# A generalization of arithmetic derivative to $\boldsymbol{p}$-adic fields and number fields 

Brad Emmons ${ }^{1}$ and Xiao Xiao ${ }^{2}$<br>${ }^{1}$ Department of Mathematics, Utica University<br>1600 Burrstone Road, Utica NY 13502, USA<br>e-mail: bemmons@utica.edu<br>${ }^{2}$ Department of Mathematics, Utica University<br>1600 Burrstone Road, Utica NY 13502, USA<br>e-mail: xixiao@utica.edu

Received: 20 October 2023
Accepted: 10 May 2024
Online First: 27 May 2024


#### Abstract

The arithmetic derivative is a function from the natural numbers to itself that sends all prime numbers to 1 and satisfies the Leibniz rule. The arithmetic partial derivative with respect to a prime $p$ is the $p$-th component of the arithmetic derivative. In this paper, we generalize the arithmetic partial derivative to $p$-adic fields (the local case) and the arithmetic derivative to number fields (the global case). We study the dynamical system of the $p$-adic valuation of the iterations of the arithmetic partial derivatives. We also prove that for every integer $n \geq 0$, there are infinitely many elements with exactly $n$ anti-partial derivatives. In the end, we study the $p$-adic continuity of arithmetic derivatives.


Keywords: Arithmetic derivative, Arithmetic partial derivative, Arithmetic subderivative, $p$-adic fields, Number fields, $p$-adic continuity.
2020 Mathematics Subject Classification: 11A25, 11R04.

## 1 Introduction

Let $\mathbb{N}=\{0,1,2, \ldots\}$. The arithmetic derivative is a function $D: \mathbb{N} \rightarrow \mathbb{N}$ that satisfies the following two properties: $D(p)=1$ for all primes $p$, and the Leibniz rule, $D(x y)=$

|  | Copyright © 2024 by the Authors. This is an Open Access paper distributed under the |
| :--- | :--- | :--- |
| (c) (i) |  |
| terms and conditions of the Creative Commons Attribution 4.0 International License |  |
| (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ |  |

$D(x) y+x D(y)$ for all $x, y \in \mathbb{N}$. One of the questions on the 1950 Putnam competition [3] asked the contestants to predict the limit of the sequence $63, D(63), D^{2}(63), \ldots$. Many sources cite this as the origin of the arithmetic derivative. However we were able to find a paper by Shelly [14] published in 1911 which introduced this topic as well as some of the basic properties and generalizations of this function.

One can ask a more general question. If we fix $x \in \mathbb{N}$, what is the limit of the sequence $x, D(x), D^{2}(x), \ldots$. This is not easy to predict in general. Ufnarovski and Åhlander made the following conjecture.

Conjecture 1.1. [15, Conjecture 2] For every $x \in \mathbb{N}$, exactly one of the following could happen: either $D^{i}(x)=0$ or $p^{p}$ for some prime p for sufficiently large $i$, or $\lim _{i \rightarrow+\infty} D^{i}(x)=+\infty$.

We note that Shelly [14] alluded to this conjecture and Barbeau [1] made a similar conjecture. One corollary of this conjecture is that if the sequence $x, D(x), D^{2}(x), \ldots$ is eventually periodic, then the period is 1 . That is $D^{k}(x)=p^{p}$ for some prime $p$ when $k \gg 0$. Given $y>1$, it is not hard to show [15, Corollary 3] that there are finitely many (possibly 0 ) $x$ such that $D(x)=y$. We call $x$ an anti-derivative of $y$. Ufnarovski and Åhlander made the following conjecture.

Conjecture 1.2. [15, Conjecture 8] For every integer $n \geq 0$ there are infinitely many $x>0$ such that $x$ has exactly $n$ anti-derivatives.

Let $\nu_{p}$ be the $p$-adic valuation. One can show that $D(0)=0$ and for $x>0, D$ has the following explicit formula

$$
D(x)=x \sum_{p} \frac{\nu_{p}(x)}{p} .
$$

This is a finite sum as there are only finitely many $p$ such that $\nu_{p}(x) \neq 0$. It is natural to generalize $D$ to $\mathbb{Q}$ as $\nu_{p}$ is well-defined over $\mathbb{Q}$. We will use $D$ to denote the arithmetic derivative defined on $\mathbb{Q}$ in the introduction section. This generalization allows positive integers to have more anti-derivatives than they have in $\mathbb{N}$. For example, 2 does not have an anti-derivative in $\mathbb{N}$ but $D(-21 / 16)=2$. The only anti-derivatives of 1 in $\mathbb{N}$ are the prime numbers but $D(-5 / 4)=1$. Another direction to generalize $D$ is, instead of differentiating with respect to all prime numbers, we only differentiate with respect to a set of primes. More specifically, let $T \subset \mathbb{P}$ be a nonempty set of rational primes. For $0 \neq x \in \mathbb{Q}$, we define

$$
D_{\mathbb{Q}, T}(x)=x \sum_{p \in T} \frac{\nu_{p}(x)}{p} .
$$

This is called the arithmetic subderivative over $\mathbb{Q}$ with respect to $T$, first introduced by Haukkanen, Merikoski, and Tossavainen [5]. If $T=\mathbb{P}$, then $D_{\mathbb{Q}, T}=D$. If $T=\{p\}$ contains a single prime number, then $D_{\mathbb{Q}, T}=D_{\mathbb{Q}, p}$ is called the arithmetic partial derivative with respect to $p$, first introduced by Kovič [9].

The authors of this paper have proved [2, Theorem 9] that the following sequence of integers

$$
\nu_{p}(x), \nu_{p}\left(D_{\mathbb{Q}, p}(x)\right), \nu_{p}\left(D_{\mathbb{Q}, p}^{2}(x)\right), \ldots
$$

is eventually periodic of period $\leq p$. An immediate corollary of this result is a positive answer to a conjecture similar to Conjecture 1.1 in the case of arithmetic partial derivative. We have to replace $p^{p}$ in Conjecture 1.1 by $b p^{p}$ where $\nu_{p}(b)=0$ since $D_{\mathbb{Q}, p}\left(b p^{p}\right)=b p^{p}$. In the same paper, we also proved a criterion to determine when an integer has integral anti-partial derivatives, and as application, we gave a positive answer to a conjecture similar to Conjecture 1.2 in the case of arithmetic partial derivative.

A natural next step is to generalize the arithmetic derivative to number fields and their rings of integers. The Leibniz rule can be used to generalize $D$ to all unique factorization domains (UFD) $R$. In every equivalence class $\left\{x\right.$ irreducible in $\left.R \mid x=u x^{\prime}, u \in R^{\times}\right\}$, we choose an element $x_{0}$ and define $D_{R}\left(x_{0}\right)=1$ (similar to $D(p)=1$ ). For all units $u \in R^{\times}$, we define $D_{R}(u)=0$ (similar to $D( \pm 1)=0$ ). By the unique factorization property and the Leibniz rule, we can extend the definition of $D$ to the entire ring $R$ as well as its field of fraction $\operatorname{Frac}(R)$. Let $\mathcal{P}$ be a set of chosen irreducible elements as described above, one from each equivalence classes. For every $x \in \operatorname{Frac}(R)$, if $x=u p_{1} \cdots p_{k} q_{1}^{-1} \cdots q_{\ell}^{-1}$ with $u \in R^{\times}$and $p_{i}, q_{j} \in \mathcal{P}\left(p_{i}, q_{j}\right.$ are not necessarily pairwise distinct) then

$$
D_{R}(x)=x\left(\sum_{i=1}^{k} \frac{1}{p_{i}}-\sum_{j=1}^{\ell} \frac{1}{q_{j}}\right)
$$

There are two major obstacles with this generalization. First, for every number field $K$, it is well known that $\mathcal{O}_{K}$ is not necessarily a UFD. It has been proved that this idea will fail for non-UFD [4]. Second, this definition of $D_{R}(x)$ depends on the choice of irreducible elements set $\mathcal{P}$ as well as the ring. There is no canonical way to choose $x_{0}$ within each equivalence classes. Also, for an irreducible element $x \in \mathcal{P} \subset R$, we have $D_{R}(x)=1$. But if we consider $x \in \operatorname{Frac}(R)$ and define the arithmetic derivative over $\operatorname{Frac}(R)$, then we will get $D_{\operatorname{Frac}(R)}(x)=0$ since all nonzero elements of $\operatorname{Frac}(R)$ are invertible. In other words, suppose $x \in R_{1} \subset R_{2}$, we do not necessarily have $D_{R_{1}}(x)=D_{R_{2}}(x)$. This phenomenon makes it hard to generalize $D$ to all number fields in a consistent way using this definition.

To get around the first obstacle, Mistri and Pandey [10] defined the arithmetic derivative of an ideal in the ring of integers $\mathcal{O}_{K}$ of a number field $K$. This generalization uses the fact that every fractional ideal of $K$ can be uniquely factorized into a product of prime ideals in $\mathcal{O}_{K}$. Suppose $I=\mathfrak{p}_{1} \mathfrak{p}_{2} \cdots \mathfrak{p}_{k}$ is an ideal of $\mathcal{O}_{K}$ where $\mathfrak{p}_{i}$ are primes ideals of $\mathcal{O}_{K}$ with $\mathfrak{p}_{i} \mid p_{i}$ (again $\mathfrak{p}_{i}$ and $p_{i}$ are not necessarily pairwise distinct). Then the arithmetic derivative of $I$ is an ideal of $\mathcal{O}_{K}$ defined by

$$
D_{K}(I)=\left(p_{1} p_{2} \cdots p_{k} \sum_{i=1}^{k} \frac{1}{p_{i}}\right)
$$

This means that the arithmetic derivative of every ideal of $\mathcal{O}_{K}$ is a principal ideal in $\mathcal{O}_{K}$ generated by an integer. From the definition, it is easy to see that $D_{\mathbb{Z}}(n)=(D(n))$ where $D_{\mathbb{Z}}(n)$ is the arithmetic derivative of the ideal $(n)$ and $D(n)$ is the usual arithmetic derivative of an integer. This property is certainly welcomed as part of the generalization but the second obstacle mentioned above still exists. For example, let $K=\mathbb{Q}(i)$ and we have $2 \mathcal{O}_{K}=(1+i)(1-i)$, hence $D_{K}\left(2 \mathcal{O}_{K}\right)=4 \mathcal{O}_{K}$. On the other hand, $D_{\mathbb{Z}}(2 \mathbb{Z})=\mathbb{Z}$. This means that if $x \in K_{1} \subset K_{2}$, we do not necessarily have $D_{K_{1}}\left(x \mathcal{O}_{K_{1}}\right) \subset D_{K_{2}}\left(x \mathcal{O}_{K_{2}}\right)$.

In this paper, we propose a new way to define the arithmetic derivative (resp. the arithmetic subderivative) $D_{K}$ (resp. $D_{K, T}$ ) on every finite Galois extension $K / \mathbb{Q}$ in a consistent way in the following sense. First $D_{K}(x)=D(x)$ for all $x \in \mathbb{Q}$, so $D_{K}$ is a true extension of $D$ from $\mathbb{Q}$ to $K$. Second, if $K_{1}$ and $K_{2}$ are two finite Galois extensions, then for every $x \in K_{1} \cap K_{2}$, we have $D_{K_{1}}(x)=D_{K_{2}}(x)$. This means that the definition of arithmetic derivative of $x$ does not depend on the choice of the Galois extension. Because the arithmetic derivative satisfies $D_{K}(x) / x \in \mathbb{Q}$, we can even generalize it to every number field $L / \mathbb{Q}$ (not necessarily Galois) by taking a restriction $D_{L}(x):=D_{K}(x)=x \cdot\left(D_{K}(x) / x\right) \in L$ where $K$ is a finite Galois extension containing $x$. Please refer to Section 3 for detailed definition.

At the local level, suppose $K$ is a finite extension of the $p$-adic rational numbers $\mathbb{Q}_{p}$. Let $\nu_{\mathfrak{p}}$ be the unique valuation on $K$ that extends the $p$-adic valuation $\nu_{p}$ on $\mathbb{Q}$. It only makes sense to study the arithmetic partial derivative $D_{K, \mathfrak{p}}$ over $K$. As part of the study of the behavior of the sequence $x, D_{K, \mathfrak{p}}(x), D_{K, \mathfrak{p}}^{2}(x), \ldots$, we give a complete description of the behavior of the following so-called $\nu_{\mathfrak{p}}$ sequence of $x$

$$
\nu_{\mathfrak{p}}(x), \nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right), \nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{2}(x)\right), \ldots
$$

Theorem 1.3. Let $K$ be a finite extension over $\mathbb{Q}_{p}$ and $\mathfrak{p}$ be the unique prime ideal of $\mathcal{O}_{K}$. For every $x \in K$, we have the following three properties.

1. If $\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}(x)\right) \geq 0$ or $\nu_{\mathfrak{p}}(x) \in\{0,+\infty\}$, then the $\nu_{\mathfrak{p}}$ sequence of $x$ is eventually periodic of period $\leq p$.
2. If $\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}(x)\right)<0$, then the $\nu_{\mathfrak{p}}$ sequence of $x$ converges to $-\infty$.
3. The $\nu_{\mathfrak{p}}$ sequence of $x$ is eventually $+\infty$ if and only if

$$
\nu_{\mathfrak{p}}(x) \in\{0,1, \ldots, p-1,+\infty\} .
$$

See Lemma 2.2, Proposition 2.4, and Theorem 2.8 for a proof of Theorem 1.3. Using the same idea as in our previous paper [2], we are also able to give a positive answer to a similar conjecture to Conjecture 1.2 in the $p$-adic fields case as well.

Theorem 1.4 (Theorem 2.14). Let $K$ be a finite extension over $\mathbb{Q}_{p}$. For each positive integer $n$, there are infinitely many $x_{0} \in K$ such that $D_{K, \mathfrak{p}}\left(x_{0}\right)$ has exactly $n$ anti-partial derivatives in $K$.

One difficulty of studying the iteration of arithmetic derivatives is that the arithmetic derivative is neither additive nor a group homomorphism. But if one considers the so-called logarithmic derivative $\operatorname{ld}(x):=D(x) / x$, it is not hard to see that $\operatorname{ld}: \mathbb{Q}^{\times} \rightarrow \mathbb{Q}$ is a group homomorphism from the multiplicative group to the additive group, just like the usual logarithmic function. As we generalize $D$ to $D_{K}$, we also study the generalization of ld to $\operatorname{ld}_{K}$. In particular, we have shown that $\operatorname{ld}_{K}\left(K^{\times}\right)$are also isomorphic as subgroups of $\mathbb{Q}$ for any finite Galois extension $K$; see Theorem 4.2. We also give a concrete description of the exact image of $\operatorname{ld}_{K}\left(K^{\times}\right)$when $K$ is a quadratic extension.

It is not surprising that the arithmetic derivative function $D$ is not continuous over $\mathbb{Q}$ because given two rational numbers that are close by (in the sense of the Archimedean metric), their prime factorizations can be drastically different. In fact, Haukkanen, Merikoski and Tossavainen [6] have shown that for every $x \in \mathbb{Q}$, the arithmetic subderivative $D_{\mathbb{Q}, T}$ (and in particular the arithmetic derivative) can obtain arbitrary large values in any small neighborhood of $x$. Therefore $D_{\mathbb{Q}, T}$ is clearly not continuous with respect to the standard Archimedean topology of $\mathbb{Q}$. But what about the $p$-adic topology? In another paper, Haukkanen, Merikoski and Tossavainen [7] have proved that the arithmetic partial derivative $D_{\mathbb{Q}, p}$ is always continuous. They have also shown in some cases, the arithmetic subderivative $D_{\mathbb{Q}, T}$ can be continuous at some points but discontinuous at other points. Major cases have been left open. For example, it is unknown whether $D_{\mathbb{Q}, T}$ is continuous or not at nonzero points when $T$ is an infinite set. As we generalize arithmetic partial derivatives to $p$-adic local fields and arithmetic subderivative to number fields, it makes sense to study whether the generalizations are $\mathfrak{p}$-adically continuous or not. We state our results in two theorems, one for the arithmetic partial derivative case and one for the arithmetic subderivative case.

