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1 Introduction

For a positive integer n > 1, let d(n) denote the number of all positive divisors of n. Our aim
in what follows will be to offer bounds for d(n) in terms of functions of n, or other arithmetic
functions, such as the Euler totient function φ(n) or σ(n), the sum of divisors of n. We will use
also the function ω(n) denoting number of distinct prime factors of n.

If n = pa11 · · · parr (pi distinct primes, ai positive integers) is the prime factorization of n, then
it is well-known that

d(n) = (a1 + 1) · · · (ar + 1), (1)

where ai ≥ 1 (i = 1, 2, . . . , r); so (1) immediately gives

2 ≤ 2ω(n) ≤ d(n). (2)

A classical upper bound for d(n) is

d(n) < 2
√
n (n > 1), (3)
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while it is also known that (see [6])

d(n) <
√
n for n ≥ 1262. (4)

If n is composite, then it is well-known that [8]

φ(n) ≤ n−
√
n, (5)

where φ(n) denotes the Euler totient function. Thus, from (4) and (5) we get

φ(n) ≤ n−
√
n < n− d(n) for n ≥ 1262,

composite, so we get

d(n) <
√
n < n− φ(n) for such values of n. (6)

In [7] it has been shown that
d(n) < 4 3

√
n, n > 1 (7)

and this clearly improves (3) of (4) for sufficiently large values of n.
In what follows, we will offer other bounds which are more precise for certain values of n.

2 Main results

Theorem 1. One has

2 ≤ ω(n)σ(n) + φ(n)

n
≤ d(n) ≤ σ(n)− (

√
n− 1)2√
n

<
σ(n)√
n

(8)

for n ≥ 2, where the second inequality holds true for n ̸= 6.

Proof. As ω(n) ≥ 1, the first inequality of (8) follows by σ(n)·ω(n)+φ(n) ≥ σ(n)+φ(n) ≥ 2n.

This last inequality follows, e.g., by σ(n) ≥ ψ(n), where

ψ(n) = n ·
∏
p|n

(
1 +

1

p

)
denotes the Dedekind arithmetical function. By the algebraic inequality

r∏
i=1

(1 + xi) +
r∏

i=1

(1− xi) ≥ 2

for xi ∈ (0, 1) the result immediately follows (by letting xi =
1

pi
). For the second inequality of

(8), use the following result of the author [4]:

ω(n)σ(n) + φ(n) ≤ nd(n) (9)

for any n ≥ 2, n ̸= 6; with equality only for n = 10 or n = prime.
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Finally, the third inequality of (8) is a consequence of another result by the author [3]:

σ(n) ≥ n+ 1 +
√
n · [d(n)− 2]. (10)

This follows by n+ 1− 2
√
n = (

√
n− 1)2, and simple computations. The last inequality of (8)

is trivial, but we note that it improves the classical result d(n) < σ(n)√
n

, i.e.,

σ(n) > d(n) ·
√
n (n > 1), (11)

due to Sivaramakrishnan and Venkataraman.

Remark 1. Particularly, we get the new inequality

ω(n)σ(n) + φ(n)√
n

≤ σ(n)− (
√
n− 1)2√
n

(n ̸= 6),

or written equivalently :

σ(n) · [
√
n− ω(n)] ≥ φ(n) +

√
n · (

√
n− 1)2 (12)

for n ̸= 6; n ≥ 2.

Theorem 2. One has

σ(n) ≥
√
d(n)[d(n)− 1] · n+ σ2(n) ≥ [d(n)− 1]

√
n+

√
σ2(n)

d(n)
(13)

for any n ≥ 2; where σ2(n) denotes the sum of squares of divisors of n.

Proof. Let ai (i = 1, n) be positive real numbers, and let An, respectively, Gn denote their

arithmetic, respectively, geometric means of (ai). Let Qn =
√

1
n

∑n
i=1 a

2
i . In paper [5] is proved

among others the inequalities:

n2 · A2
n ≥ n · [(n− 1) ·G2

n +Q2
n] ≥ [(n− 1) ·Gn +Qn]

2. (14)

Let n = d(k), where k ≥ 2; and ai = di, where 1 = d1 < d2 < · · · < dn are the distinct divisors

of k. Then, it is immediate that An =
σ(k)

d(k)
, Gn = (d1 · · · dn)1/n =

√
k which is well-known, see

e.g. [6]), (Qn)
2 =

σ2(k)

d(k)
. After some elementary computations, from (14), we get inequality (13),

where the inequality (13) is considered for k (in place of n.)

