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1 Introduction

Let Fn and Ln be the n-th Fibonacci and n-th Lucas numbers, which are defined by the recurrence
relations

Fn+1 = Fn + Fn−1 and Ln+1 = Ln + Ln−1,

respectively, for n ≥ 1 with initial values F0 = 0, F1 = 1 and L0 = 2, L1 = 1.

Copyright © 2024 by the Authors. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



Melham [8] made two conjectures on sums involving odd powers of certain Fibonacci
numbers and Lucas numbers with even index.

Conjecture 1. Let m ≥ 1 be a positive integer. Then the sum

L1L3 · · ·L2m+1

n∑
k=1

F 2m+1
2k

can be expressed as (F2n+1 − 1)2M2m−1(F2n+1), where M2m−1(x) is a polynomial of degree
2m− 1 with integer coefficients.

Conjecture 2. Let m ≥ 0 be a positive integer. Then the sum

L1L3 · · ·L2m+1

n∑
k=1

L2m+1
2k

can be expressed as (L2n+1 − 1)N2m(L2n+1), where N2m(x) is a polynomial of degree 2m with
integer coefficients.

Ozeki [9] was the first one to give an expression for the sum
∑n

k=1 F
2m+1
2k as a polynomial

in power of F2n+1. Subsequently, Prodinger [11] did the same thing independently and obtained
more summation formulae of similar type. Indeed, they gave the following so-called Ozeki–
Prodinger identity:

n∑
k=1

F 2m+1
2k =

m∑
ℓ=0

(−1)m+ℓ

5m−ℓ
F 2ℓ+1
2n+1

m∑
j=ℓ

1

L2j+1

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)

− 1

5m

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
F2j+1

L2j+1

.

In 2004, Wiemann and Cooper [16] proved that the summation

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
F2j+1

L2j+1

is a multiple of 5m. Hence, the second term of Ozeki-Prodinger identity is an integer. Sun
et al. [12] gave proof for Melham’s two conjectures. In fact, in a spirit of Wang and Zhang’s
previous work [13], they proved the polynomial version of Melham’s conjectures as follows.

Theorem 1.1 ( [12]). Let Fn(x), Ln(x) be the n-th Fibonacci polynomial and the n-th Lucas
polynomial, respectively. For any positive integers m and n, the Melham’s sum

L1(x)L3(x) · · ·L2m+1(x)
n∑

k=1

F 2m+1
2k (x)

can be expressed as (F2n+1(x) − 1)2P2m−1(x, F2n+1(x)), where P2m−1(x, y) is a polynomial in
two variables x and y with integer coefficients and of degree 2m− 1 in y.
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Theorem 1.2 ([12, 13]). For any positive integers m and n, the Melham’s sum

L1(x)L3(x) · · ·L2m+1(x)
n∑

k=1

L2m+1
2k (x)

can be expressed as (L2n+1(x) − 1)Q2m(x, L2n+1(x)), where Q2m(x, y) is a polynomial in two
variables x and y with integer coefficients and of degree 2m in y.

In 2019, Chen and Wang [3] used a different approach to conclude that

L1(x)L3(x) · · ·L2n+1(x)
n∑

k=1

F 2m+1
2k (x) ≡ 0 mod (F2n+1(x)− 1)2.

The above congruence with x = 1 also gives a partial answer of the Conjecture 1.
For any two non-zero polynomials p(x) and q(x) with integer coefficients, we introduce the

Lucas polynomial sequence Wn(x) [4, 5] as the sequence of polynomials satisfying the Lucas
recurrence relation

Wn(x) = p(x)Wn−1(x) + q(x)Wn−2(x) for n ≥ 2,

with the initials W0(x) = 0, and W1(x) = 1. Its companion sequence wn(x) was defined in [4,5]
by satisfying the same recurrence relation with slightly different initials

w0(x) = 2, and w1(x) = p(x).

A (a, b)-type Lucas polynomial sequence is a pair of generalized polynomials V
(a,b)
n (x) :=

Vn(x), and v(a,b)(x) := vn(x) which is defined as p(x) = ax and q(x) = b for integers a, b with
a2 + b2 ̸= 0. That is, they satisfy recurrence relations

Vn(x) = (ax)Vn−1(x) + bVn−2(x), vn(x) = (ax)vn−1(x) + bvn−2(x) for n ≥ 2, (1)

with initials V0(x) = 0, V1(x) = 1, v0(x) = 2, and v1(x) = ax, respectively. For simplicity,
we denote the (a, 1)-type Lucas polynomial sequence by Wn(x) and wn(x), and the (a,−1)-type
Lucas polynomial sequence by W n(x) and wn(x). It is worth noting that many important
polynomial sequences satisfy the recurrence relation (1), such as Fibonacci polynomial, Lucas
polynomial, Pell polynomial, and so on. See Table 1 on the next page.

Our main results are listed as follows.

Theorem 1.3. For any positive integers m and n, the Melham’s sum for the (a, b)-type Lucas
polynomial sequence

v1(x)v3(x) · · · v2m+1(x)
n∑

k=1

V 2m+1
2k (x)

is divisible by (V2n+1(x)− 1) only if |b| = 1.

Theorem 1.4. For any positive integers m and n, the Melham’s sum

w1(x)w3(x) · · ·w2m+1(x)
n∑

k=1

W 2m+1
2k (x)

can be expressed as (ax)m(W2n+1(x)− 1)2H̃2m−1(x,W2n+1(x)), where H̃2m−1(x, y) is a
polynomial in two variables x and y with integer coefficients and of degree 2m− 1 in y.

385



Table 1. Special cases of Lucas polynomials

Polynomials (a, b) Initial values
Fibonacci Fn(x) (a, b) = (1, 1) F0(x) = 0, F1(x) = 1

Lucas Ln(x) (a, b) = (1, 1) L0(x) = 2, L1(x) = x

Pell Pn(x) (a, b) = (2, 1) P0(x) = 0, P1(x) = 1

Pell–Lucas Qn(x) (a, b) = (2, 1) Q0(x) = 2, Q1(x) = 2x

Chebyshev of the first kind Tn(x) (a, b) = (2,−1) T0(x) = 1, T1(x) = x

Chebyshev of the second kind Un(x) (a, b) = (2,−1) U0(x) = 1, U1(x) = 2x

Balancing Bn(x) [10] (a, b) = (6,−1) B0(x) = 0, B1(x) = 1

Lucas-balancing Cn(x) [10] (a, b) = (6,−1) C0(x) = 1, C1(x) = 3x

Dickson Dn(x, α) [2] (a, b) = (1,−α) D0(x, α) = 2, D1(x, α) = x

Fermat Fn(x) [14] (a, b) = (3,−2) F0(x) = 0,F1(x) = 1

Fermat–Lucas fn(x) [15] (a, b) = (3,−2) f0(x) = 2, f1(x) = 3x

Theorem 1.5. For any positive integers m and n, the Melham’s sum

(a2x2 − 4)m+1W 1(x)W 3(x) · · ·W 2m+1(x)
n∑

k=1

W
2m+1

2k (x)

can be expressed as (w2n+1(x)− ax)2M̃2m−1(x,w2n+1(x)), where M̃2m−1(x, y) is a polynomial
in two variables x and y with integer coefficients and of degree 2m− 1 in y.

An outline of this paper is as follows. In Section 2, we derive basic properties of (a, b)-type
Lucas polynomials and derive the expansions of sum involving odd powers of (a, b)-type Lucas
polynomials with even index. This paper also gives some analog results of Wiemann and Cooper
in [16]. We prove Theorem 1.3 in Section 3, and then discuss the case b = 1 and prove Theorem
1.4 in Section 4. In light of expressions Wmn(x) (respectively, wmn(x)) as a polynomial in Wn(x)

(respectively, polynomial in wn(x)) for odd m, we derive the Ozeki–Prodinger-like identities for
some Lucas polynomial sequences. The discussion of the case b = −1 and the proof of Theorem
1.5 will be given in Section 5. Some remarks are made in the concluding section.