Theorem 1.5. Suppose $K$ is a number field. Let $\mathfrak{p}$ be a prime ideal of $\mathcal{O}_{K}$. Then the arithmetic partial derivative $D_{K, \mathfrak{p}}$ is $\mathfrak{p}$-adically continuous at every point in $K$. Moreover $D_{K, \mathfrak{p}}$ is strictly differentiable and twice strictly differentiable (with respect to the ultrametric $|\cdot|_{\nu_{\mathfrak{p}}}$ ) at every nonzero point in $K$ but $D_{K, p}$ is not strictly differentiable (with respect to the ultrametric $|\cdot|_{\nu_{\mathrm{p}}}$ ) at 0 .

See Theorems 5.2, 5.3, and 5.4 for a proof of Theorem 1.5. The same result is true for arithmetic partial derivative over $p$-adic fields.

Theorem 1.6. Suppose $K$ is a number field. Let $\mathfrak{p}$ be a prime ideal and $T$ be a nonempty subset of prime ideals of $\mathcal{O}_{K}$.

1. The arithmetic subderivative $D_{K, T}$ is $\mathfrak{p}$-adically continuous but not strictly differentiable ( with respect to the ultrametric $|\cdot|_{\nu_{p}}$ ) at 0 .
2. If $T \neq\{\mathfrak{p}\}$, then the arithmetic subderivative $D_{K, T}$ is $\mathfrak{p}$-adically discontinuous at every nonzero point in $K$.

See Theorems 5.6, 5.8, 5.9, and 5.12 for a proof of Theorem 1.6. By letting $K=\mathbb{Q}$ and $\mathfrak{p}=(p)$ in Theorem 1.6, we are able to give answers to all the open questions in [7, Section 7].

In general, it is unclear to us how to piece together the information of arithmetic partial derivatives to understand the arithmetic derivatives. New prime factors may arise in the dynamical system $D^{i}(x)$ following each successive differentiation and predicting new prime factors of $D(x)$ relies on the ability of predicting prime factors of $a+b$ when knowing the prime factors of $a$ and $b$. There is a widespread intuition that the abc conjecture should be related to arithmetic derivatives of some sort. Pasten has formalized this idea in [11].

## $2 p$-adic fields

### 2.1 Definition

Fix a rational prime $p$. Let $\mathbb{Q}_{p}$ be the field of $p$-adic rational numbers and $\nu_{p}$ the $p$-adic valuation. We denote the $p$-adic absolute value by $|\cdot|_{\nu_{p}}$. Recall that the arithmetic partial derivative (with respect to $p$ ) $D_{\mathbb{Q}, p}: \mathbb{Q} \rightarrow \mathbb{Q}$ is defined by

$$
D_{\mathbb{Q}, p}(x):= \begin{cases}x \nu_{p}(x) / p, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

One can extend $D_{\mathbb{Q}, p}$ to $D_{\mathbb{Q}_{p}, p}$ with the same formula because $\nu_{p}$ is well-defined on $\mathbb{Q}_{p}$. We can further extend $D_{\mathbb{Q}_{p}, p}$ to $p$-adic fields because $\nu_{p}$ can be uniquely extended to a discrete valuation over $p$-adic fields. Let $K$ be a finite extension of $\mathbb{Q}_{p}$ of degree $n=\left[K: \mathbb{Q}_{p}\right]$. Let $\mathcal{O}_{K}$ be the ring of integers, which is a discrete valuation ring with maximal ideal $\mathfrak{p}$ and residue field $\mathcal{O}_{K} / \mathfrak{p}$. Let $f=f\left(K \mid \mathbb{Q}_{p}\right)=\left[\mathcal{O}_{K} / \mathfrak{p}: \mathbb{F}_{p}\right]$ be the inertia degree and $e=e\left(K \mid \mathbb{Q}_{p}\right)$ the ramification index, that is, the unique integer such that $p \mathcal{O}_{K}=\mathfrak{p}^{e}$. We have $n=e f$. It is well known [13, Chapter 2 Proposition 3] that $K$ is again complete with respect to the $\mathfrak{p}$-adic topology. There exists a unique discrete valuation $\nu_{\mathfrak{p}}: K \rightarrow \mathbb{Q} \cup\{+\infty\}$ that extends $\nu_{p}$ defined by

$$
\nu_{\mathfrak{p}}(x):=\frac{1}{n} \nu_{p}\left(N_{K / \mathbb{Q}_{p}}(x)\right),
$$

where $N_{K / \mathbb{Q}_{p}}: K \rightarrow \mathbb{Q}_{p}$ is the norm. We know that $\nu_{\mathfrak{p}}(K)=\mathbb{Z} / e$. For every $x \in K$, we set $k=k(x):=\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}(x)\right)$, so $k \geq-\nu_{p}(e)$. The discrete valuation $\nu_{\mathfrak{p}}$ defines a unique absolute value on $K$, which will be denoted by $|\cdot|_{\nu_{\mathrm{p}}}$, that extends the $p$-adic absolute value on $\mathbb{Q}_{p}$ :

$$
|x|_{\nu_{\mathfrak{p}}}=\sqrt[n]{\left|N_{K / \mathbb{Q}_{p}}(x)\right|_{\nu_{p}}} .
$$

We can extend $D_{\mathbb{Q}_{p}, p}$ to $D_{K, \mathfrak{p}}: K \rightarrow K$ as follows:

$$
D_{K, \mathfrak{p}}(x):= \begin{cases}x \nu_{\mathfrak{p}}(x) / p, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

One can check that $D_{K, \mathfrak{p}}$ satisfies the Leibniz rule. It is evident that $D_{K, \mathfrak{p}}(x)=D_{\mathbb{Q}_{p}, p}(x)$ for all $x \in \mathbb{Q}_{p}$. Note that the definition of $D_{K, \mathfrak{p}}$ is independent of the choice of uniformizers of $\mathcal{O}_{K}$.

Let $K$ and $K^{\prime}$ be two finite extensions over $\mathbb{Q}_{p}$ such that $x \in K \cap K^{\prime}=: K^{\prime \prime}$. Let $\nu_{\mathfrak{p}}$, $\nu_{\mathfrak{p}^{\prime}}, \nu_{\mathfrak{p}^{\prime \prime}}$ be the unique discrete valuations that extend $\nu_{p}$ to $K, K^{\prime}$, and $K^{\prime \prime}$ respectively. Clearly $\left.\nu_{\mathfrak{p}}\right|_{K^{\prime \prime}}=\left.\nu_{\mathfrak{p}^{\prime}}\right|_{K^{\prime \prime}}=\nu_{\mathfrak{p}^{\prime \prime}}$. Therefore we have $D_{K, \mathfrak{p}}(x)=x \nu_{\mathfrak{p}}(x) / p=x \nu_{\mathfrak{p}^{\prime \prime}}(x) / p=x \nu_{\mathfrak{p}^{\prime}}(x) / p=$ $D_{K^{\prime}, p^{\prime}}(x) \in K \cap K^{\prime}$. This implies that the definition of arithmetic partial derivative of $x$ is independent of the choice of finite extensions where $x$ lies.

Remark 2.1. Let $q$ be another prime different from $p$. The $q$-adic valuation $\nu_{q}$ defined on $\mathbb{Q}$ does not extend to $\mathbb{Q}_{p}$ or finite extensions of $\mathbb{Q}_{p}$. Therefore, unlike the case of $\mathbb{Q}$ where we have one arithmetic partial derivative for each prime number, there is only one well-defined arithmetic partial derivative for $\mathbb{Q}_{p}$ and for finite extensions of $\mathbb{Q}_{p}$.

### 2.2 Periodicity of $\nu_{\mathfrak{p}}$ sequence

Let $K / \mathbb{Q}_{p}$ be a finite extension and let $x \in K$. Let $\mathfrak{p}$ be the maximal ideal of $\mathcal{O}_{K}$ and $\nu_{\mathfrak{p}}$ the unique discrete valuation that extends $\nu_{p}$. We call the following sequence

$$
\nu_{\mathfrak{p}}(x), \nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right), \nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{2}(x)\right), \ldots
$$

the $\nu_{\mathfrak{p}}$ sequence of $x$. Note that the $\nu_{\mathfrak{p}}$ sequence of $x$ is independent of the choice of $K$. If $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{j}(x)\right)=+\infty$ for some integer $j \geq 0$, then $D_{K, \mathfrak{p}}^{j}(x)=0$ and thus $D_{K, \mathfrak{p}}^{i}(x)=0$ for all $i \geq j$. If $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{i}(x)\right)<+\infty$ for all $i \geq 0$, then we call the sequence of increments of consecutive terms

$$
\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)-\nu_{\mathfrak{p}}(x), \nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{2}(x)\right)-\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right), \nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{3}(x)\right)-\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{2}(x)\right), \ldots
$$

the $\operatorname{inc}_{\mathfrak{p}}$ sequence of $x$. Suppose $\nu_{\mathfrak{p}}(x)=b p^{k}$ where $\nu_{p}(b)=0$ and $k \geq-\nu_{p}(e)$. Then the increment is

$$
\begin{equation*}
\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)-\nu_{\mathfrak{p}}(x)=\nu_{\mathfrak{p}}\left(\frac{\nu_{\mathfrak{p}}(x)}{p}\right)=\nu_{\mathfrak{p}}\left(b p^{k-1}\right)=k-1=\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}(x)\right)-1 . \tag{1}
\end{equation*}
$$

Lemma 2.2. The following two statements are equivalent:

1. The $\nu_{\mathrm{p}}$ sequence of $x$ is eventually $+\infty$.
2. $\nu_{\mathfrak{p}}(x) \in\{0,1,2, \ldots, p-1,+\infty\}$.

Proof. Suppose $\nu_{\mathfrak{p}}(x) \in\{0,1,2, \ldots, p-1,+\infty\}$. If $\nu_{\mathfrak{p}}(x)=+\infty$, then $x=0$, and $D_{K, \mathfrak{p}}(x)=0$ for all $n \geq 0$. If $\nu_{\mathfrak{p}}(x)=0$, then $x$ is a unit in $\mathcal{O}_{K}$, and thus $D_{K, \mathfrak{p}}^{n}(x)=0$ for all $n \geq 1$. If $\nu_{\mathfrak{p}}(x)=j$ for some $1 \leq j \leq p-1$, then $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{i}(x)\right)=j-i$ for $1 \leq i \leq j$. From $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{i}(x)\right)=0$ we get $D_{K, \mathfrak{p}}^{i}(x)$ is a unit in $\mathcal{O}_{K}$, and thus $D_{K, \mathfrak{p}}^{n}(x)=0$ for all $n>j$.

Now we show that if $\nu_{\mathfrak{p}}(x) \notin\{0,1,2, \ldots, p-1,+\infty\}$, then the $\nu_{\mathfrak{p}}$ sequence of $x$ is not eventually $+\infty$. It suffices to show that $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{i}(x)\right) \neq 0$ for all $i \geq 0$. We consider three mutually disjoint cases.

Case 1. Suppose $\nu_{\mathfrak{p}}(x) \notin \mathbb{Z}$. Then $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right) \notin \mathbb{Z}$ by (1). By induction, we get $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{i}(x)\right) \notin$ $\mathbb{Z}$ since $\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{i-1}(x)\right)\right)-1 \in \mathbb{Z}$. In particular, $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{i}(x)\right) \neq 0$.

Case 2. Suppose $\nu_{\mathfrak{p}}(x) \geq p$ is an integer. If $p \nmid \nu_{\mathfrak{p}}(x)$, then $\nu_{\mathfrak{p}}(x)>p$ and $k=0$, and so $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)=\nu_{\mathfrak{p}}(x)-1 \geq p$. If $p \mid \nu_{\mathfrak{p}}(x)$, then $k \geq 1$, and thus $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right) \geq \nu_{\mathfrak{p}}(x) \geq p$ by (1). Therefore $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right) \geq p>0$. By induction, we get $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{i}(x)\right) \neq 0$.
Case 3. Suppose $\nu_{\mathfrak{p}}(x)=b p^{k}<0$ is an integer. Since $\left|b p^{k}\right| \geq p^{k}>k-1$, we get $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)=$ $b p^{k}+(k-1)<0$. By induction, we get $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{i}(x)\right) \neq 0$.

Combining all three cases, we have proved that if $\nu_{\mathfrak{p}}(x) \notin\{0,1,2, \ldots, p-1,+\infty\}$, then the $\nu_{\mathfrak{p}}$ sequence of $x$ is not eventually $+\infty$.

Remark 2.3. Ufnarovski and Åhlander conjecture [15, Conjecture 8] that there exists an infinite sequence $a_{n}$ of different natural numbers such that $a_{1}=1$ and $D_{\mathbb{Q}}\left(a_{n}\right)=a_{n-1}$ for $n \geq 2$. Here $D_{\mathbb{Q}}$ is the arithmetic derivative (not arithmetic partial derivative) defined on $\mathbb{Q}$. The same question can be asked for $D_{K, \mathfrak{p}}$. Suppose there exists an infinite sequence $a_{n} \in K$ such that $a_{1}=1$ and $D_{K, \mathfrak{p}}\left(a_{n}\right)=a_{n-1}$ for $n \geq 2$. Let $N=p+1$ and we know that the $\nu_{\mathfrak{p}}$ sequence of $a_{N}$ is eventually $+\infty$ because $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{N}\left(a_{N}\right)\right)=\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}\left(a_{1}\right)\right)=\nu_{\mathfrak{p}}(0)=+\infty$. By the proof of Lemma 2.2, we know that $\nu_{\mathfrak{p}}\left(a_{2}\right)=1, \nu_{\mathfrak{p}}\left(a_{3}\right)=2, \ldots, \nu_{\mathfrak{p}}\left(a_{N-1}\right)=p-1$, and there does not exist $a_{N}$ such that $D_{K, \mathfrak{p}}\left(a_{N}\right)=a_{N-1}$. Hence the conjecture is false over $K$ for arithmetic partial derivative. On a related note, if we let $a_{1} \in K \backslash \mathcal{O}_{K}^{\times}$for some finite extension $K / \mathbb{Q}_{p}$, then it is possible to find an infinite sequence $a_{n} \in K$ such that $D_{K, p}\left(a_{n}\right)=a_{n-1}$ for all $n \geq 2$. For example, let $K=\mathbb{Q}$, $a_{1}=p^{p^{2}}$, and for all $m \geq 1$, let $a_{2 m}=p^{p^{2}+1} /\left(p^{2}+1\right)^{m}$ and $a_{2 m+1}=p^{p^{2}} /\left(p^{2}+1\right)^{m}$. It is easy to check that $D_{\mathbb{Q}, p}\left(a_{2 m+1}\right)=a_{2 m}$ and $D_{\mathbb{Q}, p}\left(a_{2 m}\right)=a_{2 m-1}$.

The next proposition tells us if $\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}(x)\right)<0$, then the $\operatorname{inc}_{p}$ sequence of $x$ is constant and negative. As a result of that, the $\nu_{\mathfrak{p}}$ sequence of $x$ converges to $-\infty$.

