. (2009). A better lower bound for $\sigma_{k}(n)$. Octogon Mathematical Magazine, 17(2), 767-768.
[4] Sándor, J. (2010). Two arithmetic inequalities. Advanced Studies in Contemporary Mathematics, 20(2), 197-202.
[5] Sándor, J. (2012). On an inequality between means of n arguments. Octogon Mathematical Magazine, 20(1), 246-249.
[6] Sándor, J., \& Atanassov, K. T. (2021). Arithmetic Functions. Nova Science Publishing.
[7] Sándor, J., \& Kovács, L. (2009). An inequality for the number of divisors of n. Octogon Mathematical Magazine, 17(2), 746-750.
[8] Sándor, J., Mitrinović, D. S., \& Crstici, B. (2006). Handbook of Number Theory I. Springer.