2 Preliminaries

Let a and b be integers. According to the recurrence relation (1), we define the negative index of
(a, b)-type Lucas polynomial sequences as below:

V−n(x) =
(−1)n+1Vn(x)

bn
, and v−n(x) =

(−1)nvn(x)

bn
, (b ̸= 0) (2)

for any positive integer n.
Let α(x) = (ax +

√
a2x2 + 4b)/2 and β(x) = (ax −

√
a2x2 + 4b)/2 be the roots of the

characteristic polynomial λ2 − axλ− b = 0 such that α(x) + β(x) = ax and α(x)β(x) = −b. It
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is easy to obtain ∆(x) := α(x) − β(x) =
√
a2x2 + 4b. Also it is easy to derive, for n ≥ 1, the

Binet formula:

Vn(x) =
αn(x)− βn(x)

α(x)− β(x)
, vn(x) = αn(x) + βn(x).

Note that

αn(x) =
vn(x) + ∆(x)Vn(x)

2
, βn(x) =

vn(x)−∆(x)Vn(x)

2
.

Proposition 2.1. For integers m and n, we have

(a) Vm(x)vn(x) = Vm+n(x) + (−b)nVm−n(x).

(b) ∆2(x)Vm(x)Vn(x) = vm+n(x)− (−b)nvm−n(x).

(c) vm(x)vn(x) = vm+n(x) + (−b)nvm−n(x).

(d) d
dx
vn(x) = anVn(x).

(e) For a ̸= 0, V2n+1

(
i

√
x2 +

4b

a2

)
=

(−1)nv2n+1(x)

ax
, where i2 = −1.

Proof. Part (a), (b), and (c) follows easily by the Binet formula and (2). For part (d), note that

d

dx
α(x) =

a√
a2x2 + 4b

α(x),
d

dx
β(x) = − a√

a2x2 + 4b
β(x).

So we have
d

dx
vn(x) =

an√
a2x2 + 4b

[αn(x)− βn(x)] = anVn(x).

For part (e), let y = i
√
x2 + 4b

a2
. If a > 0, we note that

α(y) = iα(x), and β(y) = −iβ(x).

Thus, we obtain v2n+1(y) = (−1)ni∆(x)V2n+1(x), or equivalently,

V2n+1

(
i

√
y2 +

4b

a2

)
=

(−1)nv2n+1(y)

ay

The proof is similar when a < 0, so we omit here.

It is also easy to obtain the following relation between V and v-polynomials,

vm(x) = Vm+1(x) + bVm−1(x),

for any integer m. For instance, one can prove this by induction on m.

Proposition 2.2. There are explicit formulae for Vn(x) and vn(x):

Vn(x) =

⌊ (n−1)
2

⌋∑
ℓ=0

(
n− ℓ− 1

ℓ

)
(ax)n−2ℓ−1bℓ, (3)

and

vn(x) =

⌊n
2
⌋∑

ℓ=0

n

n− ℓ

(
n− ℓ

ℓ

)
(ax)n−2ℓbℓ, n ̸= 0. (4)
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Proof. By part (d) of Proposition 2.1, it is sufficient to show the explicit formula for vn(x). We
prove by induction on n. For n = 1, the formula holds obviously. Suppose that it is true for n < k

with k ≥ 2. If k is even, say k = 2t, by (1) we have

v2t(x) = (ax)v2t−1(x) + bv2t−2(x)

=
t−1∑
ℓ=0

2t− 1

2t− 1− ℓ

(
2t− 1− ℓ

ℓ

)
(ax)2t−2ℓbℓ +

t−1∑
ℓ=0

2t− 2

2t− 2− ℓ

(
2t− 2− ℓ

ℓ

)
(ax)2t−2−2ℓbℓ+1

= (ax)2t +
t−1∑
ℓ=1

2t

2t− ℓ

(
2t− ℓ

ℓ

)
(ax)2t−2ℓbℓ + 2bt =

t∑
ℓ=0

2t

2t− ℓ

(
2t− ℓ

ℓ

)
(ax)2t−2ℓbℓ.

Here we have used the combinatorial identity:

2t− 1

2t− 1− ℓ

(
2t− 1− ℓ

ℓ

)
+

2t− 2

2t− 1− ℓ

(
2t− 1− ℓ

ℓ− 1

)
=

2t

2t− ℓ

(
2t− ℓ

ℓ

)
.

This proves the explicit formula for vk(x) when k is even. Similarly, the formula holds when
k = 2t− 1 is odd. So our proof is done by induction.

For integers m ≥ 0 and n ≥ 1, by the Binet formula for Vn(x), we have

V 2m+1
n (x) =

[
αn(x)− βn(x)

α(x)− β(x)

]2m+1

=
1

∆2m+1(x)

2m+1∑
j=0

(−1)j+1

(
2m+ 1

j

)
αjn(x)β(2m+1−j)n(x)

=
1

∆2m(x)

m∑
j=0

(−1)(n+1)jbnj
(
2m+ 1

j

)
α(2m+1−2j)n(x)− β(2m+1−2j)n(x)

α(x)− β(x)

=
1

(a2x2 + 4b)m

m∑
j=0

(−1)(n+1)jbnj
(
2m+ 1

j

)
V(2m+1−2j)n(x).

This implies
n∑

k=1

V 2m+1
2k (x) =

1

(a2x2 + 4b)m

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

) n∑
k=1

b2k(m−j)V(2j+1)2k(x). (5)

Similarly, we have
n∑

k=1

v2m+1
2k (x) =

m∑
j=0

(
2m+ 1

m− j

) n∑
k=1

b2k(m−j)v(2j+1)2k(x). (6)

The next two propositions deal with a divisibility of V −v type convolution which is motivated
by a result in [16].

Proposition 2.3 ([16]). For any non-negative integer m, we let fm(y) be a polynomial in y defined
by

fm(y) = (y + 1)(y3 + 1) · · · (y2m+1 + 1)
m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
y2j+1 − 1

y2j+1 + 1
.

Then fm(y) has a polynomial factor (y − 1)2m+1.
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We can say further that fm(y) has another polynomial factor (y + 1)m. To see this, for each
j, we let πj(y) = (y + 1) · · · (y2j−1 + 1)(y2j+1 − 1)(y2j+3 + 1) · · · (y2m+1 + 1) and note that
(y + 1) | (y2j+1 + 1) since 2j + 1 is odd and

(y + 1)m | πj(y),

for all m ≥ 1. And fm(y) =
∑m

j=0(−1)m−j
(
2m+1
m−j

)
πj(y) implies that (y + 1)m is a polynomial

factor of fm(y).

Lemma 2.1 (See also Lemma 3 in [16]). Let m and k be integers with k < m. Then

m∑
j=0

(−1)j
(
2m+ 1

j

)
h(j) = 0,

where h(j) is any polynomial of odd degree 2k+1 and h(i) = −h(2m−i+1) for i = 0, 1, . . . ,m.

Proof. Let ∆ denote the forward-difference operator. That is, ∆h(x) = h(x + 1) − h(x). We
have

∆2m+1h(0) =
2m+1∑
j=0

(−1)j+1

(
2m+ 1

j

)
h(j) = 2

m∑
j=0

(−1)j+1

(
2m+ 1

j

)
h(j).

The second equality holds by the hypothesis of the polynomial h(j). However, ∆2m+1h(0) = 0

since h(j) is of degree 2k + 1 < 2m+ 1. Thus, we conclude our assertion.

Proposition 2.4. For a non-negative integer m, we let gm(y) be a polynomial in y defined by

gm(y) = (y − 1)(y3 − 1) · · · (y2m+1 − 1)
m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
y2j+1 + 1

y2j+1 − 1
.

Then gm(y) has a polynomial factor (y − 1)m(y + 1)2m+1.

Proof. It is clear that gm(y) has a polynomial factor (y−1)m. (See the paragraph after Proposition
2.3.) Let hm(y) :=

∑m
j=0(−1)m−j

(
2m+1
m−j

)
(y2j+1 + 1)/(y2j+1 − 1). We rewrite hm(y) as

hm(y) =
m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)(
1 + 2(y2j+1 − 1)−1

)
.