Proposition 2.4. Let $x \in K$ be a nonzero element such that $\nu_{\mathfrak{p}}(x)=b p^{k}$ with $\nu_{p}(b)=0$ and $k<0$. Then the inc $_{\mathfrak{p}}$ sequence of $x$ is a constant sequence with negative terms

$$
(k-1, k-1, k-1, \ldots)
$$

As a result, the $\nu_{\mathfrak{p}}$ sequence of $x$ converges to $-\infty$.
Proof. Equation (1) implies that the first term of the inc ${ }_{\mathfrak{p}}$ sequence of $x$ is indeed $k-1$. Since

$$
\nu_{\mathfrak{p}}(x)+(k-1)=b p^{k}+(k-1)=p^{k}\left(b+(k-1) p^{-k}\right)
$$

where $\nu_{p}\left(b+(k-1) p^{-k}\right)=0$, we can write $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)=b^{\prime} p^{k}$ where $b^{\prime}:=b+(k-1) p^{-k}$ with $\nu_{p}\left(b^{\prime}\right)=0$. Since $\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)\right)=\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}(x)\right)$, we see that the second term of the inc ${ }_{\mathfrak{p}}$ sequence of $x$ is again $k-1$. In the meantime, we can write $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{2}(x)\right)=b^{\prime \prime} p^{k}$ for some $b^{\prime \prime}:=b^{\prime}+(k-1) p^{-k}$ where $\nu_{p}\left(b^{\prime \prime}\right)=0$. By induction, we see that every term of the inc ${ }_{p}$ sequence of $x$ is equal to $k-1$. Therefore $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{n}(x)\right)=\nu_{\mathfrak{p}}(x)+n(k-1) \rightarrow-\infty$ as $n \rightarrow \infty$.

If the $\nu_{\mathfrak{p}}$ sequence of $x$ is eventually $+\infty$, then it is periodic of period 1 . For the rest of this subsection, we assume that the $\nu_{\mathfrak{p}}$ sequence of $x$ is not eventually $+\infty$ and $\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}(x)\right)>0$. We will show that under these conditions, the $\nu_{\mathfrak{p}}$ sequence of $x$ is eventually periodic of period $\leq p$. The next proposition gives a recipe of the initial terms of the inc $\boldsymbol{i n}_{\mathfrak{p}}$ sequence of $x$ if $\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}(x)\right)>0$.

Proposition 2.5. Let $x \in K$ be a nonzero element such that $\nu_{\mathfrak{p}}(x)=b p^{k}$ with $\nu_{p}(b)=0$ and $k>0$. Denote $k^{\prime}:=(k-1 \bmod p)+1 \leq p$. The first $k^{\prime}$ terms of the $\operatorname{inc}_{\mathfrak{p}}$ sequence of $x$ are

$$
(k-1, \underbrace{-1,-1, \ldots,-1}_{(k-1 \bmod p) \text { copies }}) .
$$

Proof. The first term of the inc ${ }_{\mathfrak{p}}$ sequence of $x$ is indeed $k-1$ by (1). We have

$$
\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)=b p^{k}+(k-1) .
$$

If $k^{\prime}=1$, then there is nothing further to prove. If $k^{\prime}=2$, we have $k \equiv 2(\bmod p)$ and thus $p \nmid\left(b p^{k}+(k-1)\right)$. By (1) again, we get the second term of the inc $\boldsymbol{p}_{\mathfrak{p}}$ sequence of $x$ is

$$
\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{2}(x)\right)-\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)=-1
$$

and $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{2}(x)\right)=b p^{k}+(k-2)$. The proof is complete by induction on $k^{\prime}$.
Corollary 2.6. Let $x \in K$ be a nonzero element such that $\nu_{\mathfrak{p}}(x)=b p^{k}$ with $\nu_{p}(b)=0$ and $1 \leq k \leq p$. Then the $\nu_{\mathfrak{p}}$ sequence and the $\operatorname{inc}_{\mathfrak{p}}$ sequence of $x$ are periodic of period $k$.

Proof. If $1 \leq k \leq p$, then $k^{\prime}=(k-1 \bmod p)+1=k-1+1=k$. The first $k+1$ terms of the $\nu_{\mathfrak{p}}$ sequence are

$$
\left(b p^{k}, b p^{k}+(k-1), b p^{k}+(k-2), \ldots, b p^{k}+1, b p^{k}\right) .
$$

It is now clear that the $\nu_{\mathfrak{p}}$ sequence and the inc $\boldsymbol{p}_{\mathfrak{p}}$ sequence of $x$ are periodic of period $k$.
We will see later that the periodicity predicted by Corollary 2.6 will eventually happen as part of the $\nu_{\mathfrak{p}}$ sequence of $x$ for all nonzero $x \in K$ as long as $\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}(x)\right) \geq 0$ and the $\nu_{\mathfrak{p}}$ sequence of $x$ is not eventually $+\infty$.

Definition 2.7. For any integer $k \geq 1$, we call the following sequence

$$
\mathcal{S}_{k, p}:=(k-1, \underbrace{-1,-1, \ldots,-1}_{(k-1 \bmod p) \text { copies }})
$$

the $k$-segment (with respect to $p$ ).
We define a sequence of integers $\kappa_{0}, \kappa_{1}, \kappa_{2}, \ldots$ recursively from $\nu_{\mathfrak{p}}(x)$ that will allow us to predict the period of the $\nu_{\mathfrak{p}}$ sequence of $x$. Let $\kappa_{0}:=\nu_{\mathfrak{p}}(x) \bmod p$ and $\kappa_{1}:=\nu_{p}\left(\left\lfloor\kappa_{0}\right\rfloor_{p}\right)$. Here $\lfloor x\rfloor_{p}:=x-(x \bmod p)$. For $i \geq 2$, we define

$$
\kappa_{i}:= \begin{cases}\nu_{p}\left(\left\lfloor\kappa_{i-1}-1\right\rfloor_{p}\right), & \text { if } \kappa_{i-1}<+\infty ;  \tag{2}\\ +\infty, & \text { if } \kappa_{i-1}=+\infty\end{cases}
$$

It is clear that if $1 \leq \kappa_{i} \leq p$, then $\kappa_{i+1}=+\infty$; if $p+1 \leq \kappa_{i}<+\infty$, then $\kappa_{i+1}<\log _{p}\left(\kappa_{i}\right)$. If the $\nu_{\mathfrak{p}}$ sequence of $x$ is not eventually $+\infty$, then there exists a unique positive integer $N=N(x)$ such that $1 \leq \kappa_{N} \leq p$, and $\kappa_{i}=+\infty$ for all $i>N$.

Theorem 2.8. Let $x \in K$ be a nonzero element such that $\nu_{\mathfrak{p}}(x)=b p^{k}$ with $\nu_{p}(b)=0$ and $k \geq 0$. If the $\nu_{\mathfrak{p}}$ sequence of $x$ is not eventually $+\infty$, then the inc $_{\mathfrak{p}}$ sequence of $x$ is of the form

$$
(\underbrace{-1,-1, \ldots,-1}_{\kappa_{0} \text { copies }}, \mathcal{S}_{\kappa_{1}, p}, \mathcal{S}_{\kappa_{2}, p}, \mathcal{S}_{\kappa_{3}, p}, \ldots, \mathcal{S}_{\kappa_{N}, p}, \mathcal{S}_{\kappa_{N}, p}, \mathcal{S}_{\kappa_{N}, p}, \ldots) .
$$

As a result, the $\nu_{\mathfrak{p}}$ sequence and the $\operatorname{inc}_{\mathfrak{p}}$ sequence of $x$ are eventually periodic of period $\kappa_{N}$.
Proof. For $0 \leq i \leq \kappa_{0}$, we have $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{i}(x)\right)=b-i=\nu_{\mathfrak{p}}(x)-i$. Hence the first $\kappa_{0}$ terms of the inc $_{p}$ sequence of $x$ are

$$
(\underbrace{-1,-1, \ldots,-1}_{\kappa_{0} \text { copies }}) .
$$

We can write $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{\kappa_{0}}(x)\right)=b_{0} p^{\kappa_{1}}$ with $\kappa_{1} \geq 1$. By Proposition 2.5 , we know that the next $\kappa_{1}^{\prime}:=\left(\kappa_{1}-1 \bmod p\right)+1$ term of the inc $_{\mathfrak{p}}$ sequence is the $\kappa_{1}$-segment

$$
\mathcal{S}_{\kappa_{1}, p}=(\kappa_{1}-1, \underbrace{-1,-1, \ldots,-1}_{\left(\kappa_{1}-1 \bmod p\right) \text { copies }}) .
$$

Furthermore, we get $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{\kappa_{0}+i}(x)\right)=b p^{\kappa_{1}}+\left(\kappa_{1}-i\right)$ for $0 \leq i \leq \kappa_{1}^{\prime}$. As $\kappa_{1}-\kappa_{1}^{\prime}=\left\lfloor\kappa_{1}-1\right\rfloor_{p}$ and $\kappa_{2}=\nu_{p}\left(\left\lfloor\kappa_{1}-1\right\rfloor_{p}\right)$, we can write $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}^{\kappa_{0}+\kappa_{1}^{\prime}+1}(x)\right)=b_{1} p^{\kappa_{2}}$. If $\kappa_{2} \geq 1$, by Proposition 2.5 again, we know that the next $\kappa_{2}^{\prime}:=\left(\kappa_{2}-1 \bmod p\right)+1$ term of the inc $_{\mathfrak{p}}$ sequence is the $\kappa_{2}$-segment. Let $N=N(x)$ be the unique positive integer such that $1 \leq \kappa_{N} \leq p$. By induction, we know that the initial terms of the inc $\boldsymbol{i n}_{\mathfrak{p}}$ sequence of $x$ is of the form

$$
(\underbrace{(-1,-1, \ldots,-1}_{\kappa_{0} \text { copies }}, \mathcal{S}_{\kappa_{1}, p}, \mathcal{S}_{\kappa_{2}, p}, \mathcal{S}_{\kappa_{3}, p}, \ldots, \mathcal{S}_{\kappa_{N}, p}) .
$$

Corollary 2.6 implies that if $b_{N-1} p^{\kappa_{N}}$ is a term in the $\nu_{\mathfrak{p}}$ sequence of $x$, then $\mathcal{S}_{k_{N}, p}$ will appear repeatedly in the $\operatorname{inc}_{\mathfrak{p}}$ sequence of $x$. This ends of the proof of the theorem.

### 2.3 Anti-partial derivatives

We fix a finite extension $K / \mathbb{Q}_{p}$ in this subsection. Note that not all elements in $K$ have an anti-partial derivative. For example, suppose $x \in K$ is an anti-partial derivative of $p^{p-1} \in K$, then $D_{K, \mathfrak{p}}^{p+1}(x)=0$ and thus the $\nu_{\mathfrak{p}}$ sequence of $x$ is eventually $+\infty$. By Lemma 2.2, $\nu_{\mathfrak{p}}(x) \in$ $\{0,1,2, \ldots, p-1,+\infty\}$, but that is not possible as $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)=p-1$. Therefore $p^{p-1}$ does not have anti-partial derivative in $K$. Given an element $y \in K$, if $y$ has an anti-partial derivative in $K$, we want to know how many there are. We start with $y=0$. Let $x \in K$ such that

$$
D_{K, \mathfrak{p}}(x)=\frac{x \nu_{\mathfrak{p}}(x)}{p}=0 .
$$

Then $x \nu_{\mathfrak{p}}(x)=0$ which implies that $x=0$ or $\nu_{\mathfrak{p}}(x)=0$. Hence the anti-partial derivative of 0 in $K$ is

$$
\left\{x \in K: \nu_{\mathfrak{p}}(x)=0\right\} \cup\{0\} .
$$

Lemma 2.9. For every $0 \neq y \in K$, if there exists $x \in K$ such that $D_{K, p}(x)=y$, then $x \in \mathbb{Q}_{p}(y)$. Proof. Since $D_{K, \mathfrak{p}}(x)=x \nu_{\mathfrak{p}}(x) / p=y$ and $\nu_{\mathfrak{p}}(x) / p \in \mathbb{Q}$, we know that $x \in \mathbb{Q}_{p}(y)$.

Let $x_{1}, x_{2} \in K$ with $D_{K, \mathfrak{p}}\left(x_{1}\right)=D_{K, \mathfrak{p}}\left(x_{2}\right)$. If $\nu_{\mathfrak{p}}\left(x_{1}\right)=0$, then $D_{K, \mathfrak{p}}\left(x_{1}\right)=0=D_{K, \mathfrak{p}}\left(x_{2}\right)$. Thus $\nu_{\mathfrak{p}}\left(x_{2}\right)=0$. Hence $\nu_{\mathfrak{p}}\left(x_{1}\right)=0$ if and only if $\nu_{\mathfrak{p}}\left(x_{2}\right)=0$.

Suppose $\nu_{\mathfrak{p}}\left(x_{1}\right), \nu_{\mathfrak{p}}\left(x_{2}\right) \neq 0$. Let $\nu_{\mathfrak{p}}\left(x_{1}\right)=b_{1} p^{k_{1}}$ and $\nu_{\mathfrak{p}}\left(x_{2}\right)=b_{2} p^{k_{2}}$ where $\nu_{p}\left(b_{1} b_{2}\right)=0$. We get

$$
\begin{equation*}
b_{1} p^{k_{1}}-b_{2} p^{k_{2}}=k_{2}-k_{1} . \tag{3}
\end{equation*}
$$

Suppose $k_{1}=k_{2}$, then (3) implies that $\nu_{\mathfrak{p}}\left(x_{1}\right)=\nu_{\mathfrak{p}}\left(x_{2}\right)$. Hence

$$
x_{1}=\frac{D_{K, \mathfrak{p}}\left(x_{1}\right) p}{\nu_{\mathfrak{p}}\left(x_{1}\right)}=\frac{D_{K, \mathfrak{p}}\left(x_{2}\right) p}{\nu_{\mathfrak{p}}\left(x_{2}\right)}=x_{2} .
$$

This means that $x_{1}=x_{2}$ if and only if $k_{1}=k_{2}$.

If $k_{1} \neq k_{2}$, without loss of generality, we assume $k_{1}<k_{2}$. Suppose $k_{1}<0$, then (3) implies that

$$
b_{1}-b_{2} p^{k_{2}-k_{1}}=p^{-k_{1}}\left(k_{2}-k_{1}\right)
$$

This is a contradiction because $\nu_{\mathfrak{p}}\left(b_{1}-b_{2} p^{k_{2}-k_{1}}\right)=0$ and $\nu_{\mathfrak{p}}\left(p^{-k_{1}}\left(k_{2}-k_{1}\right)\right) \geq-k_{1}>0$. Hence if $k_{1}<0$, then $D_{K, \mathfrak{p}}\left(x_{1}\right)$ has exactly one anti-partial derivative.