Remark 2. From the first inequality of (13) we get

d(n) · [d(n)− 1] ≤ σ2(n)− σ2(n)

n
. (15)

We now consider extensions of inequalities of type (7). We will use the method of [7]. One has
the following similar inequalities.
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Theorem 3. One has

d(n) < k1 · 4
√
n, where k1 ≈ 9.1118 . . . , (16)

d(n) < k2 · 5
√
n, where k2 ≈ 33.4725 . . . , (17)

d(n) < k3 · 6
√
n, where k3 ≈ 188.7496 . . . , (18)

d(n) < k4 · 7
√
n, where k4 ≈ 2539.882 . . . , (19)

for any n ≥ 2.

The following auxiliary result will be used:

Lemma 1. One has
(a+ 1) · p−a/k ≤Mk(p), (20)

where
Mk(p) =

k

log p
· p(log p−k)/k log p (21)

for all a ≥ 1, p ≥ 2; k ≥ 2.

Proof of Lemma 1. Let us consider the real variable function f(a) = (a+1) ·p−a/k. This function
has a derivative

f ′(a) = p−a/k ·
[
1− (a+ 1) log p

k

]
= 0

if and only if a = a0 =
k

log p
−1. If is immediate that a0 is maximum point to f, the maximum

being attained at a0. We get that f(a) ≤ f(a0) =Mk(p), so inequality (21) follows.
As a+ 1 = d(pa), we get from (21) that

d(pa) ≤ pa/k ·Mk(p). (22)

This completes the proof of the Lemma. □

Proof of Theorem 3. Now, remark that pa > (a + 1)4 follows by pa ≥ 17a if 17a > (a + 1)4.

Since 171 > 24 = 16, by an easy induction argument the inequality holds true for any a ≥ 1. As

n =
∏
p≤13

pa ·
∏
p≥17

pa,

we get that d(n) ≤ M4(2)M4(3)M4(5)M4(7)M4(11)M4(13) ·
∏

p≥2 p
a/4 = k4 · n1/4. Now, by

a computer we get that M4(2) = 2.524 . . . , M4(3) = 1, 762 . . . , M4(5) = 1.367 . . . , M4(7) =

1.230 . . . , M4(11) = 1.117 . . . , M4(13) = 1.089 . . . and we get that k4 ≈ 9.11 . . . , so inequality
(16) follows.

For the proof of (17) we will use the inequality 37a/5 > a + 1, and proceed in the same
manner, as in the case k = 4.

A computer computation gives us∏
2≤p≤31

M5(p) ≈ 33.4725 . . . ,

and the inequality (17) follows.
The proofs of (18) and (19) can be derived in the same manner, and we omit the details. □
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Remark 3. If n is odd, the above inequalities can be further sharpened. For example, when k=3,

(when M3(2) = 1) we get

d(n) < (1.842 . . .) 3
√
n < 2 3

√
n (n odd), (23)

and for k = 4 and 5,

d(n) < 4 · 4
√
n (n odd), (24)

d(n) < 11 · 5
√
n (n odd). (25)

Remark 4. The method of Theorem 3 can be used also for k = 2, and as M2(2) · M2(3) =

1.7413 . . . we get
d(n) < (1.75)

√
n (n ≥ 2) (26)

and
d(n) < (1.16)

√
n (n odd) (27)

which further improve relation (3).

Lemma 2. Let k, l > 0 and ai ≥ 1 (i = 1, 2, . . . , n). Then

n ·
n∑

i=1

ak+1
i −

n∑
i=1

aki ·
n∑

i=1

ali ≥
n∑

i=1

aki ·
n∑

i=1

1

ali
− n ·

n∑
i=1

ak−l
i (28)

Proof. We will use the classical Chebysheff inequality
n∑

i=1

xi ·
n∑

i=1

yi − n ·
n∑

i=1

xiyi ≤ 0, (29)

for the sequences (xi) and (yi) having the property (xi − xj) · (yi − yj) ≥ 0 for all i, j ∈
{1, 2, . . . , n}. Let xi = aki , yi = ali +

1
ali
. Remark that yi − yj = ali +

1
ali
− alj − 1

alj
= (ali · alj) ·

(ali − alj) · (ali · alj − 1) and as (aki − akj ) · (ali − alj) ≥ 0 and ali · alj − 1 ≥ 0 by ai ≥ 1, aj ≥ 1,

inequality (29) can be applied. After simple computations, we get relation (28).

Remark 5. For k = l we get from (28)

n ·
n∑

i=1

a2ki −
( n∑

i=1

aki

)2

≥
( n∑

i=1

aki

)
·
( n∑

i=1

1

aki

)
− n2 ≥ 0, (30)

where the last inequality is well-known.