We prove that gm(y) has a polynomial factor (y + 1)2m+1 by claiming that

dp

dyp
hm(y)

∣∣∣∣
y=−1

= 0 for p = 0, 1, . . . , 2m. (7)

Clearly hm(−1) = 0 and this proves (7) when p = 0. Now we apply a result given by Leslie [7]:
For any n times continuously differentiable function g(x), we have

dn

dxn

[
1

g(x)

]
=

n∑
k=1

(−1)k
(
n+ 1

k + 1

)
1

gk+1(x)

[
dn

dxn
gk(x)

]
.
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Then we have

dp

dyp

(
1

y2j+1 − 1

)
=

p∑
k=1

(−1)k
(
p+ 1

k + 1

)
1

(y2j+1 − 1)k+1

dp

dyp
(y2j+1 − 1)k

=

p∑
k=1

(−1)k
(
p+ 1

k + 1

)
1

(y2j+1 − 1)k+1

dp

dyp

(
k∑

r=0

(−1)k−r

(
k

r

)
y(2j+1)r

)

=

p∑
k=1

(
p+ 1

k + 1

)
1

(y2j+1 − 1)k+1

k∑
r=1

(−1)r
(
k

r

)
p!

(
(2j + 1)r

p

)
y(2j+1)r−p.

So we have for p ≥ 1

dp

dyp
hm(y)

∣∣∣∣
y=−1

=
m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
dp

dyp

(
2

y2j+1 − 1

)∣∣∣∣
y=−1

=
m∑
j=0

(−1)m−j

(
2m+ 1

m− j

) p∑
k=1

(−1)k+p+1

2k

(
p+ 1

k + 1

) k∑
r=1

(
k

r

)
p!

(
(2j + 1)r

p

)
.

Following [16], we let ap,r :=
∑p

k=r(−1)k+r2p−k
(
p+1
k+1

)(
k
r

)
, and have (see Lemma 5 in [16])

p∑
r=1

(−1)rap,rr
2t = 0, (8)

for two positive integers p and t with p ≥ 2t.
We need the expansion

p!

(
x

p

)
=

p∑
ℓ=0

s(p, ℓ)xℓ,

where s(p, ℓ) is the signed Stirling number of the first kind.
Now we should rewrite the above evaluation as

dp

dyp
hm(y)

∣∣∣∣
y=−1

=
m∑
j=0

(−1)m−j

(
2m+ 1

m− j

) p∑
r=1

p∑
k=r

(−1)k+p+1

2k

(
p+ 1

k + 1

)(
k

r

)

×
p∑

ℓ=0

s(p, ℓ)((2j + 1)r)ℓ

=
(−1)p+1

2p

p∑
ℓ=0

s(p, ℓ)

p∑
r=1

(−1)rap,rr
ℓ

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
(2j + 1)ℓ.

This expression vanishes by dividing the summation into three cases by ℓ = 0, ℓ ≥ 1 odd, and
ℓ ≥ 1 even. The result is zero when ℓ = 0 since s(p, 0) = 0. When ℓ is a odd number, by Lemma
2.1 since ℓ ≤ 2m− 1 (ℓ ≤ p ≤ 2m and ℓ is odd), we see that the inner sum

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
(2j + 1)ℓ =

m∑
j=0

(−1)j
(
2m+ 1

j

)
(2m− 2j + 1)ℓ = 0

When ℓ is an even number, say ℓ = 2t for some integer t ≥ 1, we just apply (8).
Therefore, we have showed that dp

dyp
hm(y)

∣∣∣
y=−1

= 0 for p = 0, 1, . . . , 2m and complete the

proof.
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We remark that all coefficients of both fm(y) and gm(y) are even for m ≥ 1. It is because of

fm(y) ≡ gm(y) ≡
m∑
j=0

(
2m+ 1

m− j

)
(y + 1)(y3 + 1) · · · (y2m+1 + 1)

= 4m(y + 1)(y3 + 1) · · · (y2m+1 + 1) ≡ 0 (mod 2).

3 Proof of Theorem 1.3

Assume that b = 0. Then Vn(x) = (ax)n−1 and vn(x) = (ax)n. So it is obvious to have
V2n+1(x) − 1 = (ax)2n − 1 which can not divide v2m+1(x)

∑n
k=1 V

2m+1
2k (x) completely. For

example, letting n = m = 1, we see that

(a2x2 − 1) ∤ (ax)7.

For |b| > 1, suppose that

(V2n+1(x)− 1) | v1(x)v3(x) · · · v2m+1(x)
n∑

k=1

V 2m+1
2k (x),

and write v1(x)v3(x) · · · v2m+1(x)
∑n

k=1 V
2m+1
2k (x) = (V2n+1(x)− 1)h(x), with h(x) ∈ Z[x].

We consider the whole identity under modulo |b| and have

v1(x)v3(x) · · · v2m+1(x)
n∑

k=1

V 2m+1
2k (x) ≡ (V2n+1(x)− 1)h(x) (mod|b|).

It can not happen based on the discussion in the previous paragraph.

Remark. If b = −1, for our convenience, we consider the Balancing polynomial Bn(x) and
Lucas-Balancing polynomial Cn(x) [10]. Assume that n = m = 1, we get

B3(x)− 1 = (36x2 − 1) ∤ 4C1(x)C3(x)B
3
2(x) = 648x5(12x2 − 1).

Altogether, in view of discussion in the next section, Theorem 1.3 may be rephrased as the
Melham’s sum

v1(x)v3(x) · · · v2m+1(x)
n∑

k=1

V 2m+1
2k (x)

is divisible by (V2n+1(x)− 1) if and only if b = 1.

4 The case b = 1

Throughout this section, we assume that b = 1. Recall that, the (a, 1)-type Lucas polynomial
sequences are denoted by {Wn(x)}n∈Z and {wn(x)}n∈Z. We begin with a simple lemma.
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Lemma 4.1. For any positive integers n and m, we have

n∑
k=1

W2km(x) =


W(2n+1)m(x)−Wm(x)

wm(x)
if m is odd;

w(2n+1)m(x)− wm(x)

(a2x2 + 4)Wm(x)
if m is even,

n∑
k=1

W(2k−1)m(x) =


W2nm(x)

wm(x)
if m is odd;

w2nm(x)− 2

(a2x2 + 4)Wm(x)
if m is even,

and

n∑
k=1

w2km(x) =


w(2n+1)m(x)

wm(x)
− 1 if m is odd;

W(2n+1)m(x)

Wm(x)
− 1 if m is even,

n∑
k=1

w(2k−1)m(x) =


w2nm(x)− 2

wm(x)
if m is odd;

W2nm(x)

Wm(x)
if m is even.

Proof. Let α(x) = (ax +
√
a2x2 + 4)/2 and β(x) = (ax −

√
a2x2 + 4)/2. Using the Binet

formula and noting that α(x)β(x) = −1, we have
n∑

k=1

W2km(x) =
n∑

k=1

α2km(x)− β2km(x)

α(x)− β(x)

=
1√

a2x2 + 4

[
α2m(n+1)(x)− α2m(x)

α2m(x)− 1
− β2m(n+1)(x)− β2m(x)

β2m(x)− 1

]
=
W2m(n+1)(x)−W2mn(x)−W2m(x)

w2m(x)− w0(x)
.

The first identity follows by Proposition 2.1 and the others can be proved similarly.

From (5), it follows by Lemma 4.1 that
n∑

k=1

W 2m+1
2k (x) =

1

(a2x2 + 4)m

m∑
j=0

(−1)m−j

w2j+1(x)

(
2m+ 1

m− j

)
W(2n+1)(2j+1)(x)− Cm(x), (9)

where

Cm(x) =
1

(a2x2 + 4)m

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
W2j+1(x)

w2j+1(x)
.

Now we need another important result, which is in the spirit of Jennings’ theorem [6].