Suppose $k_{1}>0$. There is an element $x_{0} \in K$ in the set of all anti-partial derivatives of $D_{K, \mathfrak{p}}\left(x_{1}\right)$ with the smallest possible $k_{0}$. We call $x_{0}$ the primitive anti-partial derivative of $D_{K, \mathfrak{p}}\left(x_{1}\right)$. Equation (3) implies that

$$
\begin{equation*}
b_{0} p^{k_{0}}-b p^{k_{1}}=k_{1}-k_{0}, \tag{4}
\end{equation*}
$$

As $x_{0}$ is primitive, we have $k_{0} \leq k_{1}$ and (4) implies that $p^{k_{0}}\left(b_{0}-b p^{k_{1}-k_{0}}\right)=k_{1}-k_{0}$. Let $k_{1}-k_{0}=p^{k_{0}} c$ for some $c \in \mathbb{Z}_{\geq 0}$. Then $b_{0}-b p^{p^{k_{0}} c}=c$. So $b=\frac{b_{0}-c}{p^{p^{k_{0}} c}}$ and $\nu_{p}\left(b_{0}-c\right)=p^{k_{0}} c$ since $\nu_{p}(b)=0$. Let

$$
C\left(x_{0}\right):=\left\{c \in \mathbb{Z}_{\geq 0}: \nu_{p}\left(b_{0}-c\right)=p^{k_{0}} c\right\}
$$

It is easy to see that $C\left(x_{0}\right)$ is finite because as $c \gg 0, \nu_{p}\left(b_{0}-c\right)<p^{k_{0}} c$.
Theorem 2.10. With the above notations, suppose $x_{0}$ is the primitive anti-partial derivative of $D_{K, \mathfrak{p}}\left(x_{0}\right)$. Let $\nu_{\mathfrak{p}}\left(x_{0}\right)=b_{0} p^{k_{0}}$ with $\nu_{p}\left(b_{0}\right)=0$ and $k_{0}>0$. There is a one-to-one correspondence between $C\left(x_{0}\right)$ and the set of all anti-partial derivatives of $D_{K, p}\left(x_{0}\right)$. Furthermore, suppose we fix a uniformizer $\pi \in \mathfrak{p} \subset \mathcal{O}_{K}$ and let e be the ramification index of $K / \mathbb{Q}_{p}$, we can write $x_{0}=\alpha_{0} \pi^{e b_{0} p^{k}{ }_{0}}$ and $p=\alpha_{p} \pi^{e}$ with $\alpha_{0}, \alpha_{p} \in \mathcal{O}_{K}^{\times}$. If $x=\alpha \pi^{e b p^{k}}$ is an anti-partial derivative of $D_{K, \mathfrak{p}}\left(x_{0}\right)$ such that $\nu_{p}(b)=0$ and $\alpha \in \mathcal{O}_{K}^{\times}$, then there exists a unique $c \in C\left(x_{0}\right)$ such that

$$
k=p^{k_{0}} c+k_{0} \in \mathbb{Z}_{\geq 0}, \quad b=\frac{b_{0}-c}{p^{k-k_{0}}}=\frac{b_{0}-c}{p^{p^{k_{0}}}}, \quad \alpha=\frac{\alpha_{0} b_{0}}{b} \alpha_{p}^{k_{0}-k} \in \mathcal{O}_{K}^{\times} .
$$

Proof. We show that every anti-partial derivative $x$ of $D_{K, \mathfrak{p}}\left(x_{0}\right)$ is associated with a unique $c \in$ $C\left(x_{0}\right)$. If $x=x_{0}$, then we associate $x$ with $c=0$. Suppose $x \neq x_{0}$. Let $\nu_{\mathfrak{p}}(x)=b p^{k}$. Since $x_{0}$ is the primitive anti-partial derivative and $\nu_{\mathfrak{p}}\left(x_{0}\right) \neq 0$, we know that $b \neq 0$ and $k>k_{0}$. Then $p^{k_{0}}\left(b_{0}-b p^{k-k_{0}}\right)=k-k_{0}$ and thus $\nu_{p}\left(k-k_{0}\right)=k_{0}$. Let $k-k_{0}=p^{k_{0}} c$ where $c>0$ and $\nu_{p}(c)=0$. By plugging $k-k_{0}=p^{k_{0}} c$ into $p^{k_{0}}\left(b_{0}-b p^{k-k_{0}}\right)=k-k_{0}$, we get $b_{0}-b p^{k-k_{0}}=c$. Since $\nu_{p}(b)=0$, we know that $\nu_{p}\left(b_{0}-c\right)=p^{k_{0}} c$.

Then we show that for each $c \in C\left(x_{0}\right)$, we can define a unique $x=x(c)$ such that $D_{K, \mathfrak{p}}(x)=$ $D_{K, \mathfrak{p}}\left(x_{0}\right)$. Since $\nu_{p}\left(b_{0}-c\right)=p^{k_{0}} c$, there exists $b \in \mathbb{Q}$ with $\nu_{p}(b)=0$ such that $b_{0}-c=b p^{p^{k_{0}} c}$. Set $k:=p^{k_{0}} c+k_{0}$. We can compute

$$
\begin{gathered}
b p^{k}+k-1=\frac{b_{0}-c}{p^{k-k_{0}}} p^{k}+k-1=\left(b_{0}-c\right) p^{k_{0}}+p^{k_{0}} c+k_{0}-1 \\
=\left(b_{0}-c\right) p^{k_{0}}+p^{k_{0}} c+k_{0}-1=b_{0} p^{k_{0}}+k_{0}-1
\end{gathered}
$$

Set $x:=\alpha \pi^{e b p^{k}}$ where $\alpha=\alpha_{0} b_{0} \alpha_{p}^{k_{0}-k} / b$. We have

$$
\begin{aligned}
D_{K, \mathfrak{p}}(x) & =\frac{x \nu_{\mathfrak{p}}(x)}{p}=\frac{\alpha \pi^{e b p^{k}} e b p^{k}}{p}=\alpha b e \pi^{e b p^{k}} p^{k-1}=\alpha b e \alpha_{p}^{k-1} \pi^{e\left(b p^{k}+k-1\right)} \\
& =\alpha_{0} b_{0} e \alpha_{p}^{k_{0}-1} \pi^{e\left(b_{0} p^{k_{0}}+k_{0}-1\right)}=\frac{\alpha_{0} b_{0} e}{p} \pi^{e b_{0} p^{k_{0}}} p^{k_{0}}=\frac{x_{0} \nu_{\mathfrak{p}}\left(x_{0}\right)}{p}=D_{K, \mathfrak{p}}\left(x_{0}\right) .
\end{aligned}
$$

Corollary 2.11. For any nonzero $y \in K$, the set $\left\{x \in K: D_{K, \mathfrak{p}}(x)=y\right\}$ is finite (possibly empty).

For the rest of this subsection, we will prove Conjecture 1.2 for partial derivatives over any finite extension $K / \mathbb{Q}_{p}$. We will show that for each positive integer $n$, there exists infinitely many $x \in \mathbb{Q}_{p}$ such that $D_{\mathbb{Q}_{p}, p}(x)$ has exactly $n$ anti-partial derivatives in $\mathbb{Q}_{p}$. By Lemma 2.9, we know that all anti-partial derivatives of $D_{\mathbb{Q}_{p}, p}(x)$ must be in $\mathbb{Q}_{p}$ and thus $D_{\mathbb{Q}_{p}, p}(x)$ has exactly $n$ anti-partial derivatives in any finite extension $K / \mathbb{Q}_{p}$. The first lemma gives us a way to construct $k_{0} \in \mathbb{Z}_{>0}$ such that if $\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}\left(x_{0}\right)\right)=k_{0}$, then $x_{0}$ is the primitive anti-partial derivative of $D_{K, \mathfrak{p}}\left(x_{0}\right)$.

Lemma 2.12. For every integer $m \geq 2$, let $k_{0}=k_{0}(m):=p+p^{2}+\cdots+p^{m}$. For every $x_{0} \in \mathbb{Q}_{p}$, if $\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}\left(x_{0}\right)\right)=k_{0}$, then $x_{0}$ is the primitive anti-partial derivative of $D_{\mathbb{Q}_{p}, p}\left(x_{0}\right)$.

Proof. Suppose $x_{0}$ is not the primitive anti-partial derivative of $D_{\mathbb{Q}_{p}, p}\left(x_{0}\right)$. Let $x \neq x_{0}$ be another anti-partial derivative of $D_{\mathbb{Q}_{p}, p}\left(x_{0}\right)$ with $\nu_{\mathfrak{p}}(x)=b p^{k}$ such that $k<k_{0}$. If $k<0$, we know that $D_{\mathbb{Q}_{p}, p}\left(x_{0}\right)$ has exactly one anti-partial derivative. Hence $k \geq 0$. Since $D_{\mathbb{Q}_{p}, p}(x)=D_{\mathbb{Q}_{p}, p}\left(x_{0}\right)$, we get $b p^{k}-b_{0} p^{k_{0}}=k_{0}-k$. This means that $\nu_{p}\left(k_{0}-k\right)=k$. It suffices to show that no $0 \leq k<k_{0}$ satisfies this relation. It is clear that $k \neq 0$ because $\nu_{p}\left(k_{0}\right)=1$, and $k \neq 1$ because $\nu_{p}\left(k_{0}-1\right)=0$. Suppose $k>1$. If $\nu_{p}\left(k_{0}-k^{\prime}\right)=k$ for some $k^{\prime}>0$, then $k^{\prime} \geq p+\cdots+p^{k-1}>k$. Therefore there does not exist an anti-partial derivative $x$ with $k<k_{0}$. This means that $x_{0}$ is the primitive anti-partial derivative of $D_{\mathbb{Q}_{p}, p}\left(x_{0}\right)$.

The next lemma allows us to construct $b_{0}$ for every $k_{0}>0$ such that there are exactly $n-1$ different possible values of $c \in \mathbb{Z}_{>0}$ such that $\nu_{p}\left(b_{0}-c\right)=p^{k_{0}} c$. This means that the set $C\left(x_{0}\right)$ has exactly $n$ elements (with 0 included).

Lemma 2.13. Fix a positive integer $k$. Let $c_{1}=0$, and for $i \geq 2$, let $c_{i}:=p^{p^{k} c_{i-1}}+c_{i-1}$. Suppose

$$
C_{n}:=\left\{c \in \mathbb{Z}_{>0}: \nu_{p}\left(c_{n+1}-c\right)=p^{k} c\right\}
$$

Then $C_{n}=\left\{c_{2}, \ldots, c_{n}\right\}$.
Proof. We first note that for any $1 \leq i<j$,

$$
c_{j}-c_{i}=\sum_{m=i}^{j-1}\left(c_{m+1}-c_{m}\right)=\sum_{m=i}^{j-1} p^{p^{k} c_{m}}
$$

and so $\nu_{p}\left(c_{j}-c_{i}\right)=p^{k} c_{i}$. This shows that $c_{m} \in C_{n}$ if and only if $m \in\{2,3, \ldots, n\}$.
Next, we show that no other integers are in $C_{n}$. If $c \in C_{n}$ where $c>c_{n+1}$, then $c-c_{n+1}=$ $\alpha p^{p^{k} c}$, where $\alpha>0$. By definition of $c_{n+1}, c-c_{n+1}=c-\left(c_{n}+p^{p^{k} c_{n}}\right)$. Thus

$$
c-c_{n}=\alpha p^{p^{k} c}+p^{p^{k} c_{n}}=p^{p^{k} c_{n}}\left(\alpha p^{p^{k}\left(c-c_{n}\right)}+1\right)
$$

This is a contradiction, since the expression on the right hand side is clearly larger than $c-c_{n}$. This shows that if $c \in C_{n}$, then $c \leq c_{n+1}$.

Suppose $c \in C_{n}$ where $c_{m}<c<c_{m+1}$ for some $2 \leq m \leq n$. We have $\nu_{p}\left(c_{n+1}-c_{m+1}\right)=$ $p^{k} c_{m+1}$ when $m<n$. Since $\nu_{p}\left(c_{n+1}-c\right)=p^{k} c$, we have

$$
\nu_{p}\left(c_{m+1}-c\right)=\nu_{p}\left(\left(c_{n+1}-c\right)-\left(c_{n+1}-c_{m+1}\right)\right)=p^{k} c .
$$

Therefore $c_{m+1}-c=\gamma p^{p^{k} c}$ for some $\gamma>0$. By definition, $c_{m+1}=p^{p^{k} c_{m}}+c_{m}$, and so we would have

$$
p^{p^{k} c_{m}}+c_{m}=\gamma p^{p^{k} c}+c,
$$

which is a contradiction, since the left side is clearly less than the right. This shows that if $c \in C_{n}$ and $c \leq c_{n+1}$, then $c=c_{m}$ for some $2 \leq m \leq n$. This concludes the proof of the lemma.

Theorem 2.14. For each positive integer $n$, there are infinitely many $x_{0} \in K$ such that $D_{K, \mathfrak{p}}\left(x_{0}\right)$ has exactly $n$ anti-partial derivatives in $K$.

Proof. By Lemma 2.9, it suffices to assume that $K=\mathbb{Q}_{p}$ and $\mathfrak{p}=(p)$. For every integer $m \geq 2$, let $k_{0}=k_{0}(m)$ be defined as in Lemma 2.12, and let $b_{0}=c_{n+1}$ be defined as in Lemma 2.13 for $k=k_{0}$. Set $x_{0}:=p^{b_{0} p^{k_{0}}}$. Lemma 2.12 implies that $x_{0}$ is the primitive anti-partial derivative of $D_{\mathbb{Q}_{p}, p}\left(x_{0}\right)$. Lemma 2.13 implies that $D_{\mathbb{Q}_{p}, p}\left(x_{0}\right)$ has exactly $n$ anti-partial derivatives. Therefore, for each positive integer $n$, there exists infinitely many $x_{0} \in \mathbb{Q}_{p}$ such that $D_{\mathbb{Q}_{p}, p}\left(x_{0}\right)$ has exactly $n$ anti-partial derivatives with $x_{0}$ being its primitive anti-partial derivative.

## 3 Number fields

In this section, we will generalize arithmetic derivative and arithmetic partial derivative to number fields. Recall that the explicit formula of the arithmetic derivative defined on $\mathbb{Q}$ :

$$
D_{\mathbb{Q}}(x)=x \sum_{p \mid x} \frac{\nu_{p}(x)}{p} .
$$

Let $K / \mathbb{Q}$ be a number field of finite degree. One could mimic the above formula and define the arithmetic derivative on $K$ by the formula:

$$
D_{K}(x)=x \sum_{\mathfrak{p} \mid x} \frac{\nu_{\mathfrak{p}}(x)}{p},
$$

where $\mathfrak{p}$ are prime ideals in $\mathcal{O}_{K}$. The sum is finite as there are finitely many $\mathfrak{p}$ such that $\nu_{\mathfrak{p}}(x) \neq 0$. This formula presents a challenge. Let $p \in \mathbb{Q}$ be a rational prime. Then

$$
D_{K}(p)=p \sum_{\mathfrak{p} \mid p} \frac{\nu_{\mathfrak{p}}(p)}{p}=\sum_{\mathfrak{p} \mid p} \nu_{\mathfrak{p}}(p)=g(p, K) \cdot 1=g(p, K),
$$

where $g(p, K)$ is the number of prime ideals in $\mathcal{O}_{K}$ that divide $p$. When $g(p, K) \neq 1, D_{K}(p) \neq$ $D_{\mathbb{Q}}(p)$ so the above formula of $D_{K}$ does not give a true extension of $D_{\mathbb{Q}}$. In order for $D_{K}(x)=$ $D_{\mathbb{Q}}(x)$ for all $x \in \mathbb{Q}$, we will need to divide $g(p, K)$. Furthermore, let $\mathfrak{p}_{1}$ and $\mathfrak{p}_{2}$ be two prime ideals in $\mathcal{O}_{K}$ that divide $p$ and let $L / K$ be a finite extension. We know that in general $g\left(\mathfrak{p}_{1}, L\right) \neq$ $g\left(\mathfrak{p}_{2}, L\right)$ unless $L / K$ is finite Galois. So we will start the generalization of $D_{\mathbb{Q}}$ to finite Galois extensions. Then we can further generalize $D_{\mathbb{Q}}$ to number fields by taking restriction.