Lemma 3. Let (ai), (bi), (i=1, 2, . . . , n) be two sequences with the property (ai−aj)(bi−bj) ≤ 0

(i, j ∈ {1, 2, . . . , n}). Then one has the inequalities

n∑
i=1

aibi ≤
1

n

n∑
i=1

ai ·
n∑

i=1

bi ≤

√√√√ n∑
i=1

a2i ·
n∑

i=1

b2i , (31)

and
n∑

i=1

aibi ≤

√√√√n ·
n∑

i=1

a2i b
2
i ≤

√√√√ n∑
i=1

a2i ·
n∑

i=1

b2i . (32)
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Proof. First remark that, the converse of inequality (29) is true now, so the first inequality of
(31); and also the second inequality of (32) (applied to xi = a2i , yi = b2i ) follows. The classical

inequality
( n∑

i=1

xi

)2

≤ n·
n∑

i=1

y2i applied first to xi = ai, then xi = bi gives the second inequality

of (31), while applying it to xi = aibi we get the first inequality of (32).

Remark 6. Both inequalities offer a refinement of the classical Cauchy inequality( n∑
i=1

aibi

)2

≤
( n∑

i=1

a2i

)( n∑
i=1

b2i

)
.

Theorem 4. For any m ≥ 2 and k, l > 0 one has

d(m) · [σk+l(m) + σk−l(m)] ≥ σk(m) · σl(m) ·
(
1 +

1

ml

)
, (33)

where σa(m) denotes the sum of a-th powers of divisors of m.

Proof. Let 1 = d1 < d2 < · · · < dn = m be the distinct divisors of m, where n = d(m).

Applying Lemma 2 for ai = di, after simple computations we get relation (33) by remarking that
σ−l(n) = σl(n)/n

l.

Remark 7. For k = l we get from (33)

d(m) · [σ2k(m) + d(m)] ≥ (σk(m))2 ·
(
1 +

1

mk

)
. (34)

Theorem 5. For m ≥ 2 one has

ml · σk−l(m) ≤ 1

d(m)
· σk(m) · σl(m) ≤

√
σ2k(m) · σ2l(m), (35)

and
ml · σk−l(m) ≤ ml

√
d(m) · σ2k−2l(m) ≤

√
σ2k(m) · σ2l(m). (36)

Proof. Apply relation (31) to ai = dki and bi = (n/di)
l where 1 ≤ d1 < · · · < dn = m are the

distinct divisors of m. Remark that 1 ≤ dk1 < · · · < dkn, while
(
m
d1

)l ≥ (
m
d2

)l ≥ · · · ≥
(
m
dn

)l
, so

Lemma 2 can be applied. After simple computations, inequality (34) follows. The proof of (35)
follows in the same manner from relation (32).

Remark 8. For k = l we get

mk · (m) ≤ (σk(m))2

d(m)
≤ σ2k(m), (37)

mk · d(m) ≤ mk · d(m) ≤ σ2k(m), (38)

where the first inequality of (38) is trivial.
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Remark 9. For l = k − 1, we get

mk−1 · σ(m) ≤ 1

d(m)
· σk(m) · σk−1(m) ≤

√
σ2k(m)σ2k−2(m), (39)

mk−1 · σ(m) ≤ mk−1 ·
√
d(m) · σ2k−2(m) ≤

√
σ2k(m)σ2k−2(m). (40)

The first inequalities of (39) and (40) provide:

σ2(m)

σ2(m)
≤ d(m) ≤ σk(m) · σk−1(m)

mk−1 · σ(m)
. (41)

Finally, we prove:

Theorem 6. For n ≥ 0, k arbitrary one has

σkd(m)+1(m)

σk(m)
≥ mkd(m)/2; (42)

σk(m) · σk(d(m)−1)(m) ≤ [d(m)− 1] · σkd(m)(m) + d(m) ·mkd(m)/2; (43)

σk·d(m)(m) + d(m) · [d(m)− 1]mkd(m)/2 ≥ mkd(m)/2 · (σk(m))2

mk
. (44)

Proof. For the proof of (42) we will use the Faiziev’s inequality (see [2]):

an+1
1 + · · ·+ an+1

n ≥ (a1 · · · an) · (a1 + · · ·+ an). (45)

Put ai = dki (where 1 ≤ d1 < · · · < dn = m the distinct divisors of m. As it is well-known that
d1 · · · dn = md(m)/2, the left side of (45) is σkd(m)+1(m), so relation (42) follows.

For the proof of (43) we will use J. Surányi’s inequality (see [1])

(a1 + · · ·+ an) · (an−1
1 + · · ·+ an−1

n ) ≤ (n− 1) · (an1 + · · ·+ ann) + na1 · · · an, (46)

while for the proof of (44) we will apply V. Cârtoaje’s inequality [1]

am1 + · · ·+ ann + n(n− 1)a1 · · · an ≥ a1 · · · an(a1 + · · ·+ an) ·
(

1

a1
+ · · ·+ 1

an

)
. (47)

The proofs are similar to that of (42), and we omit the details.

Remark 10. For k = 1 we get from (44):

d(m) · [d(m)− 1] ≥ (σ(m))2

m
− σd(m)(m). (48)
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