Lemma 4.2. For any non-negative integers n and q, we have

W(2q+1)n(x) =

q∑
ℓ=0

(−1)n(q+ℓ)2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
(a2x2 + 4)ℓW 2ℓ+1

n (x)

= Wn(x)

q∑
ℓ=0

(−1)(n+1)(q+ℓ)

(
q + ℓ

q − ℓ

)
w2ℓ

n (x),

(10)
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and

w(2q+1)n(x) =

q∑
ℓ=0

(−1)(n+1)(q+ℓ)2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
w2ℓ+1

n (x)

= wn(x)

q∑
ℓ=0

(−1)n(q+ℓ)

(
q + ℓ

q − ℓ

)
(a2x2 + 4)ℓW 2ℓ

n (x).

(11)

Proof. Let p = 2q + 1 be an odd integer and

y = αn(x), z = βn(x)

and note that yz = (−1)n. Write

Wpn(x)

Wn(x)
=

αpn(x)− βpn(x)

αn(x)− βn(x)
= yp−1 + yp−2z + · · ·+ yzp−2 + zp−1.

Now we have
Wpn(x)

Wn(x)
=

(
yp−1 +

1

yp−1

)
+ (−1)n

(
yp−3 +

1

yp−3

)
+ · · ·

+ (−1)n·
p−3
2

(
y2 +

1

y2

)
+ (−1)n·

p−1
2

since p = 2q + 1 is odd.
We need the following two identities:

(y2q + y−2q)− (y2q−2 + y−2q+2) + · · ·+ (−1)q−1(y2 + y−2) + (−1)q

=

q∑
ℓ=0

(−1)q+ℓ2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
(y + y−1)2ℓ,

(12)

and

(y2q + y−2q) + (y2q−2 + y−2q+2) + · · ·+ (y2 + y−2) + 1 =

q∑
ℓ=0

2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
(y − y−1)2ℓ.

(13)

By identity (12) we have for n is odd that

W(2q+1)n(x)

Wn(x)
=

q∑
ℓ=0

(−1)q+ℓ(a2x2 + 4)ℓ
2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
W 2ℓ

n (x).

When n is even, identity (13) gives

W(2q+1)n(x)

Wn(x)
=

q∑
ℓ=0

(a2x2 + 4)ℓ
2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
W 2ℓ

n (x).

So the first expression of (10) follows. Differentiating both sides of the first expression of (11)
with respect to x, and by the part (d) of Proposition 2.1, we obtain the second expression of (10).

Now for (11), consider

wpn(x)

wn(x)
= yp−1 − yp−2z + yp−3z2 − · · · − yzp−2 + zp−1

=
(
y2q + y−2q

)
+ (−1)n+1

(
y2q−2 + y−2q+2

)
+ · · ·

+ (−1)(n+1)(q−1)
(
y2 + y−2

)
+ (−1)(n+1)q.
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When n is odd, the identity (13) gives

w(2q+1)n(x)

wn(x)
=

q∑
ℓ=0

2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
w2ℓ

n (x).

When n is even, by (12) we have

w(2q+1)n(x)

wn(x)
=

q∑
ℓ=0

(−1)q+ℓ2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
w2ℓ

n (x).

Therefore we obtain the first identity of (11).
In addition, we apply the following two identities

(y2q + y−2q) + (y2q−2 + y−2q+2) + · · ·+ (y2 + y−2) + 1 =

q∑
ℓ=0

(−1)q+ℓ

(
q + ℓ

q − ℓ

)
(y + y−1)2ℓ,

(14)

and

(y2q + y−2q)− (y2q−2 + y−2q+2) + · · ·+ (−1)q−1(y2 + y−2) + (−1)q

=

q∑
ℓ=0

(
q + ℓ

q − ℓ

)
(y − y−1)2ℓ,

(15)

to the expression of w(2q+1)n(x)/wn(x) to yield

w(2q+1)n(x) = wn(x)

q∑
ℓ=0

(−1)n(q+ℓ)

(
q + ℓ

q − ℓ

)
(a2x2 + 4)ℓW 2ℓ

n (x).

Remark. If we apply identities (14) and (15) to the expression of W(2q+1)n(x) /Wn(x) in the
proof of Lemma 4.2, we also get the second expression of (10). By the way, all identities (12),
(13), (14) and (15) can be proved easily by induction on q.

Taking n = 1 into Lemma 4.2, it immediately infer to the following.

Corollary 4.1. For any non-negative integer j, we have

W2j+1(x) =

j∑
ℓ=0

(−1)j+ℓ2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
(a2x2 + 4)ℓ, (16)

and

w2j+1(x) = (ax)

j∑
ℓ=0

(−1)j+ℓ

(
j + ℓ

j − ℓ

)
(a2x2 + 4)ℓ. (17)

In particular, W2j+1(2i/a) = (−1)j(2j + 1) and w2j+1(2i/a) = (−1)j2i with i2 = −1.

We remark here that, from Lemma 4.2, expansions of W2j+1(x) and w2j+1(x) in (ax) can be
derived, namely

W2j+1(x) =

j∑
ℓ=0

(
j + ℓ

j − ℓ

)
(ax)2ℓ,

and
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w2j+1(x) =

j∑
ℓ=0

2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
(ax)2ℓ+1,

respectively. Also these two identities can be derived from Proposition 2.2. Another way is to use
part (e) of Proposition 2.1. By (16) we have

W2j+1(x)

(
i

√
x2 +

4

a2

)
=

j∑
ℓ=0

(−1)j
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
(ax)2ℓ.

Thus, by the part (e) of Proposition 2.1, it gives the expansion of w2j+1(x) in (ax).

Corollary 4.2. Let the (a, 1)-type W sequence be {Wn}n≥0 := {Wn(1)}n≥0. For any two odd
primes p, q and a positive integer n, we have

Wpn ≡
(
a2 + 4

p

)
Wn (modp),

where
(

∗
p

)
is the Legendre symbol and

Wpq ≡ WpWq (modpq).

Proof. In light of identity (10), the coefficient of the right hand side divides by p = 2q + 1 for
ℓ = 0 to q − 1. Hence, by the Euler’s criterion, we have

Wpn ≡ (a2 + 4)
p−1
2 W p

n ≡
(
a2 + 4

p

)
Wn (modp).

Letting n = 1 and n = q into the above congruence, we have

Wp ≡
(
a2 + 4

p

)
(modp) and Wpq ≡

(
a2 + 4

p

)
Wq (modp),

respectively. Thus, Wpq ≡ WpWq (modp). By symmetry, Wpq ≡ WpWq(modq).

Let {wn(1)}n≥0 be the (a, 1)-type w sequence. Similarly, by identity (11), we conclude that

wpn ≡ wn (modp),

for any odd prime p and any positive integer n.
Back to the proof of Lemma 4.2, we note that

W2qn(x)

Wn(x)
=

y2q − z2q

y − z
= y2q−1 + y2q−2z + · · ·+ yz2q−2 + z2q−1,

and

(
√
a2x2 + 4)W2qn(x)

wn(x)
=

y2q − z2q

y + z
= y2q−1 − y2q−2z + y2q−3z2 − · · ·+ yz2q−2 − z2q−1,

with y = αn(x), z = βn(x) and yz = (−1)n. Now we need two slightly different formulae given
by
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(y2q−1 + y−2q+1) + (y2q−3 + y−2q+3) + · · ·+ (y3 + y−3) + (y + y−1)

=

q∑
ℓ=1

(−1)q+ℓ

(
q + ℓ− 1

2ℓ− 1

)
(y + y−1)2ℓ−1,

(18)

and

(y2q−1 − y−2q+1)− (y2q−3 − y−2q+3) + · · ·+ (−1)q−1(y − y−1)

=

q∑
ℓ=1

(
q + ℓ− 1

2ℓ− 1

)
(y − y−1)2ℓ−1.