### 3.1 Finite Galois extensions

Let $K$ be a finite Galois extension of $\mathbb{Q}$ of degree $n$. Let $\mathcal{O}_{K}$ be the ring of integers and $\mathfrak{p}$ a nonzero prime ideal of $\mathcal{O}_{K}$ such that $p \in \mathfrak{p}$. There is a discrete valuation $\nu_{\mathfrak{p}}$ on $K$ that extends the $p$-adic valuation $\nu_{p}$ on $\mathbb{Q}$. This induces a norm $|\cdot|_{\nu_{\mathfrak{p}}}=\left[\mathcal{O}_{K}: \mathfrak{p}\right]^{-\nu_{\mathfrak{p}}(\cdot)}$ on $K$. Let $K_{\nu_{\mathfrak{p}}}$ be the completion of $K$ with respect to the $\mathfrak{p}$-adic topology and thus $K_{\nu_{\mathfrak{p}}}$ is a finite extension of $\mathbb{Q}_{p}$ such that $\mathfrak{p} \cap \mathbb{Q}=(p)$ (denoted by $\mathfrak{p} \mid p$ ). Let $e\left(K_{\nu_{\mathfrak{p}}} \mid \mathbb{Q}_{p}\right)$ be the ramification index and $f\left(K_{\nu_{\mathfrak{p}}} \mid \mathbb{Q}_{p}\right):=\left[\mathcal{O}_{K} / \mathfrak{p}: \mathbb{F}_{p}\right]$ be the inertia degree of the extension $K_{\nu_{\mathfrak{p}}} / \mathbb{Q}_{p}$. One has the following decomposition:

$$
p \mathcal{O}_{K}=\prod_{\mathfrak{p} \mid p} \mathfrak{p}^{e\left(K_{\nu_{p}} \mid \mathbb{Q}_{p}\right)}
$$

It is well known that for every fixed prime number $p$, we have the formula

$$
\begin{equation*}
n=\sum_{\mathfrak{p} \mid p} e\left(K_{\nu_{\mathfrak{p}}} \mid \mathbb{Q}_{p}\right) f\left(K_{\nu_{\mathfrak{p}}} \mid \mathbb{Q}_{p}\right) . \tag{5}
\end{equation*}
$$

The Galois group $G(K / \mathbb{Q})$ acts transitively on the set of prime ideals $\left\{\mathfrak{p} \subset \mathcal{O}_{K}: \mathfrak{p} \mid p\right\}$ for every fixed prime $p \in \mathbb{Q}[13$, Chapter 1, Section 7, Proposition 19]. This implies that for every nonzero prime ideal $\mathfrak{p} \mid p$, the ramification index $e\left(K_{\nu_{\mathfrak{p}}} \mid \mathbb{Q}_{p}\right)$ and the inertia degree $f\left(K_{\nu_{\mathfrak{p}}} \mid \mathbb{Q}_{p}\right)$ depend only on $p$. If we denote them by $e(p, K)$ and $f(p, K)$ respectively, then formula (5) becomes

$$
\begin{equation*}
n=e(p, K) f(p, K) g(p, K) \tag{6}
\end{equation*}
$$

where $g(p, K)$ (again only depends on $p$ ) is the number of distinct prime ideals $\mathfrak{p}$ such that $\mathfrak{p} \mid p$. Now we can extend the arithmetic derivative $D_{\mathbb{Q}}$ to $K$. For every nonzero $x \in K$, we define

$$
D_{K}(x):=x \sum_{\mathfrak{p} \mid x} \frac{\nu_{\mathfrak{p}}(x)}{p g(p, K)} .
$$

One can check that $D_{K}$ satisfies the Leibniz rule:

$$
\begin{aligned}
D_{K}(x y) & =x y \sum_{\mathfrak{p} \mid x y} \frac{\nu_{\mathfrak{p}}(x y)}{p g(p, K)}=x y \sum_{\mathfrak{p} \mid x y} \frac{\nu_{\mathfrak{p}}(x)+\nu_{\mathfrak{p}}(y)}{p g(p, K)} \\
& =\left(\sum_{\mathfrak{p} \mid x y} \frac{x \nu_{\mathfrak{p}}(x)}{p g(p, K)}\right) y+x\left(\sum_{\mathfrak{p} \mid x y} \frac{y \nu_{\mathfrak{p}}(y)}{p g(p, K)}\right) \\
& =\left(\sum_{\mathfrak{p} \mid x} \frac{x \nu_{\mathfrak{p}}(x)}{p g(p, K)}\right) y+x\left(\sum_{\mathfrak{p} \mid y} \frac{y \nu_{\mathfrak{p}}(y)}{p g(p, K)}\right) \\
& =D_{K}(x) y+x D_{K}(y) .
\end{aligned}
$$

It is easy to check that $D_{K}(0)=0$. To check that $D_{K}: K \rightarrow K$ extends $D_{\mathbb{Q}}: \mathbb{Q} \rightarrow \mathbb{Q}$, recall that for every prime $p$, we have $\nu_{\mathfrak{p}}(x)=\nu_{p}(x)$ for every $x \in \mathbb{Q}$. And so for every nonzero $x \in \mathbb{Q}$, we get

$$
D_{K}(x)=x \sum_{\mathfrak{p} \mid x} \frac{\nu_{\mathfrak{p}}(x)}{p g(p, K)}=x \sum_{p \mid x}\left(\frac{g(p, K) \cdot \nu_{p}(x)}{p g(p, K)}\right)=x \sum_{p \mid x} \frac{\nu_{p}(x)}{p}=D_{\mathbb{Q}}(x) .
$$

### 3.2 Number fields

Let $K / \mathbb{Q}$ be a number field and let $L / K$ be an extension such that $L / \mathbb{Q}$ is finite Galois (e.g., one can take $L$ to be a Galois closure of $K / \mathbb{Q})$. For every $x \in K$, one can define $D_{K}(x)=D_{L}(x)$. But we want to make sure that $D_{L}(x)=D_{K}(x)$ for all $x \in K$ so the definition of $D_{K}$ does not depend on the choice of Galois extensions.

Lemma 3.1. Suppose $K / \mathbb{Q}$ and $L / \mathbb{Q}$ are finite Galois extensions. We have $D_{K}(x)=D_{L}(x)$ for every $x \in K \cap L$.
Proof. We first assume that $K \subset L$. Since $L / \mathbb{Q}$ is Galois, we know that $L / K$ is also Galois. For every rational prime $p$ and nonzero prime ideals $\mathfrak{p}_{1}$ and $\mathfrak{p}_{2}$ of $\mathcal{O}_{K}$ with $\mathfrak{p}_{1} \mid p$ and $\mathfrak{p}_{2} \mid p$, we get $g\left(\mathfrak{p}_{1}, L\right)=g\left(\mathfrak{p}_{2}, L\right)$. Let $\mathfrak{p}$ and $\mathfrak{P}$ be two prime ideals in $\mathcal{O}_{K}$ and $O_{L}$ respectively such that $\mathfrak{P}|\mathfrak{p}| p$. For every nonzero $x \in K$, we have

$$
\begin{aligned}
D_{L}(x) & =x \sum_{\mathfrak{P} \mid x} \frac{\nu_{\mathfrak{P}}(x)}{p g(p, L)}=x \sum_{\mathfrak{p} \mid x} \sum_{\mathfrak{F} \mid \mathfrak{p}} \frac{\nu_{\mathfrak{p}}(x)}{p g(p, L)} \\
& =x \sum_{\mathfrak{p} \mid x} \frac{g(\mathfrak{p}, L) \nu_{\mathfrak{p}}(x)}{p g(\mathfrak{p}, L) g(p, K)}=x \sum_{\mathfrak{p} \mid x} \frac{\nu_{\mathfrak{p}}(x)}{p g(p, K)}=D_{K}(x) .
\end{aligned}
$$

This shows that $D_{K}(x)=D_{L}(x)$ for all $x \in K$ if $K \subset L$.
Now suppose $K / \mathbb{Q}$ and $L / \mathbb{Q}$ are two arbitrary finite Galois extensions. Since $K \cap L$ is also a finite Galois extension of $\mathbb{Q}$, for every $x \in K \cap L$, we have $D_{K}(x)=D_{K \cap L}(x)$ by the previous paragraph. Using the same argument, we get $D_{L}(x)=D_{K \cap L}(x)$ for every $x \in K \cap L$, and therefore $D_{K}(x)=D_{L}(x)$ for every $x \in K \cap L$.

Suppose $K / \mathbb{Q}$ is a number field (not necessarily Galois). For every $x \in K$, we can define $D_{K}(x):=D_{K^{\text {Gal }}}(x)$ where $K^{\text {Gal }}$ is a Galois closure of $K / \mathbb{Q}$. When $x \neq 0$, it is clear that $D_{K}(x) / x \in \mathbb{Q}$ and thus $D_{K}(x) \in K$. We have a well-defined arithmetic derivative $D_{K}: K \rightarrow K$ when $K$ is a number field.

### 3.3 Arithmetic subderivative

Let $S$ be a (finite or infinite) subset of the prime numbers $\mathbb{P}$. One can define the so-called arithmetic subderivative $D_{\mathbb{Q}, S}: \mathbb{Q} \rightarrow \mathbb{Q}$ by

$$
D_{\mathbb{Q}, S}(x)=\sum_{p \in S} x \nu_{p}(x) / p
$$

It is easy to see that $D_{\mathbb{Q}, S}=\sum_{p \in S} D_{p}$ and $D_{\mathbb{Q}}=\sum_{p \in \mathbb{P}} D_{p}$. One can extend $D_{\mathbb{Q}, S}$ to all finite Galois extensions $K / \mathbb{Q}$. Let $T$ be a set of prime ideals of $\mathcal{O}_{K}$. For every nonzero $x \in K$, we define

$$
D_{K, T}(x):=x \sum_{\mathfrak{p} \in T, \mathfrak{p} \mid p} \frac{\nu_{\mathfrak{p}}(x)}{p g(p, K)} .
$$

If $T=\{\mathfrak{p}\}$ contains only one prime ideal, then we call $D_{K, T}=D_{K, \mathfrak{p}}$ the arithmetic partial derivative with respect to $\mathfrak{p}$. By taking $K=\mathbb{Q}$ and $\mathfrak{p}=\{p\}$, we can see $D_{K, \mathfrak{p}}$ is the generalization of arithmetic partial derivative with respect to $p$. Suppose $L / K$ is a finite Galois extension. Let

$$
T_{L / K}=\left\{\mathfrak{P}: \mathfrak{P} \text { prime ideal of } \mathcal{O}_{L}, \exists \mathfrak{p} \in T \text { such that } \mathfrak{P} \mid \mathfrak{p}\right\} .
$$

For every nonzero $x \in K$, we have

$$
\begin{aligned}
D_{L, T_{L / K}}(x) & =\sum_{\mathfrak{P} \in T_{L / K}, \mathfrak{F} \mid p} \frac{x \nu_{\mathfrak{p}}(x)}{p g(p, L)}=\sum_{\mathfrak{p} \in T} \sum_{\mathfrak{P} \in T_{L / K}, \mathfrak{P} \mid \mathfrak{p}} \frac{x \nu_{\mathfrak{P}}(x)}{p g(p, L)} \\
& =\sum_{\mathfrak{p} \in T} g(\mathfrak{p}, L) \frac{x \nu_{\mathfrak{p}}(x)}{p g(p, K) g(\mathfrak{p}, L)}=\sum_{\mathfrak{p} \in T} \frac{x \nu_{\mathfrak{p}}(x)}{p g(p, K)}=D_{K, T}(x) .
\end{aligned}
$$

In this case, $D_{L, T_{L / K}}$ extends $D_{K, T}$.
If $K / \mathbb{Q}$ is a number field (not necessarily Galois), we can define $D_{K, T}$ via a larger Galois extension. Let $L / K$ be a finite extension such that $L / \mathbb{Q}$ is Galois. Let $T_{L / K}$ be defined as above. We can define $D_{K, T}(x):=D_{L, T_{L / K}}(x)$ for all $x \in K$. Again this definition does not depend on the choice of Galois extensions. Let $L_{1} / K$ and $L_{2} / K$ be finite extensions such that $L_{1} / \mathbb{Q}$ and $L_{2} / \mathbb{Q}$ are Galois. Let $L_{3}:=L_{1} \cap L_{2}$ and $T^{\prime}:=T_{L_{3} / K}$. We note that $T_{L_{1} / K}=T_{L_{1} / L_{3}}^{\prime}$ and $T_{L_{2} / K}=T_{L_{2} / L_{3}}^{\prime}$. Therefore for every $x \in K \subset L_{3}$, we have

$$
D_{L_{1}, T_{L_{1} / K}}(x)=D_{L_{1}, T_{L_{1} / L_{3}}^{\prime}}(x)=D_{L_{3}, T^{\prime}}(x)=D_{L_{2}, T_{L_{2} / L_{3}}^{\prime}}(x)=D_{L_{2}, T_{L_{2} / K}}(x) .
$$

Remark 3.2. Let $K / \mathbb{Q}$ be a finite Galois extension. Just like in the local case, one can ask whether Theorems 1.3 and 1.4 are true for $D_{K, \mathfrak{p}}$. Note that in the global case $D_{K, \mathfrak{p}}(x)=\frac{x \nu_{\mathfrak{p}}(x)}{p g(p, K)}$, whereas in the local case $g(p, K)=1$. If $\nu_{p}(g(p, K))=0$, then $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)=\nu_{\mathfrak{p}}(x)+\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}(x)\right)-1$, which is the same as Equation (1). In this case, Theorems 1.3 and 1.4 are still true and can be proved in a similar fashion. If $\nu_{p}(g(p, K))=a>0$, then $\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)=\nu_{\mathfrak{p}}(x)+\nu_{\mathfrak{p}}\left(\nu_{\mathfrak{p}}(x)\right)-1-a$. In this case, the behavior of the $\nu_{\mathfrak{p}}$ sequence of $x$ warrants further study.

## 4 Arithmetic logarithmic derivative

### 4.1 Local case

The logarithmic partial derivative (with respect to $p$ ) $\operatorname{ld}_{\mathbb{Q}, p}: \mathbb{Q}^{\times} \rightarrow \mathbb{Q}$ is a homomorphism defined by the formula

$$
\operatorname{ld}_{\mathbb{Q}, p}(x)=D_{\mathbb{Q}, p}(x) / x
$$

because

$$
\operatorname{ld}_{\mathbb{Q}, p}(x y)=\frac{D_{\mathbb{Q}, p}(x y)}{x y}=\frac{D_{\mathbb{Q}, p}(x) y+x D_{\mathbb{Q}, p}(y)}{x y}=\operatorname{ld}_{\mathbb{Q}, p}(x)+\operatorname{ld}_{\mathbb{Q}, p}(y) .
$$

The image of $\operatorname{ld}_{\mathbb{Q}, p}$ is

$$
\operatorname{ld}_{\mathbb{Q}, p}\left(\mathbb{Q}^{\times}\right)=\{m / p: m \in \mathbb{Z}\}=\langle 1 / p\rangle \cong \mathbb{Z}
$$

and thus $\operatorname{ld}_{\mathbb{Q}, p}$ is not onto. Suppose $\operatorname{ld}_{\mathbb{Q}, p}(x)=0$, then $D_{\mathbb{Q}, p}(x)=0$ and thus $\nu_{p}(x)=0$. Therefore

$$
\operatorname{Ker}\left(\operatorname{ld}_{\mathbb{Q}, p}\right)=\left\{x \in \mathbb{Q}^{\times}: \nu_{p}(x)=0\right\} .
$$

One can extend $\operatorname{ld}_{\mathbb{Q}, p}$ to $\mathbb{Q}_{p}^{\times}$by the formula $\operatorname{ld}_{\mathbb{Q}_{p}, p}(x):=D_{\mathbb{Q}_{p}, p}(x) / x \in \mathbb{Q}$. Using the same argument, we get

$$
\operatorname{ld}_{\mathbb{Q}_{p}, p}\left(\mathbb{Q}_{p}^{\times}\right)=\{m / p: m \in \mathbb{Z}\}, \quad \operatorname{Ker}\left(\operatorname{ld}_{\mathbb{Q}_{p}, p}\right)=\left\{x \in \mathbb{Q}_{p}^{\times}: \nu_{p}(x)=0\right\} .
$$

Let $K / \mathbb{Q}_{p}$ be a finite extension. We can define $\operatorname{ld}_{K, \mathfrak{p}}: K^{\times} \rightarrow \mathbb{Q}$ as

$$
\operatorname{ld}_{K, \mathfrak{p}}(x):=\frac{D_{K, \mathfrak{p}}(x)}{x}=\frac{\nu_{\mathfrak{p}}(x)}{p} .
$$

It is easy to see the kernel of $\operatorname{ld}_{K, p}$ is

$$
\operatorname{Ker}\left(\operatorname{ld}_{K, \mathfrak{p}}\right)=\left\{x \in K^{\times}: \nu_{\mathfrak{p}}(x)=0\right\} .
$$

The description of the image of $\operatorname{ld}_{K, \mathfrak{p}}$ depends on whether $p$ divides the ramification index $e$. Let $e=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{j}^{r_{j}}$ be the unique factorization of the ramification index into prime powers. If $p \notin\left\{p_{1}, p_{2}, \ldots, p_{j}\right\}$, then

$$
\operatorname{ld}_{K, \mathfrak{p}}\left(K^{\times}\right)=\{m / p e: m \in \mathbb{Z}\}=\left\langle 1 / p, 1 / p_{1}^{r_{1}}, \ldots, 1 / p_{j}^{r_{j}}\right\rangle \cong \mathbb{Z}
$$

If $p \in\left\{p_{1}, p_{2}, \ldots, p_{j}\right\}$ and assume $p=p_{1}$, then

$$
\operatorname{ld}_{K, \mathfrak{p}}\left(K^{\times}\right)=\{m / p e: m \in \mathbb{Z}\}=\left\langle 1 / p_{1}^{r_{1}+1}, 1 / p_{2}^{r_{2}}, \ldots, 1 / p_{j}^{r_{j}}\right\rangle \cong \mathbb{Z}
$$

### 4.2 Global case

If $K / \mathbb{Q}$ is a finite Galois extension, one can define the arithmetic logarithmic derivative $\operatorname{ld}_{K}$ : $K^{\times} \rightarrow \mathbb{Q}$ as

$$
\operatorname{ld}_{K}(x)=\frac{D_{K}(x)}{x}=\sum_{\mathfrak{p} \mid x} \frac{\nu_{\mathfrak{p}}(x)}{p g(p, K)} \in \mathbb{Q}
$$

It is easy to show that $\operatorname{ld}_{K}$ is a group homomorphism. When $K=\mathbb{Q}$, we get that $\operatorname{ld}_{\mathbb{Q}}(x)=$ $\sum_{p \mid x} \frac{\nu_{p}(x)}{p}$. Hence $\operatorname{ld}_{\mathbb{Q}}\left(\mathbb{Q}^{\times}\right)=\left\langle\frac{1}{p}: p \in \mathbb{P}\right\rangle$. For every finite Galois extension $K / \mathbb{Q}$, one can show that $\operatorname{ld}_{K}\left(K^{\times}\right)$are isomorphic as subgroups of $\mathbb{Q}$. Before we prove this result, we need to recall a concept called $p$-height in the classification of subgroups of $\mathbb{Q}$. Let $G$ be an (additive) subgroup of $\mathbb{Q}$ and $g \in G$. The $p$-height of $g$ in $G$ is $k$ if $p^{k} x=g$ is solvable in $G$ and $p^{k+1} x=g$ is not. If $p^{k} x=a$ has a solution for every $k$, then we say that the $p$-height of $a$ in $G$ is infinite. Let $H_{p_{i}, G}(g)$ be the $p_{i}$-height of $g$ in $G$. Set $H_{G}(g):=\left(H_{2, G}(g), H_{3, G}(g), H_{5, G}(g), \ldots\right)$. It turned out that $H_{G}(1)$ is an invariant of the subgroup $G$ in the following sense.

Theorem 4.1. [8, Theorem 4] Let $G_{1}$ and $G_{2}$ be two subgroups of $\mathbb{Q}$. Then $G_{1} \cong G_{2}$ if and only if $H_{G_{1}}(1)$ and $H_{G_{2}}(1)$ only differ in finitely many indices, and in the case $H_{p_{i}, G_{1}}(1) \neq H_{p_{i}, G_{2}}(1)$, both of them are finite.

Theorem 4.2. Let $K / \mathbb{Q}$ be a finite Galois extension. Then $\operatorname{ld}_{K}\left(K^{\times}\right) \cong\left\langle\frac{1}{p}: p \in \mathbb{P}\right\rangle<\mathbb{Q}$.

Proof. Let $G:=\left\langle\frac{1}{p}: p \in \mathbb{P}\right\rangle<\mathbb{Q}$. It is easy to see that

$$
H_{G}=(1,1,1, \ldots)
$$

Let $[K: \mathbb{Q}]=n$ and $\bar{\nu}_{\mathfrak{p}}(x):=\nu_{\mathfrak{p}}(x) e(p, K)$ be the normalized discrete valuation. For every $x \in K^{\times}$, we have

$$
\operatorname{ld}_{K}(x)=\sum_{\mathfrak{p} \mid x} \frac{\nu_{\mathfrak{p}}(x)}{p g(p, K)}=\sum_{\mathfrak{p} \mid x} \frac{\bar{\nu}_{\mathfrak{p}}(x)}{p g(p, K) e(p, K)}=\frac{1}{n} \sum_{\mathfrak{p} \mid x} \frac{\bar{\nu}_{\mathfrak{p}}(x) f(p, K)}{p}
$$

Therefore

$$
\begin{aligned}
\operatorname{ld}_{K}\left(K^{\times}\right) & =\left\{\left.\frac{1}{n} \sum_{\mathfrak{p} \mid x} \frac{\bar{\nu}_{\mathfrak{p}}(x) f(p, K)}{p} \right\rvert\, x \in K^{\times}\right\} \\
& =\left\langle\left.\frac{f(p, K)}{n p} \right\rvert\, p \in \mathbb{P}\right\rangle \\
& =\left\langle\left.\frac{1}{p^{1+\nu_{p}(n)-\nu_{p}(f(p, K))}} \right\rvert\, p \in \mathbb{P}\right\rangle .
\end{aligned}
$$

For every $p \in \mathbb{P}$, we denote $m(p):=1+\nu_{p}(n)-\nu_{p}(f(p, K))$. It is easy to see that

$$
H_{\mathrm{ld}_{K}\left(K^{\times}\right)}=(m(2), m(3), m(5), \ldots)
$$

As $f(p, K) \mid n$, we know that $1 \leq m(p)<+\infty$. When $p>n$, we have $\nu_{p}(n)=\nu_{p}(f(p, K))=0$. This implies that $m(p)=1$ for all except for finitely many primes. Hence $H_{G}$ and $H_{\operatorname{ld}_{K}\left(K^{\times}\right)}$only differ in finitely many indices, and in the case $H_{p_{i}, G}(1) \neq H_{p_{i}, \operatorname{ld}_{K}\left(K^{\times}\right)}$, both of them are finite. Hence $\operatorname{ld}_{K}\left(K^{\times}\right) \cong G$ by Theorem 4.1.

To determine the exact image of $\mathrm{ld}_{K}$ in general is not easy. We give an example.
Example 4.3. Let $K=\mathbb{Q}(\sqrt{D})$ be a quadratic extension, where $D$ is a square free integer. We rewrite the formula of $\operatorname{ld}_{K}$ using the normalized discrete valuation $\bar{\nu}_{\mathfrak{p}}=\nu_{\mathfrak{p}} \cdot e(p, K)$

$$
\operatorname{ld}_{K}(x)=\sum_{\mathfrak{p} \mid x} \frac{\nu_{\mathfrak{p}}(x)}{p g(p, K)}=\sum_{\mathfrak{p} \mid x} \frac{\bar{\nu}_{\mathfrak{p}}(x)}{p g(p, K) e(p, K)}=\frac{1}{2} \sum_{\mathfrak{p} \mid x} \frac{\bar{\nu}_{\mathfrak{p}}(x) f(p, K)}{p}
$$

It remains to determine when 2 is inert in $K$, that is, $f(2, K)=2$. Let $\Delta_{K}$ be the discriminant of $K$, that is, $\Delta_{K}=D$ if $D \equiv 1(\bmod 4)$ and $\Delta_{K}=4 D$ if $D \equiv 2,3(\bmod 4)$. Hence $\Delta_{K} \equiv$ $0,1,4,5(\bmod 8)$. We know that $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{\Delta_{K}+\sqrt{\Delta_{K}}}{2}\right]$. The minimal polynomial of $\frac{\Delta_{K}+\sqrt{\Delta_{K}}}{2}$ is

$$
\left(X-\frac{\Delta_{K}+\sqrt{\Delta_{K}}}{2}\right)\left(X-\frac{\Delta_{K}-\sqrt{\Delta_{K}}}{2}\right)=X^{2}-\Delta_{K} X+\frac{\Delta_{K}^{2}-\Delta_{K}}{4}
$$

We discuss the cases based on the value of $\Delta_{K} \bmod 8$.

1. If $\Delta_{K} \equiv 0(\bmod 8)$, then $\Delta_{K}^{2}-\Delta_{K} \equiv 8(\bmod 8)$. Hence $\frac{\Delta_{K}^{2}-\Delta_{K}}{4} \equiv 0(\bmod 2)$. Therefore

$$
X^{2}-\Delta_{K} X+\frac{\Delta_{K}^{2}-\Delta_{K}}{4} \equiv X^{2} \quad(\bmod 2)
$$

and $(2)=\left(2, \frac{\Delta_{K}+\sqrt{\Delta_{K}}}{2}\right)^{2}$ is ramified in this case, that is, $e(2, K)=2$.
2. If $\Delta_{K} \equiv 1(\bmod 8)$, then $\Delta_{K}^{2}-\Delta_{K} \equiv 1-1 \equiv 0(\bmod 8)$. Hence $\frac{\Delta_{K}^{2}-\Delta_{K}}{4} \equiv 0(\bmod 2)$. Therefore

$$
X^{2}-\Delta_{K} X+\frac{\Delta_{K}^{2}-\Delta_{K}}{4} \equiv X^{2}+X \equiv X(X+1) \quad(\bmod 2)
$$

and $(2)=\left(2, \frac{\Delta_{K}+\sqrt{\Delta_{K}}}{2}\right)\left(2, \frac{\Delta_{K}+\sqrt{\Delta_{K}}}{2}+1\right)$ is totally split in this case, that is, $g(2, K)=2$.
3. If $\Delta_{K} \equiv 4(\bmod 8)$, then $\Delta_{K}^{2}-\Delta_{K} \equiv 0-4 \equiv 4(\bmod 8)$. Hence $\frac{\Delta_{K}^{2}-\Delta_{K}}{4} \equiv 1(\bmod 2)$. Therefore

$$
X^{2}-\Delta_{K} X+\frac{\Delta_{K}^{2}-\Delta_{K}}{4} \equiv X^{2}+1 \equiv(X+1)^{2} \quad(\bmod 2)
$$

and $(2)=\left(2, \frac{\Delta_{K}+\sqrt{\Delta_{K}}}{2}+1\right)^{2}$ is ramified in this case, that is, $e(2, K)=2$.
4. If $\Delta_{K} \equiv 5(\bmod 8)$, then $\Delta_{K}^{2}-\Delta_{K} \equiv 1-5 \equiv 4(\bmod 8)$. Hence $\frac{\Delta_{K}^{2}-\Delta_{K}}{4} \equiv 1(\bmod 2)$.

Therefore

$$
X^{2}-\Delta_{K} X+\frac{\Delta_{K}^{2}-\Delta_{K}}{4} \equiv X^{2}+X+1 \quad(\bmod 2)
$$

which is irreducible. In this case, 2 is inert, that is, $f(2, K)=2$.
If $\Delta_{K} \equiv 5(\bmod 8)$, then $\Delta_{K} \equiv 1(\bmod 4)$. In this case, $\Delta_{K}=D$ and thus $D \equiv 5(\bmod 8)$. Therefore

$$
\operatorname{ld}_{K}\left(K^{\times}\right)= \begin{cases}\langle 1 / 2,1 / 3,1 / 5, \ldots,\rangle, & \text { if } D \equiv 5 \quad(\bmod 8) \\ \langle 1 / 4,1 / 3,1 / 5, \ldots,\rangle, & \text { otherwise }\end{cases}
$$

## $5 p$-adic continuity and discontinuity

In this section, we study when arithmetic partial derivatives and arithmetic subderivatives are $p$-adically continuous and discontinuous. When they are continuous, we will also study if they are strictly differentiable. We first recall some definitions.

Let $K$ be a field and $\nu: K \rightarrow \mathbb{R} \cup\{+\infty\}$ be a discrete valuation. For all $x, y \in K$, we have $\nu(x+y) \geq \min \{\nu(x), \nu(y)\}$. An important property of $\nu$ that we will use repeatedly in this subsection is that if $\nu(x) \neq \nu(y)$, then $\nu(x+y)=\min \{\nu(x), \nu(y)\}$. If $c$ is a real number number between 0 and 1 , then the discrete valuation $\nu$ induces an absolute value on $K$ as follows:

$$
|x|_{\nu}:= \begin{cases}c^{\nu(x)}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

We then have the formula $|x+y|_{\nu} \leq \max \left\{|x|_{\nu},|y|_{\nu}\right\}$ and thus $|\cdot|$ is an ultrametric absolute value. The subset $\mathcal{O}_{K}=\{x \in K: \nu(x) \geq 0\}$ is a ring with the unique maximal ideal $\mathfrak{p}=$ $\{x \in K: \nu(x)>0\}$. Let $f: K \rightarrow K$ be a function. We say that $f$ is $\mathfrak{p}$-adically continuous at a point $x \in K$ if for every $\epsilon>0$, there exists $\delta>0$ such that for every $|y-x|_{\nu}<\delta$, we have $|f(y)-f(x)|_{\nu}<\epsilon$. Equivalently, to show that $f$ is $\mathfrak{p}$-adically continuous at $x$, it is enough to show that for every sequence $x_{i}$,

$$
\lim _{i \rightarrow+\infty} \nu\left(x-x_{i}\right)=+\infty \quad \text { implies } \quad \lim _{i \rightarrow+\infty} \nu\left(f(x)-f\left(x_{i}\right)\right)=+\infty .
$$

On the contrary, to show that $f$ is $\mathfrak{p}$-adically discontinuous at $x$, it is enough to find one sequence $x_{i}$ such that

$$
\lim _{i \rightarrow+\infty} \nu\left(x-x_{i}\right)=+\infty \quad \text { and } \quad \lim _{i \rightarrow+\infty} \nu\left(f(x)-f\left(x_{i}\right)\right) \neq+\infty
$$

Recall that $f$ is differentiable at a point $x$ if the difference quotients $(f(y)-f(x)) /(y-x)$ have a limit as $y \rightarrow x(y \neq x)$ in the domain of $f$. When the absolute value of the domain is ultrametric, we study the so-called strict differentiability. For more details on $p$-adic analysis, we refer the reader to [12].

Definition 5.1. Let $K$ be a field equipped with an ultrametric absolute value $|\cdot|_{\nu}$. We say that $f: K \rightarrow K$ is strictly differentiable at a point $x \in K$ (with respect to $|\cdot|_{\nu}$ ) if the difference quotients

$$
\Phi f(u, v)=\frac{f(u)-f(v)}{u-v}
$$

have a limit as $(u, v) \rightarrow(x, x)$ while $u$ and $v$ remaining distinct. Similarly, we say that $f$ is twice strictly differentiable at a point $x$ if

$$
\Phi_{2} f(u, v, w)=\frac{\Phi f(u, w)-\Phi f(v, w)}{u-v}
$$

tends to a limit as $(u, v, w) \rightarrow(x, x, x)$ while $u, v$, and $w$ remaining pairwise distinct.

### 5.1 Partial derivative

Let $K / \mathbb{Q}$ be a finite Galois extension of degree $n$. Let $p \in \mathbb{Q}$ be a rational prime and $\mathfrak{p}$ be a prime ideal in $\mathcal{O}_{K}$ such that $\mathfrak{p} \mid p$. The discrete valuation $\nu_{\mathfrak{p}}$ that extends $\nu_{p}$ defines an ultrametric absolute value on $K$ by

$$
|x|_{\nu_{\mathfrak{p}}}=\sqrt[n]{\left|N_{K_{\nu_{\boldsymbol{p}}} / \mathbb{Q}_{p}}(x)\right|_{\nu_{p}}}
$$

Theorem 5.2. Let $K$ be a number field and $\mathfrak{p}$ a prime ideal of $\mathcal{O}_{K}$. The arithmetic partial derivative $D_{K, \mathfrak{p}}$ is $\mathfrak{p}$-adically continuous on $K$.