(19)

Both identities (18) and (19) follow easily by induction on q.
Repeating the same argument, we have

W2qn(x) = Wn(x)

q∑
ℓ=1

(−1)(n+1)(q+ℓ)

(
q + ℓ− 1

2ℓ− 1

)
w2ℓ−1

n (x)

= wn(x)

q∑
ℓ=1

(−1)n(q+ℓ)

(
q + ℓ− 1

2ℓ− 1

)
(a2x2 + 4)ℓ−1W 2ℓ−1

n (x)

(20)

Combining (20) with identity (10), it leads to the divisible relation

Wm(x) | Wn(x),

for any positive integers m,n with m | n.

Theorem 4.1. We have Ozeki–Prodinger-like identities for the (a, 1)-type Lucas polynomial
sequences:

(i)
n∑

k=1

W 2m+1
2k (x) =

m∑
ℓ=0

(−1)m+ℓ

(a2x2 + 4)m−ℓ
W 2ℓ+1

2n+1(x)
m∑
j=ℓ

1

w2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)

− 1

(a2x2 + 4)m

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
W2j+1(x)

w2j+1(x)

=
W2n+1(x)

(a2x2 + 4)m

m∑
ℓ=0

w2ℓ
2n+1(x)

m∑
j=ℓ

(−1)m−j

w2j+1(x)

(
2m+ 1

m− j

)(
j + ℓ

j − ℓ

)

− 1

(a2x2 + 4)m

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
W2j+1(x)

w2j+1(x)
.

(ii)
n∑

k=1

w2m+1
2k (x) =

m∑
ℓ=0

w2ℓ+1
2n+1(x)

m∑
j=ℓ

1

w2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
− 4m

= wn(x)
m∑
ℓ=0

(−1)ℓ(a2x2 + 4)ℓW 2ℓ
2n+1(x)

m∑
j=ℓ

(−1)j

w2j+1(x)

(
2m+ 1

m− j

)(
j + ℓ

j − ℓ

)
− 4m.
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Proof. From identity (9) and by Lemma 4.2, we have

n∑
k=1

W 2m+1
2k (x) =

m∑
j=0

1

w2j+1(x)

(
2m+ 1

m− j

) j∑
ℓ=0

(−1)m+ℓ

(a2x2 + 4)m−ℓ

2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
W 2ℓ+1

2n+1(x)

− 1

(a2x2 + 4)m

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
W2j+1(x)

w2j+1(x)
.

The first term of the right hand side can be rewritten as

m∑
ℓ=0

(−1)m+ℓ

(a2x2 + 4)m−ℓ
W 2ℓ+1

2n+1(x)
m∑
j=ℓ

1

w2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
.

If we start with identity (9) and use identity (10) to expand W(2n+1)(2j+1)(x) as a polynomial in
power of wn(x), the second expression of

∑n
k=1W

2m+1
2k (x) follows.

Similar proof for (ii), we omit here.

Remark. There are certainly formulae of power sums involving (a, 1)-type Lucas polynomial
sequences (e.g. for W 2m

2k−1(x),W
2m
2k (x),W 2m

2k−1(x), w
2m+1
2k−1 (x), w

2m
2k (x), w

2m
2k−1(x)), and they can

be derived easily through the same way.

Let H2m+1(x, y) be a polynomial in two variables x and y with the degree 2m+1 of y defined
by

H2m+1(x, y) =
m∑
ℓ=0

(−1)m+ℓ

(a2x2 + 4)m−ℓ
y2ℓ+1

m∑
j=ℓ

1

w2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
− Cm(x),

(21)

with

Cm(x) =
1

(a2x2 + 4)m

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
W2j+1(x)

w2j+1(x)
.

By Theorem 4.1, we obtain an expansion for the sum
∑n

k=1W
2m+1
2k (x) in power of W2n+1(x). In

other words,
∑n

k=1 W
2m+1
2k (x) = H2m+1(x,W2n+1(x)).

Substituting α(x)/β(x) for y in Proposition 2.3, we conclude that

(a2x2 + 4)m | w1(x)w3(x) · · ·w2m+1(x)
m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
W2j+1(x)

w2j+1(x)
.

This implies that w1(x)w3(x) · · ·w2m+1(x)Cm(x) is a polynomial with integer coefficients.
Recall the fact that fm(y) has another polynomial factor (y + 1)m. (See the paragraph after

Proposition 2.3.) Taking y = α(x)/β(x), we obtain

(ax)m | w1(x)w3(x) · · ·w2m+1(x)
m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
W2j+1(x)

w2j+1(x)
. (22)
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Lemma 4.3. Let m be a positive integer. For ℓ = 1, 2, . . . ,m, we have

ℓ∑
j=0

(−1)j
(
2m+ 1

j

)(
2m− j − ℓ

2m− 2ℓ

)
p(j; ℓ,m) = 0,

where p(j; ℓ,m) := p(j) is a polynomial in j of odd degree less than 2ℓ+1 and p(i) = −p(2m−
i+ 1) for i = 0, 1, . . . ,m.

Proof. Denote b(j) by

b(j) =

(
2m− j − ℓ

2m− 2ℓ

)
=

(2m− j − ℓ)(2m− j − ℓ− 1) · · · (ℓ− j + 1)

(2m− 2ℓ)!

and note that b(ℓ+ 1) = b(ℓ+ 2) = · · · = b(m) = 0. Thus, we rewrite the desired identity as

m∑
j=0

(−1)j
(
2m+ 1

j

)
h(j; ℓ,m) = 0,

where h(j; ℓ,m) = b(j)p(j; ℓ,m). Now h(j; ℓ,m) meets all conditions listed in Lemma 2.1 and
the desired identity follows by Lemma 2.1.

Remark. One may compare the above result with Lemma 2.6 in [12]. Unfortunately, we feel that
the statement of Lemma 2.6 in [12] is wrong. The correct version requests an extra condition on
the polynomial p(j) as mentioned in Lemma 4.3.

We are now at the stage to give a proof of Theorem 1.4.

Proof of Theorem 1.4. First of all, according to identity (9), we show that

(ax)m

∣∣∣∣∣ w1(x)w3(x) · · ·w2m+1(x)

(a2x2 + 4)m

m∑
j=0

(−1)m−j

w2j+1(x)

(
2m+ 1

m− j

)
W(2n+1)(2j+1)(x).

It, together with (22), shows that (ax)m is a polynomial factor of the Melham’s sum in Theorem
1.4. Let

πj(w, x) := w1(x) · · ·w2j−1(x)w2j+3(x) · · ·w2m+1(x)

and rewrite the above right hand side as

1

(a2x2 + 4)m

m∑
j=0

(−1)m−jπj(w, x)

(
2m+ 1

m− j

)
W(2n+1)(2j+1)(x).

Notice that (ax)m | πj(w, x) for j = 1, 2, . . . ,m and our assertion follows.
Let H2m+1(x, y) be defined by (21). In order to prove the Melham’s sum can be divisible by

(W2n+1(x) − 1)2, we claim that the polynomial H2m+1(x, y) and its derivative with respect to y

both vanish at y = 1. Taking y = 1 into H2m+1(x, y), we obtain
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H2m+1(x, 1)

=
m∑
ℓ=0

(−1)m+ℓ

(a2x2 + 4)m−ℓ

m∑
j=ℓ

1

w2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)

− 1

(a2x2 + 4)m

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
W2j+1(x)

w2j+1(x)

=
1

(a2x2 + 4)m

m∑
j=0

(−1)m

w2j+1(x)

(
2m+ 1

m− j

)[ j∑
ℓ=0

(−1)ℓ
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
(a2x2 + 4)ℓ

]

− 1

(a2x2 + 4)m

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
W2j+1(x)

w2j+1(x)

= 0.

The last equality holds in view of (16).
Next, by (17), we obtain

∂

∂y
H2m+1(x, y)

∣∣∣∣
y=1

=
m∑
ℓ=0

(−1)m+ℓ

(a2x2 + 4)m−ℓ

m∑
j=ℓ

2j + 1

w2j+1(x)

(
2m+ 1

m− j

)(
j + ℓ

j − ℓ

)

=
1

(a2x2 + 4)m

m∑
j=0

(−1)m(2j + 1)

w2j+1(x)

(
2m+ 1

m− j

)[ j∑
ℓ=0

(−1)ℓ
(
j + ℓ

j − ℓ

)
(a2x2 + 4)ℓ

]

=
1

(a2x2 + 4)m

m∑
j=0

(−1)m+j(2j + 1)

ax

(
2m+ 1

m− j

)
= 0.