Proof. Suppose $K / \mathbb{Q}$ is Galois. We first show that $D_{K, \mathfrak{p}}$ is continuous at nonzero $x \in K$. Let $x_{i}$ be a sequence that converges to $x \mathfrak{p}$-adically. Since $x \neq 0$, we can rename the sequence as $x_{i} x$ without loss of generality. As $i \rightarrow+\infty$, we know that

$$
\nu_{\mathfrak{p}}\left(x-x_{i} x\right)=\nu_{\mathfrak{p}}(x)+\nu_{\mathfrak{p}}\left(1-x_{i}\right) \rightarrow+\infty .
$$

This implies that $\nu_{\mathfrak{p}}\left(1-x_{i}\right) \rightarrow+\infty$ as $i \rightarrow+\infty$. As a result, we also know that $\nu_{\mathfrak{p}}\left(x_{i}\right)=0$ when $i \gg 0$ because if $\nu_{\mathfrak{p}}\left(x_{i}\right) \neq 0$, then $\nu_{\mathfrak{p}}\left(1-x_{i}\right)=\min \left\{\nu_{\mathfrak{p}}(1), \nu_{\mathfrak{p}}\left(x_{i}\right)\right\}=0$. Therefore $D_{K, \mathfrak{p}}\left(x_{i}\right)=0$ when $i \gg 0$. To show that $D_{K, \mathfrak{p}}\left(x_{i}\right)$ converges to $D_{K, \mathfrak{p}}(x) \mathfrak{p}$-adically, it is enough to observe that

$$
\begin{aligned}
\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)-D_{K, \mathfrak{p}}\left(x_{i} x\right)\right) & =\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)-D_{K, \mathfrak{p}}(x) x_{i}-D_{K, \mathfrak{p}}\left(x_{i}\right) x\right) \\
& =\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\left(1-x_{i}\right)\right) \\
& =\nu_{\mathfrak{p}}\left(D_{K, \mathfrak{p}}(x)\right)+\nu_{\mathfrak{p}}\left(1-x_{i}\right) \rightarrow+\infty
\end{aligned}
$$

as $i \rightarrow+\infty$. The case $x=0$ will be covered in Theorem 5.6.
Suppose $K / \mathbb{Q}$ is a number field, not necessarily Galois. Let $L / K$ be a finite extension such that $L / \mathbb{Q}$ is Galois. Let $\mathfrak{P}$ be a prime ideal of $\mathcal{O}_{L}$ such that $\mathfrak{P} \mid \mathfrak{p}$. By the previous paragraph, we know that $D_{L, \mathfrak{B}}$ is $\mathfrak{P}$-adically continuous on $L$ (and thus on $K$ ). Let $x_{i} \in K$ be a sequence that converges to $x \in K \mathfrak{p}$-adically. Since $\nu_{\mathfrak{p}}(y)=\nu_{\mathfrak{F}}(y)$ for all $y \in K$, we know that $x_{i}$ converges to $x \mathfrak{P}$-adically. As $D_{L, \mathfrak{F}}$ is $\mathfrak{P}$-adically continuous on $L$, we know that $D_{L, \mathfrak{F}}\left(x_{i}\right)$ converges to $D_{L, \mathfrak{P}}(x) \mathfrak{P}$-adically, and thus $\mathfrak{p}$-adically. This shows that $D_{L, \mathfrak{P}}$ is $\mathfrak{p}$-adically continuous on $K$. Let $T=\{\mathfrak{p}\}$. We know that by definition $D_{K, \mathfrak{p}}(x)=D_{L, T_{L / K}}(x)=\sum_{\mathfrak{P} \mid \mathfrak{p}} D_{L, \mathfrak{F}}$. This implies that $D_{K, \mathfrak{p}}$ is continuous on $K$.

Since $D_{K, \mathfrak{p}}$ is $\mathfrak{p}$-adically continuous on $K$, the next question is whether $D_{K, \mathfrak{p}}$ is strictly differentiable on $K$ with respect to the ultrametric $|\cdot|_{\nu_{\mathrm{p}}}$.
Theorem 5.3. Let $K$ be a number field and $\mathfrak{p}$ a prime ideal of $\mathcal{O}_{K}$. The arithmetic partial derivative $D_{K, p}$ is strictly differentiable and twice strictly differentiable (with respect to the ultrametric $|\cdot|_{\nu_{\mathrm{p}}}$ ) at every nonzero $x \in K$.
Proof. Let $L / K$ be a finite extension such that $L / \mathbb{Q}$ is Galois. Let $T=\{\mathfrak{p}\}$. We have $D_{K, \mathfrak{p}}(x)=$ $D_{L, T_{L / K}}(x)=\sum_{\mathfrak{F} \mid \mathfrak{p}} D_{L, \mathfrak{F}}$.

We first show that $D_{K, \mathfrak{p}}$ is strictly differentiable at $x \neq 0$. Suppose a sequence $\left(u_{i}, v_{i}\right)$ converges to $(x, x) \mathfrak{p}$-adically while $u_{i}$ and $v_{i}$ remaining distinct. This implies that $\left(u_{i}, v_{i}\right)$ converges to $(x, x) \mathfrak{P}$-adically. When $i \gg 0$, we have $\nu_{\mathfrak{F}}\left(u_{i}\right)=\nu_{\mathfrak{F}}\left(v_{i}\right)=\nu_{\mathfrak{F}}(x)$. We can compute

$$
\begin{aligned}
\Phi D_{K, \mathfrak{p}}\left(u_{i}, v_{i}\right) & =\frac{D_{K, \mathfrak{p}}\left(u_{i}\right)-D_{K, \mathfrak{p}}\left(v_{i}\right)}{u_{i}-v_{i}}=\frac{\sum_{\mathfrak{F} \mid \mathfrak{p}} D_{L, \mathfrak{P}}\left(u_{i}\right)-\sum_{\mathfrak{F} \mid \mathfrak{p}} D_{L, \mathfrak{F}}\left(v_{i}\right)}{u_{i}-v_{i}} \\
& =\frac{\sum_{\mathfrak{F} \mid \mathfrak{p}} \frac{u_{i} \nu_{\mathfrak{P}}(x)}{p g(p, L)}-\sum_{\mathfrak{F} \mid \mathfrak{p}} \frac{v_{i} \nu_{\mathfrak{F}}(x)}{p g(p, L)}}{u_{i}-v_{i}}=\sum_{\mathfrak{F} \mid \mathfrak{p}} \frac{\nu_{\mathfrak{P}}(x)}{p g(p, L)}=\frac{D_{K, \mathfrak{p}}(x)}{x} .
\end{aligned}
$$

Therefore the limit of $\Phi D_{K, \mathfrak{p}}\left(u_{i}, v_{i}\right)$ is equal to $D_{K, \mathfrak{p}}(x) / x$ as $i \rightarrow+\infty$. This shows that $D_{K, \mathfrak{p}}$ is strictly differentiable at any nonzero $x \in K$, and the derivative of $D_{K, \mathfrak{p}}$ is a constant function, defined by

$$
\left(D_{K, \mathfrak{p}}\right)^{\prime}(x)=D_{K, \mathfrak{p}}(x) / x=\operatorname{ld}_{K, \mathfrak{p}}(x) .
$$

We then show that $D_{K, \mathfrak{p}}$ is twice strictly differentiable at nonzero points. Suppose a sequence $\left(u_{i}, v_{i}, w_{i}\right)$ converges to $(x, x, x) \mathfrak{p}$-adically while $u_{i}, v_{i}$, and $w_{i}$ remaining pairwise distinct. Then for all $i \gg 0$, we have

$$
\Phi_{2} D_{K, \mathfrak{p}}\left(u_{i}, v_{i}, w_{i}\right)=\frac{\Phi D_{K, \mathfrak{p}}\left(u_{i}, w_{i}\right)-\Phi D_{K, \mathfrak{p}}\left(v_{i}, w_{i}\right)}{u_{i}-v_{i}}=\frac{0}{u_{i}-v_{i}}=0 .
$$

Hence $D_{K, \mathfrak{p}}$ is twice strictly differentiable at nonzero points and the second derivative is the constant zero function.

Theorem 5.4. Let $K$ be a number field and $\mathfrak{p}$ a prime ideal of $\mathcal{O}_{K}$. The arithmetic partial derivative $D_{K, \mathfrak{p}}$ is not strictly differentiable (with respect to the ultrametric $|\cdot|_{\nu_{\mathfrak{p}}}$ ) at 0 .

Proof. This theorem is a direct corollary of a more generalized Theorem 5.8.
Remark 5.5. Theorems 5.2, 5.3, and 5.4 hold in the local case of finite extensions over $\mathbb{Q}_{p}$.

### 5.2 Subderivative

Theorem 5.6. Let $K / \mathbb{Q}$ be a number field and $\mathfrak{p}$ be a prime ideal of $\mathcal{O}_{K}$. Let $T$ be a nonempty set of prime ideals in $\mathcal{O}_{K}$. The arithmetic subderivative $D_{K, T}$ is $\mathfrak{p}$-adically continuous at $x=0$.

Proof. Let $L / K$ be a finite extension such that $L / \mathbb{Q}$ is Galois. Suppose $x_{i} \in K$ is a sequence that converges to $x \mathfrak{p}$-adically in $K$. Let $\mathfrak{P}$ be a prime ideal of $\mathcal{O}_{L}$ such that $\mathfrak{P} \mid \mathfrak{p}$. Then $x_{i}$ converges to $x \mathfrak{P}$-adically in $L$. Hence

$$
\lim _{i \rightarrow+\infty} \nu_{\mathfrak{P}}\left(x-x_{i}\right)=\lim _{i \rightarrow+\infty} \nu_{\mathfrak{W}}\left(x_{i}\right)=+\infty .
$$

We have

$$
\begin{aligned}
\nu_{\mathfrak{p}}\left(D_{K, T}\left(x_{i}\right)\right) & =\nu_{\mathfrak{F}}\left(D_{L, T_{L / K}}\left(x_{i}\right)\right) \\
& =\nu_{\mathfrak{P}}\left(x_{i} \sum_{\mathfrak{Q} \in T_{L / K}, \mathfrak{Q} \mid q} \frac{\nu_{\mathfrak{Q}}\left(x_{i}\right)}{q g(q, L)}\right) \\
& =\nu_{\mathfrak{F}}\left(x_{i}\right)+\nu_{\mathfrak{P}}\left(\sum_{\mathfrak{Q} \in T_{L / K}, \mathfrak{Q} \mid q} \frac{\nu_{\mathfrak{Q}}\left(x_{i}\right)}{q g(q, L)}\right) \\
& =\nu_{\mathfrak{F}}\left(x_{i}\right)+\nu_{\mathfrak{P}}\left(\frac{1}{[L: \mathbb{Q}]} \sum_{\mathfrak{Q} \in T_{L / K}, \mathfrak{Q} \mid q} \frac{\nu_{\mathfrak{Q}}\left(x_{i}\right) e(q, L) f(q, L)}{q}\right) \\
& \left.\geq \nu_{\mathfrak{P}}\left(x_{i}\right)-\nu_{\mathfrak{P}}([L: \mathbb{Q}])\right)-\nu_{\mathfrak{P}}\left(\prod_{\mathfrak{Q} \in T_{L / K}, \mathfrak{Q} \mid q} q\right) .
\end{aligned}
$$

As $\lim _{i \rightarrow+\infty} \nu_{\mathfrak{W}}\left(x_{i}\right)=+\infty$, we have

$$
\lim _{i \rightarrow+\infty} \nu_{\mathfrak{p}}\left(D_{K, T}(x)-D_{K, T}\left(x_{i}\right)\right)=+\infty
$$

Corollary 5.7. Let $T$ be a nonempty set of (rational) prime numbers. The arithmetic subderivative $D_{\mathbb{Q}, T}$ is p-adically continuous at $x=0$.

Theorem 5.8. Let $K / \mathbb{Q}$ be a number field and $\mathfrak{p}$ a prime ideal of $\mathcal{O}_{K}$. Let $T$ be a nonempty set of prime ideals in $\mathcal{O}_{K}$. The arithmetic subderivative $D_{K, T}: K \rightarrow K$ is not strictly differentiable (with respect to the ultrametric $|\cdot|_{\nu_{\mathrm{p}}}$ ) at 0 .

Proof. Let $L / K$ be a finite extension such that $L / \mathbb{Q}$ is Galois. Let $\mathfrak{P}$ be a prime ideal of $\mathcal{O}_{L}$ such that $\mathfrak{P}|\mathfrak{p}| p$.

We prove this theorem in two cases. First, we assume that there exists a prime ideal $\mathfrak{p}^{\prime} \in T$ such that $\mathfrak{p}^{\prime} \mid p$. Let $m_{p}$ be the number of prime ideals in $T_{L / K}$ that divide $p$. For positive integer
$i \geq 1$, define $u_{i}=p^{i+1}, v_{i}=p^{i}$. It is clear that $u_{i} \neq v_{i}$ and $\left(u_{i}, v_{i}\right)$ converges to $(0,0) \mathfrak{p}$-adically. We can compute the difference quotient

$$
\begin{aligned}
\Phi D_{K, T}\left(u_{i}, v_{i}\right) & =\frac{D_{K, T}\left(u_{i}\right)-D_{K, T}\left(v_{i}\right)}{u_{i}-v_{i}}=\frac{D_{L, T_{L / K}}\left(u_{i}\right)-D_{L, T_{L / K}}\left(v_{i}\right)}{u_{i}-v_{i}} \\
& =\frac{\frac{(i+1) p^{i+1} m_{p}}{p g(p, L)}-\frac{i p^{i} m_{p}}{p g(p, L)}}{p^{i+1}-p^{i}}=\frac{m_{p}}{g(p, L)} \frac{(i+1) p-i}{p^{2}-p} .
\end{aligned}
$$

The $\mathfrak{p}$-adic valuation of $\Phi D_{K, T}\left(u_{i}, v_{i}\right)$ is greater than or equal to $\nu_{\mathfrak{p}}\left(m_{p}\right)-\nu_{\mathfrak{p}}(g(p, L))$ if $p \mid i$ and is equal to $\nu_{\mathfrak{p}}\left(m_{p}\right)-\nu_{\mathfrak{p}}(g(p, L))-1$ if $p \mid i$. Hence $\Phi D_{K, T}\left(u_{i}, v_{i}\right)$ does not have a limit as the sequence $\left(u_{i}, v_{i}\right) \rightarrow(0,0)$.