The last step follows due to Lemma 2.1 with h(j) = 2m− 2j + 1 and k = 0. Therefore, the sum
w1(x)w3(x) · · ·w2m+1(x)

∑n
k=1W

2m+1
2k (x) has a polynomial factor (W2n+1(x)− 1)2.

To see that H̃2m−1(x, y) is a polynomial with integer coefficients, it remains to show that

w2ℓ+1(x)w2ℓ+3(x) · · ·w2m+1(x)
m∑
j=ℓ

(a2x2 + 4)ℓ−m

w2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
,

is a polynomial with integer coefficients for ℓ = 0, 1, . . . ,m. Let

Tℓ,m(x) =
m∑

j=m−ℓ

1

w2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2m− 2ℓ+ 1

(
j +m− ℓ

j −m+ ℓ

)
.

It is equivalent to show that w2m−2ℓ+1(x)w2m−2ℓ+3(x) · · ·w2m+1(x)Tℓ,m(x) has a polynomial
factor (a2x2 + 4)ℓ for ℓ = 0, 1, . . . ,m.

The case ℓ = 0 is trivial. For ℓ = 1, we have

T1,m(x) =
2m+ 1

w2m+1(x)
+

2m+ 1

w2m−1(x)
,
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and T1,m(2i/a) = 0 since w2m+1(2i/a) = (−1)m2i by (17), where i2 = −1. This implies that
w2m−1(x)w2m+1(x)T1,m(x) has a polynomial factor a2x2 + 4. In the following we claim that
Tℓ,m(2i/a) = 0 for 2 ≤ ℓ ≤ m and dp

dxpTp+1,m(x)
∣∣
x= 2i

a

= 0 for p = 1, 2, . . . ,m− 1.
By the definition of Tℓ,m(x) we have

Tℓ,m(2i/a)

=
1

2i(2m− 2ℓ− 1)

m∑
j=m−ℓ

(−1)j
(
2m+ 1

m− j

)
(2j + 1)

(
j +m− ℓ

j −m+ ℓ

)

=
(−1)m

2i(2m− 2ℓ+ 1)

ℓ∑
j=0

(−1)j
(
2m+ 1

j

)(
2m− j − ℓ

2m− 2ℓ

)
(2m− 2j + 1).

Hence, by Lemma 4.3 with h(j) = 2m− 2j + 1, we have that Tℓ,m(2i/a) = 0 for 2 ≤ ℓ ≤ m.
Now apply a result of Leslie [7] (see page 8 in this paper), we obtain

dp

dxp

[
1

w2j+1(x)

]∣∣∣∣
x= 2i

a

=

p∑
k=1

(−1)k
(
p+ 1

k + 1

)
1

(2i2j+1)k+1

[
dp

dxp
wk

2j+1(x)

]∣∣∣∣
x= 2i

a

.

For two positive integers n, p with n ≥ p, by (4) we note that

dp

dxp
wn(x)

∣∣∣∣
x= 2i

a

=

⌊n
2
⌋∑

j=0

n

n− j

(
n− j

j

)
p!

(
n− 2j

p

)
an−2jxn−2j−p

∣∣∣∣∣∣
x= 2i

a

= apn(p− 1)!in−p

(
n+ p− 1

2p− 1

)
.

(23)

To see why the last step holds, let

Ap(n) :=

⌊n
2
⌋∑

j=0

n

n− j

(
n− j

j

)
p!

(
n− 2j

p

)
(2i)n−2j−p,

we note that An(n) = n! and

Ap(n) =
2i(2p+ 1)

n2 − p2
Ap+1(n).

It would implies that

Ap(n) =
2i(2p+ 1)

n2 − p2
· 2i(2p+ 3)

n2 − (p+ 1)2
· · · 2i(2n− 1)

n2 − (n− 1)2
An(n),

or

Ap(n) = n(p− 1)!in−p

(
n+ p− 1

2p− 1

)
.

In light of the identity

wk
2j+1(x) =

[
α2j+1(x) + β2j+1(x)

]k
=

k∑
r=0

1

2

(
k

r

)[
α(2j+1)r(x)β(2j+1)(k−r)(x) + α(2j+1)(k−r)(x)β(2j+1)r(x)

]
=

k∑
r=0

(−1)r

2

(
k

r

)
w(2j+1)(k−2r)(x),

we have
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dp

dxp

[
1

w2j+1(x)

]∣∣∣∣
x= 2i

a

=

p∑
k=1

(−1)k
(
p+ 1

k + 1

)
1

(2i2j+1)k+1

k∑
r=0

(−1)r

2

(
k

r

)[
dp

dxp
w(2j+1)(k−2r)(x)

]∣∣∣∣
x= 2i

a

= ap
p∑

k=1

(−1)k+j

(
p+ 1

k + 1

)
(2j + 1)(p− 1)!

2k+2ip+1

k∑
r=0

(
k

r

)
(k − 2r)

(
(2j + 1)(k − 2r) + p− 1

2p− 1

)
.

Thus, we obtain
dp

dxp
Tp+1,m(x)

∣∣∣∣
x= 2i

a

=
m∑

j=m−p−1

(
2m+ 1

m− j

)
2j + 1

2m− 2p− 1

(
j +m− p− 1

j −m+ p+ 1

) [
dp

dxp

1

w2j+1(x)

]∣∣∣∣
x= 2i

a

= ap
m∑

j=m−p−1

(−1)j
(
2m+ 1

m− j

)
(2j + 1)2

2m− 2p− 1

(
j +m− p− 1

j −m+ p+ 1

)

×
p∑

k=1

(−1)k
(
p+ 1

k + 1

)
(p− 1)!

2k+2ip+1

×
k∑

r=0

(
k

r

)
(k − 2r)

(
(2j + 1)(k − 2r) + p− 1

2p− 1

)
,

or

dp

dxp
Tp+1,m(x)

∣∣∣∣
x= 2i

a

=ap
p∑

k=1

k∑
r=0

(−1)k
(
p+ 1

k + 1

)(
k

r

)
(k − 2r)(p− 1)!

2k+2ip+1(2m− 2p− 1)

×
m∑

j=m−p−1

(−1)j
(
2m+ 1

m− j

)(
j +m− p− 1

j −m+ p+ 1

)
×
(
(2j + 1)(k − 2r) + p− 1

2p− 1

)
(2j + 1)2.

Our assertion follows if we can prove that the inner sum vanishes. That is,
m∑

j=m−p−1

(−1)j
(
2m+ 1

m− j

)(
j +m− p− 1

j −m+ p+ 1

)(
(2j + 1)(k − 2r) + p− 1

2p− 1

)
(2j + 1)2 = 0,

for p = 1, 2, . . . ,m− 1, or equivalently,
p+1∑
j=0

(−1)m−j

(
2m+ 1

j

)(
2m− j − p− 1

2m− 2p− 2

)
H(j; p,m) = 0, (24)

where

H(j; p,m) := H(j) =

(
(2m− 2j + 1)(k − 2r) + p− 1

2p− 1

)
(2m− 2j + 1)2.

It is routine that one expresses H(j) as a product of integers and check that H(i) = −H(2m−i+

1) for i = 0, 1, . . . ,m. Also we note that H(j) is a polynomial in j of degree 2p+1 < 2(p+1)+1,
an odd number. Thus, (24) holds by Lemma 4.3.
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Another consideration leads to the extension of Melham’s Conjecture 2 or Theorem 1.2.

Theorem 4.2. For any non-negative integers n and m, the Melham’s sum

w1(x)w3(x) · · ·w2m+1(x)
n∑

k=1

w2m+1
2k (x)

can be expressed as (ax)m(w2n+1(x) − ax)S̃2m(x,w2n+1(x)), where S̃2m(x, y) is a polynomial
in two variables x and y with integer coefficients and of degree 2m in y.

Proof. The fact that (ax)m is a polynomial factor of the Melham’s sum

w1(x)w3(x) · · ·w2m+1(x)
n∑

k=1

w2m+1
2k (x)

follows similarly by viewing the proof of our Theorem 1.4. We note that this polynomial factor
(ax)m actually dues to the part of the product w1(x)w3(x) · · · w2m+1(x).

In view of (ii) in Theorem 4.1, we let

S2m+1(x, y) =
m∑
ℓ=0

y2ℓ+1

m∑
j=ℓ

1

w2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
− 4m.

Then by (4),

S2m+1(x, ax) =
m∑
ℓ=0

m∑
j=ℓ

(ax)2ℓ+1

w2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
− 4m

=
m∑
j=0

1

w2j+1(x)

(
2m+ 1

m− j

)[ j∑
ℓ=0

2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
(ax)2ℓ+1

]
− 4m

=
m∑
j=0

(
2m+ 1

m− j

)
− 4m.

From this and the binomial theorem, we see S2m+1(x, ax) = 0 and this implies the sum

w1(x)w3(x) · · ·w2m+1(x)
n∑

k=1

w2m+1
2k (x)

has a polynomial factor (w2n+1(x)− ax).
To see that S̃2m(x, y) is a polynomial with integer coefficients, it is suffices to show

w2ℓ+1(x)w2ℓ+3(x) · · ·w2m+1(x)
m∑
j=ℓ

1

w2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
is an integer for 0 ≤ ℓ ≤ m. This is clear since

2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
= 2

(
j + ℓ+ 1

j − ℓ

)
−
(
j + ℓ

j − ℓ

)
(25)

is an integer.

Corollary 4.3. Let Qn(x) be n-th Pell–Lucas polynomial and the Melham’s sum for Qn(x)

be define by Q(n,m;x) = Q1(x)Q3(x) · · ·Q2m+1(x)
∑n

k=1Q
2m+1
2k (x). Then for any positive

integers n and m, we have the quotient Q(n,m;x)/(Q2n+1(x)− 2x) is an integer polynomial in
x.
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One can substitute the Melham’s sum in Theorem 4.2 with

w1(x)w3(x) · · ·w2m+1(x)
n∑

k=0

w2m+1
2k (x).

The only slightly difference is that the value k begins with zero under the summation sign. It is
easy to derive that

n∑
k=0

w2m+1
2k (x) =

m∑
ℓ=0

w2ℓ+1
2n+1(x)

m∑
j=ℓ

1

w2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
+ 4m.

Thus, we conclude a kind of variation of Theorem 4.2.

Theorem 4.3. For two non-negative integer n,m, the sum

w1(x)w3(x) · · ·w2m+1(x)
n∑

k=0

w2m+1
2k (x)

can be expressed as (ax)m(w2n+1(x) + ax)S2m(x,w2n+1(x)), where S2m(x, y) is a polynomial
in two variables x and y with integer coefficients and of degree 2m in y.

5 The case b = −1

In this section, we discuss the case when b = −1. Recall that, in our notation, V (a,−1)
n (x) :=

W n(x). That is, the polynomial sequence {W n(x)}n≥0 satisfies the recurrence relation

W n(x) = (ax)W n−1(x)−W n−2(x) for n ≥ 2,

with initial values W 0(x) = 0 and W 1(x) = 1. Let v(a,−1)
n (x) := wn(x) by analogy.

The following identities are easy to prove by the Binet formula for W (x) and w(x).

Lemma 5.1. For any positive integers n and m, we have

n∑
k=1

W 2km(x) =
w(2n+1)m(x)− wm(x)

(a2x2 − 4)Wm(x)
,

n∑
k=1

W (2k−1)m(x) =
w2nm(x)− 2

(a2x2 − 4)Wm(x)
,

and
n∑

k=1

w2km(x) =
W (2n+1)m(x)

Wm(x)
− 1,

n∑
k=1

w(2k−1)m(x) =
W 2nm(x)

Wm(x)
.

From (6) and Lemma 5.1, we get

n∑
k=1

w2m+1
2k (x) =

m∑
j=0

(
2m+ 1

m− j

) n∑
k=1

w(2j+1)2k(x) =
m∑
j=0

(
2m+ 1

m− j

)
W (2n+1)(2j+1)(x)

W 2j+1(x)
− 4m.

(26)
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Lemma 5.2. For two non-negative integers n and q, we have

W (2q+1)n(x) =

q∑
ℓ=0

2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
(a2x2 − 4)ℓW

2ℓ+1

n (x)

= W n(x)

q∑
ℓ=0

(−1)q+ℓ

(
q + ℓ

q − ℓ

)
w2ℓ

n (x),

(27)

and
w(2q+1)n(x) =

q∑
ℓ=0

(−1)q+ℓ2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
w2ℓ+1

n (x)

= wn(x)

q∑
ℓ=0

(
q + ℓ

q − ℓ

)
(a2x2 − 4)ℓW

2ℓ

n (x).

Proof. Let y = αn(x), z = β
n
(x) and note that yz = 1. We compute

W (2q+1)n(x)

W n(x)
= (y2q + z2q) + (y2q−2 + z2q−2) + · · ·+ (y2 + z2) + 1

=

q∑
ℓ=0

2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
(y − z)2ℓ by identity (13)

=

q∑
ℓ=0

(−1)q+ℓ

(
q + ℓ

q − ℓ

)
(y + z)2ℓ by identity (14).

So the first assertion follows. Now,
w(2q+1)n(x)

wn(x)
= y2q − y2q−1z + y2q−2z2 − · · · − yz2q−1 + z2q

= (y2q + z2q)− (y2q−2 + z2q−2) + · · ·+ (−1)q−1(y2 + z2) + (−1)q

=

q∑
ℓ=0

(−1)q+ℓ2q + 1

2ℓ+ 1

(
q + ℓ

q − ℓ

)
(y + z)2ℓ by identity (12)

=

q∑
ℓ=0

(
q + ℓ

q − ℓ

)
(y − z)2ℓ by identity (15).

Our second assertion follows and the proof completes.

Taking n = 1 in Lemma 5.2, it immediately yields

Corollary 5.1. For any non-negative integer j, we have

W 2j+1(x) =

j∑
ℓ=0

(
j + ℓ

j − ℓ

)
2j + 1

2ℓ+ 1
(a2x2 − 4)ℓ,

and

w2j+1(x) = ax

j∑
ℓ=0

(
j + ℓ

j − ℓ

)
(a2x2 − 4)ℓ.

On one hand, we have

W 2qn(x)

W n(x)
=

y2q − z2q

y − z
= (y2q−1 + y−2q+1) + (y2q−3 + y−2q+3) + · · ·+ (y1 + y−1)

=

q∑
ℓ=1

(−1)q+ℓ

(
q + ℓ− 1

2ℓ− 1

)
(y + y−1)2ℓ−1 by identity (18).

404



Thus, it implies that

W 2qn(x) = W n(x)

q∑
ℓ=1

(−1)q+ℓ

(
q + ℓ− 1

2ℓ− 1

)
w2ℓ−1

n (x).

On the other hand,

(
√
a2x2 − 4)W 2qn(x)

wn(x)
=

y2q − z2q

y + z

= y2q−1 − y2q−2z + y2q−3z2 − · · ·+ yz2q−2 − z2q−1

=

q∑
ℓ=1

(
q + ℓ− 1

2ℓ− 1

)
(y − y−1)2ℓ−1 by identity (19).

We have the second expression for W 2qn(x):

W 2qn(x) = wn(x)

q∑
ℓ=1

(
q + ℓ− 1

2ℓ− 1

)
(a2x2 − 4)ℓ−1W

2ℓ−1

n (x).

So far, we conclude that Wm(x) | W n(x) if m | n and Wm(x)wm(x) | W nm(x) if n is even.