Second, we assume that there does not exist a prime ideal $\mathfrak{p}^{\prime} \in T$ such that $\mathfrak{p}^{\prime} \mid p$. Let $\mathfrak{q} \in T$ be such that $\mathfrak{q} \nmid p$ and $\mathfrak{Q} \in T_{L / K}$ such that $\mathfrak{Q}|\mathfrak{q}| q$. Let $m_{q}$ be the number of prime ideals in $T_{L / K}$ that divide $q$. For positive integer $i \geq 1$, define $u_{i}=(p q)^{i+1}, v_{i}=(p q)^{i}$. It is clear that $u_{i} \neq v_{i}$ and $\left(u_{i}, v_{i}\right)$ converges to $(0,0) \mathfrak{p}$-adically. We can compute the difference quotient

$$
\begin{aligned}
\Phi D_{K, T}\left(u_{i}, v_{i}\right) & =\frac{D_{K, T}\left(u_{i}\right)-D_{K, T}\left(v_{i}\right)}{u_{i}-v_{i}}=\frac{D_{L, T_{L / K}}\left(u_{i}\right)-D_{L, T_{L / K}}\left(v_{i}\right)}{u_{i}-v_{i}} \\
& =\frac{\frac{(i+1)(p q)^{i+1} m_{q}}{q g(q, K)}-\frac{i(p q)^{i} m_{q}}{q(q, K)}}{(p q)^{i+1}-(p q)^{i}}=\frac{m_{q}}{g(q, K)} \frac{(i+1) p q-i}{p q^{2}-q} .
\end{aligned}
$$

The $\mathfrak{p}$-adic valuation of $\Phi D_{K, T}\left(u_{i}, v_{i}\right)$ is greater than or equal to $\nu_{\mathfrak{p}}\left(m_{q}\right)-\nu_{\mathfrak{p}}(g(q, K))+1$ if $p \mid i$ and is equal to $\nu_{\mathfrak{p}}\left(m_{q}\right)-\nu_{\mathfrak{p}}(g(q, K))$ if $p \mid i$. Hence $\Phi D_{K, T}\left(u_{i}, v_{i}\right)$ does not have a limit as the sequence $\left(x_{i}, y_{i}\right) \rightarrow(0,0)$.

Theorem 5.9. Let $K / \mathbb{Q}$ be a number field of degree $n$. Let $\mathfrak{p}$ be a prime ideal of $\mathcal{O}_{K}$ with $\mathfrak{p} \mid p$. Let $\{\mathfrak{p}\} \neq T$ be a nonempty set of prime ideals in $\mathcal{O}_{K}$ such that there exists a prime ideal in $T$ that does not divide $p$. Then the arithmetic subderivative $D_{K, T}: K \rightarrow K$ is $\mathfrak{p}$-adically discontinuous at every nonzero $x \in K$.

Proof. We first assume $K / \mathbb{Q}$ is Galois. For each prime $q \in \mathbb{P}$, let $r_{q}$ be the number of prime ideals $\mathfrak{q} \in T$ such that $\mathfrak{q} \mid q$. Let $\mathbb{P}_{T}:=\left\{q \in \mathbb{P} \mid r_{q} \neq 0, q \neq p\right\}$ and we know $0 \leq \nu_{p}(g(q, K)) \leq \nu_{p}(n)$ for all $q \in \mathbb{P}_{T}$. Let $q_{0} \in \mathbb{P}_{T}$ be a prime such that $\nu_{p}\left(g\left(q_{0}, K\right)\right)=\min \left\{\nu_{p}(g(q, K)) \mid q \in \mathbb{P}_{T}\right\}$. Let $M:=\max \left\{\nu_{p}(j): 1 \leq j \leq n\right\}+1$. For each integer $i \geq 1$, the Dirichlet's theorem on arithmetic progression implies there are infinitely many primes in the arithmetic progression $q_{0}^{p^{M}}, q_{0}^{p^{M}}+p^{i}, q_{0}^{p^{M}}+2 p^{i}, \ldots$. Set $n_{0}:=0$. For each $i \geq 1$, let $n_{i}>n_{i-1}$ be a positive integer such that $q_{i}:=q_{0}^{p^{M}}+n_{i} p^{i}$ is a prime, that is, one prime from each arithmetic progression. Hence we know that $p, q_{0}, q_{1}, q_{2}, \ldots$ is a list of pairwise distinct prime numbers. Let $x_{i}:=q_{0}^{p^{M}} x / q_{i} \in K$. One can show that

$$
\lim _{i \rightarrow+\infty} \nu_{\mathfrak{p}}\left(x-x_{i}\right)=\lim _{i \rightarrow+\infty} \nu_{\mathfrak{p}}\left(\frac{x n_{i} p^{i}}{q_{i}}\right)=\lim _{i \rightarrow+\infty} \nu_{\mathfrak{p}}\left(x n_{i} p^{i}\right)=+\infty
$$

This means that the sequence $x_{i}$ converges to $x \mathfrak{p}$-adically. We now show that $D_{K, T}\left(x_{i}\right)$ does not converge to $D_{K, T}(x) \mathfrak{p}$-adically. We have

$$
\begin{aligned}
D_{K, T}(x)-D_{K, T}\left(x_{i}\right) & =D_{K, T}(x)-\left(\frac{q_{0}^{p^{M}}}{q_{i}} D_{K, T}(x)+x D_{K, T}\left(\frac{q_{0}^{p^{M}}}{q_{i}}\right)\right) \\
& =\frac{n_{i} p^{i}}{q_{i}} D_{K, T}(x)-x \frac{D_{K, T}\left(q_{0}^{p^{M}}\right) q_{i}-q_{0}^{p^{M}} D_{K, T}\left(q_{i}\right)}{q_{i}^{2}} \\
& =\frac{n_{i} p^{i}}{q_{i}} D_{K, T}(x)-\frac{x r_{q_{0}} p^{M} q_{0}^{p^{M}-1}}{g\left(q_{0}, K\right) q_{i}}+\frac{x q_{0}^{p^{M}} D_{K, T}\left(q_{i}\right)}{q_{i}^{2}} .
\end{aligned}
$$

We analyze the $\mathfrak{p}$-adic valuation of each of three summands separately. For the first summand, we have

$$
\lim _{i \rightarrow+\infty} \nu_{\mathfrak{p}}\left(\frac{n_{i} p^{i}}{q_{i}} D_{K, T}(x)\right)=\lim _{i \rightarrow+\infty} \nu_{\mathfrak{p}}\left(p^{i}\right)=+\infty
$$

For the second summand, as $i \gg 0$, we have

$$
\nu_{\mathfrak{p}}\left(\frac{x r_{q_{0}} p^{M} q_{0}^{p^{M}-1}}{g\left(q_{0}, K\right) q_{i}}\right)=\nu_{\mathfrak{p}}\left(\frac{x r_{q_{0}} p^{M}}{g\left(q_{0}, K\right)}\right)=\nu_{\mathfrak{p}}\left(\frac{x r_{q_{0}}}{g\left(q_{0}, K\right)}\right)+M
$$

For the third summand, if $q_{i} \notin \mathbb{P}_{T}$, then $D_{K, T}\left(q_{i}\right)=0$ so it has no contribution to the $\mathfrak{p}$-adic valuation. On the other hand, if $q_{i} \in \mathbb{P}_{T}$, then we have

$$
\nu_{\mathfrak{p}}\left(\frac{x q_{0}^{p^{M}} D_{K, T}\left(q_{i}\right)}{q_{i}^{2}}\right)=\nu_{\mathfrak{p}}\left(\frac{x q_{0}^{p^{M}} r_{q_{i}}}{g\left(q_{i}, K\right) q_{i}^{2}}\right)=\nu_{\mathfrak{p}}\left(\frac{x r_{q_{i}}}{g\left(q_{i}, K\right)}\right) .
$$

Since $1 \leq r_{q_{i}} \leq n$, we know that $M>\nu_{p}\left(r_{q_{i}}\right)$ by definition. We also know that $\nu_{p}\left(g\left(q_{0}, K\right)\right) \leq$ $\nu_{p}\left(g\left(q_{i}, K\right)\right)$ for all $i \geq 1$. Hence

$$
\nu_{\mathfrak{p}}\left(\frac{x r_{q_{0}}}{g\left(q_{0}, K\right)}\right)+M>\nu_{\mathfrak{p}}\left(\frac{x r_{q_{i}}}{g\left(q_{i}, K\right)}\right) .
$$

This implies that

$$
\nu_{\mathfrak{p}}\left(D_{K, T}(x)-D_{K, T}\left(x_{i}\right)\right)= \begin{cases}\nu_{\mathfrak{p}}\left(\frac{x r_{q_{i}}}{g\left(q_{i}, K\right)}\right), & \text { if } q_{i} \in \mathbb{P}_{T} ; \\ \nu_{\mathfrak{p}}\left(\frac{x r_{q_{0}}}{g\left(q_{0}, K\right)}\right)+M, & \text { if } q_{i} \notin \mathbb{P}_{T}\end{cases}
$$

This implies that

$$
\lim _{i \rightarrow+\infty} \nu_{\mathfrak{p}}\left(D_{K, T}(x)-D_{K, T}\left(x_{i}\right)\right) \neq+\infty
$$

Now we assume that $K / \mathbb{Q}$ is not necessarily Galois. Let $L / K$ be a finite extension such that $L / \mathbb{Q}$ is Galois, and $\mathfrak{P}$ a prime ideal of $\mathcal{O}_{L}$ such that $\mathfrak{P} \mid \mathfrak{p}$. Since $T$ contains a prime ideal that does not divide $p$, we know that $T_{L / K}$ also contains a prime ideal that does not divide $p$. Let $x_{i} \in K$ be defined as above. Then we know that $x_{i}$ converges to $x \mathfrak{p}$-adically in $K$, and thus $\mathfrak{P}$-adically in $L$ since $\nu_{\mathfrak{p}}$ and $\nu_{\mathfrak{F}}$ agree on $K$. Since $L / \mathbb{Q}$ is Galois, we know that

$$
\lim _{i \rightarrow+\infty}\left(\nu_{\mathfrak{P}}\left(D_{L, T_{L / K}}\left(x_{i}\right)-D_{L, T_{L / K}}(x)\right)\right) \neq+\infty
$$

Hence

$$
\lim _{i \rightarrow+\infty}\left(\nu_{\mathfrak{p}}\left(D_{K, T}\left(x_{i}\right)-D_{K, T}(x)\right)=\lim _{i \rightarrow+\infty}\left(\nu_{\mathfrak{P}}\left(D_{L, T_{L / K}}\left(x_{i}\right)-D_{L, T_{L / K}}(x)\right)\right) \neq+\infty\right.
$$

This shows that $D_{K, T}$ is discontinuous at $x$.

Corollary 5.10. Let $\{p\} \neq T$ be a nonempty set of prime numbers. The arithmetic subderivative $D_{\mathbb{Q}, T}$ is p-adically discontinuous at any nonzero $x \in \mathbb{Q}$.

Proof. Apply Theorem 5.9 by taking $K=\mathbb{Q}$ and $\mathfrak{p}=(p)$.
Remark 5.11. Corollaries 5.7 and 5.10 together give answers to all open questions about $p$-adic continuity and discontinuity of arithmetic subderivative over $\mathbb{Q}$ listed in [7, Section 7].

The only case that is left for consideration is when all prime ideals in $T$ sit above the same $p$. This case will be fully answered by the next theorem when we assume $T$ is finite.

Theorem 5.12. Let $K / \mathbb{Q}$ be a number field of degree $n$. Let $\mathfrak{p}$ be a prime ideal of $\mathcal{O}_{K}$ with $\mathfrak{p} \mid p$. Let $\{\mathfrak{p}\} \neq T$ be a nonempty finite set of prime ideals in $\mathcal{O}_{K}$. Then the arithmetic subderivative $D_{K, T}: K \rightarrow K$ is $\mathfrak{p}$-adically discontinuous at any nonzero $x \in K$.

Proof. We first assume $K / \mathbb{Q}$ is Galois. Let $T \backslash\{\mathfrak{p}\}=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$. By the Chinese remainder theorem, for each $i \geq 1$, there exists $x_{i} \in K$ such that $\nu_{\mathfrak{p}}\left(1-x_{i}\right)=i, \nu_{\mathfrak{p}_{1}}\left(x_{i}\right)=1$, and $\nu_{\mathfrak{p}_{j}}\left(x_{i}\right)=0$ for $2 \leq j \leq n$. This implies that $\nu_{\mathfrak{p}}\left(x_{i}\right)=0$. Hence for all $i \geq 1$, we have

$$
D_{K, T}\left(x_{i}\right)=\frac{x_{i}}{p_{1} g\left(p_{1}, K\right)} .
$$

The sequence $x_{i} x$ converges to $x \mathfrak{p}$-adically because as $i \rightarrow+\infty$, we have

$$
\nu_{\mathfrak{p}}\left(x-x_{i} x\right)=\nu_{\mathfrak{p}}\left(1-x_{i}\right)+\nu_{\mathfrak{p}}(x) \rightarrow+\infty .
$$

On the other hand, $D_{K, T}\left(x_{i} x\right)$ does not converge to $D_{K, T}(x) \mathfrak{p}$-adically because as $i \gg 0$, we have

$$
\begin{aligned}
\nu_{\mathfrak{p}}\left(D_{K, T}(x)-D_{K, T}\left(x_{i} x\right)\right) & =\nu_{\mathfrak{p}}\left(D_{K, T}(x)-x_{i} D_{K, T}(x)-x D_{K, T}\left(x_{i}\right)\right) \\
& =\nu_{\mathfrak{p}}\left(D_{K, T}(x)\left(1-x_{i}\right)-\frac{x x_{i}}{p_{1} g\left(p_{1}, K\right)}\right) \\
& =\nu_{\mathfrak{p}}(x)-\nu_{\mathfrak{p}}\left(p_{1}\right)-\nu_{\mathfrak{p}}\left(g\left(p_{1}, K\right)\right) .
\end{aligned}
$$

Hence

$$
\lim _{i \rightarrow+\infty} \nu_{\mathfrak{p}}\left(D_{K, T}(x)-D_{K, T}\left(x_{i} x\right)\right) \neq+\infty
$$

and $D_{K, T}$ is discontinuous at $x$.
If $K / \mathbb{Q}$ is not necessarily Galois, then one can prove that $D_{K, T}$ is discontinuous at $x$ using the same strategy as in Theorem 5.9.

## References

[1] Barbeau, E. J. (1961). Remarks on an arithmetic derivative. Canadian Mathematical Bulletin, 4(2), 117-122.
[2] Emmons, B., \& Xiao, X. (2022). The arithmetic partial derivative. Journal of Integer Sequences, 25, Article 22.4.7.
[3] Gleason, A. M., Greenwood, R. E., \& Kelly, L. M. (1980). The William Lowell Putnam Mathematical Competition - Problems and Solutions: 1938-1964. Mathematical Association of America.
[4] Haukkanen, P., Mattila, M., Merikoski, J. K., \& Tossavainen, T. (2013). Can the arithmetic derivative be defined on a non-unique factorization domain? Journal of Integer Sequences, 16, Article 13.1.2.
[5] Haukkanen, P., Merikoski, J. K., \& Tossavainen, T. (2019). Arithmetic subderivatives and Leibniz-additive functions. Annales Mathematicae et Informaticae, 50, 145-157.
[6] Haukkanen, P., Merikoski, J. K., \& Tossavainen, T. (2019). Arithmetic subderivatives: Discontinuity and continuity. Journal of Integer Sequences, 22, Article 19.7.4.
[7] Haukkanen, P., Merikoski, J. K., \& Tossavainen, T. (2020). Arithmetic subderivatives: $p$-adic discontinuity and continuity. Journal of Integer Sequences, 23, Article 20.7.3.
[8] Kluempen, F. L., \& Reboli, D. M. (2004). When are two subgroups of the rationals isomorphic? Mathematics Magazine, 77(5), 374-379.
[9] Kovič, J. (2012). The arithmetic derivative and antiderivative. Journal of Integer Sequences, 15, Article 12.3.8.
[10] Mistri, R. K., \& Pandey, R. K. (2014). Derivative of an ideal in a number ring. Integers, 14, A24.
[11] Pasten, H. (2022). Arithmetic derivatives through geometry of numbers. Canadian Mathematical Bulletin, 65(4), 906-923.
[12] Robert, A. M. (2000). A Course in p-adic Analysis (1sted.). Graduate Texts in Mathematics, vol. 198. Springer-Verlag, New York.
[13] Serre, J.-P. (1979). Local Fields (1st ed.). Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York.
[14] Shelly, D. J. M. (1911). Una cuestión de la teoria de los numeros.. Asociación Española, Granada, pp. 1-12 (Spanish).
[15] Ufnarovski, V., \& Åhlander, B. (2003). How to differentiate a number. Journal of Integer Sequences, 6, Article 03.3.4.