Corollary 5.2. Let the n-th (a,−1)-type Lucas number be W n := W n(1). For any two odd
primes p, q and a positive integer n, we have

W pn ≡
(
a2 − 4

p

)
W n (modp),

and
W pq ≡ W pW q (modpq).

A positive integer n is called a balancing number [1] if

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

for some positive integer r. Behera and Panda [1] proved that if n is a balancing number, then
8n2 + 1 is a perfect square, and the positive square root of 8n2 + 1 is called a Lucas-Balancing
number. We denote the n-th Balancing number by Bn and the n-the Lucas-Balancing number by
Cn. (We admit that B1 = 1 for convenience.) Notice that both {Bn}n≥1 and {Cn}n≥1 satisfies
the recurrence relation

Rn = 6Rn−1 −Rn−2 for n ≥ 2,

with initial values B0 = 0, B1 = 1 and C0 = 1, C1 = 3. Also notice that Bn(1) = Bn and
Cn(1) = Cn [10].

Hence, Corollary 5.2 implies that

Bp ≡
(
32

p

)
≡
(
2

p

)
= (−1)

p2−1
8 (modp),

for any odd prime p.
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Theorem 5.1. We have Ozeki–Prodinger-like identities for the (a, 1)-type Lucas polynomial
sequences:

(i)
n∑

k=1

W
2m+1

2k (x)

=
1

(a2x2 − 4)m+1

m∑
ℓ=0

(−1)m+ℓw2ℓ+1
2n+1(x)

m∑
j=ℓ

1

W 2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)

− 1

(a2x2 − 4)m+1

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
w2j+1(x)

W 2j+1(x)

= w2n+1(x)
m∑
ℓ=0

1

(a2x2 − 4)m−ℓ+1
W

2ℓ

2n+1(x)
m∑
j=ℓ

(−1)m−j

W 2j+1(x)

(
2m+ 1

m− j

)(
j + ℓ

j − ℓ

)

− 1

(a2x2 − 4)m+1

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
w2j+1(x)

W 2j+1(x)
.

(ii)
n∑

k=1

w2m+1
2k (x)

=
m∑
ℓ=0

(a2x2 − 4)ℓW
2ℓ+1

2n+1(x)
m∑
j=ℓ

1

W 2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
− 4m

= W 2n+1(x)
m∑
ℓ=0

(−1)ℓw2ℓ
2n+1(x)

m∑
j=ℓ

(−1)j

W 2j+1(x)

(
2m+ 1

m− j

)(
j + ℓ

j − ℓ

)
− 4m.

Proof. We should only prove (ii),
n∑

k=1

w2m+1
2k (x) =

m∑
j=0

(
2m+ 1

m− j

)
W (2n+1)(2j+1)(x)

W 2j+1(x)
− 4m by identity (26),

=
m∑
j=0

1

W 2j+1(x)

(
2m+ 1

m− j

) j∑
ℓ=0

2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
(a2x2 − 4)ℓW

2ℓ+1

2n+1(x)− 4m,

or
n∑

k=1

w2m+1
2k (x) =

m∑
j=0

(
2m+ 1

m− j

)
W 2n+1(x)

W 2j+1(x)

j∑
ℓ=0

(−1)j+ℓ

(
j + ℓ

j − ℓ

)
w2ℓ

2n+1(x)− 4m,

by identity (27). Then we obtain (ii) by just switching the order of summation.

There is an interesting implication when y is substituted for α(x)/β(x) in the Proposition 2.4.
Then we obtain

(ax)2m+1 | (a2x2 − 4)m+1W 1(x)W 3(x) · · ·W 2m+1(x)Cm(x), (28)

where

Cm(x) =
1

(a2x2 − 4)m+1

m∑
j=0

(−1)m−j

(
2m+ 1

m− j

)
w2j+1(x)

W 2j+1(x)
.
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It is time to prove our main theorem in this section.

Proof of Theorem 1.5. Let

W (n,m;x) := (a2x2 − 4)m+1W 1(x)W 3(x) · · ·W 2m+1(x)
n∑

k=1

W
2m+1

2k (x)

and

M2m+1(x, y) :=
1

(a2x2 − 4)m+1

m∑
ℓ=0

(−1)m+ℓy2ℓ+1

×
m∑
j=ℓ

1

W 2j+1(x)

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
− Cm(x).

We see that M2m+1(x, ax) = 0 by Lemma 5.2. In addition, by Proposition 2.2,

∂

∂y
M2m+1(x, y)

∣∣∣∣
y=ax

=
1

(a2x2 − 4)m+1

m∑
j=0

(−1)m−j

W 2j+1(x)

(
2m+ 1

m− j

) j∑
ℓ=0

(−1)j+ℓ(2j + 1)

(
j + ℓ

j − ℓ

)
(ax)2ℓ

=
1

(a2x2 − 4)m+1

m∑
j=0

(−1)m−j(2j + 1)

(
2m+ 1

m− j

)
= 0.

All together we conclude that

(w2n+1(x)− ax)2 | W (n,m;x).

To see that M̃2m−1(x, y) ∈ Z[x, y], we just notice that (25) and the fact that (28).

Corollary 5.3. For any positive integers n and m the sum

25m+3B1B3 · · ·B2m+1

n∑
k=1

B2m+1
2k

can be divisible by (C2n+1 − 3)2.

Theorem 5.2. For any positive integers n and m, the sum

W 1(x)W 3(x) · · ·W 2m+1(x)
n∑

k=1

w2m+1
2k (x),

can be expressed as (W 2n+1(x)− 1)Ñ2m(x,W 2n+1(x)), where Ñ2m(x, y) is a polynomial in two
variables x and y with integer coefficients and of degree 2m in y.
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Proof. In view of (ii) in Theorem 5.1, we let

N2m+1(x, y)

=
m∑
ℓ=0

(a2x2 − 4)ℓy2ℓ+1

m∑
j=ℓ

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
1

W 2j+1(x)
− 4m.

Then, by Corollary 5.1,

N2m+1(x, 1)

=
m∑
ℓ=0

(a2x2 − 4)ℓ
m∑
j=ℓ

(
2m+ 1

m− j

)
2j + 1

2ℓ+ 1

(
j + ℓ

j − ℓ

)
1

W 2j+1(x)
− 4m

=
m∑
j=0

(
2m+ 1

m− j

)
1

W 2j+1(x)

j∑
ℓ=0

(
j + ℓ

j − ℓ

)
2j + 1

2ℓ+ 1
(a2x2 − 4)ℓ − 4m

=
m∑
j=0

(
2m+ 1

m− j

)
− 4m

= 0.

From this, we conclude that the Melham’s sum

W 1(x)W 3(x) · · ·W 2m+1(x)
n∑

k=1

w2m+1
2k (x)

can be divisible by (W 2n+1(x)−1). To see that Ñ2m(x, y) is an integer polynomial, we just notice
(25).

Corollary 5.4. For any positive integers n and m the sum

2B1B3 · · ·B2m+1

n∑
k=1

C2m+1
2k

can be divisible by B2n+1 − 1.

6 Conclusion

In summary, to study the divisibility of Melham’s sum for (a, b)-type Lucas polynomial sequences,
we only need to pay attention to the specialized cases b = 1 and b = −1 (Theorem 1.3). We derive
Ozeki-Prodinger-like identities for the (a, 1)-type and (a,−1)-type Lucas polynomials (Theorem
4.1, 5.1), and extend Jennings’ result (Lemma 4.2, 5.2). Finally, we prove some divisibility
properties of Melham’s sums for (a, 1)-type and (a,−1)-type Lucas polynomial sequences
(Theorem 1.4, 1.5, 4.2 and 5.2), which extend the scope of Melham’s original conjectures, and
have some interesting implications.

We raise an open question in studying Melham’s sum for some Lucas polynomial sequences.
The polynomials H̃2m−1(x, y), S̃2m(x, y), M̃2m−1(x, y) and Ñ2m(x, y) can be viewed as
polynomials in y of a suitable degree with integer coefficients. Are they irreducible polynomials
in y for all m ≥ 1? We hope to attract the attention of interested readers.
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