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Abstract: The arithmetic derivative is a function from the natural numbers to itself that sends all
prime numbers to 1 and satisfies the Leibniz rule. The arithmetic partial derivative with respect
to a prime p is the p-th component of the arithmetic derivative. In this paper, we generalize
the arithmetic partial derivative to p-adic fields (the local case) and the arithmetic derivative to
number fields (the global case). We study the dynamical system of the p-adic valuation of the
iterations of the arithmetic partial derivatives. We also prove that for every integer n ≥ 0, there
are infinitely many elements with exactly n anti-partial derivatives. In the end, we study the
p-adic continuity of arithmetic derivatives.
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1 Introduction

Let N = {0, 1, 2, . . .}. The arithmetic derivative is a function D : N → N that satisfies
the following two properties: D(p) = 1 for all primes p, and the Leibniz rule, D(xy) =
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D(x)y + xD(y) for all x, y ∈ N. One of the questions on the 1950 Putnam competition [3]
asked the contestants to predict the limit of the sequence 63, D(63), D2(63), . . .. Many sources
cite this as the origin of the arithmetic derivative. However we were able to find a paper by
Shelly [14] published in 1911 which introduced this topic as well as some of the basic properties
and generalizations of this function.

One can ask a more general question. If we fix x ∈ N, what is the limit of the sequence
x,D(x), D2(x), . . .. This is not easy to predict in general. Ufnarovski and Åhlander made the
following conjecture.

Conjecture 1.1. [15, Conjecture 2] For every x ∈ N, exactly one of the following could happen:
either Di(x) = 0 or pp for some prime p for sufficiently large i, or lim

i→+∞
Di(x) = +∞.

We note that Shelly [14] alluded to this conjecture and Barbeau [1] made a similar conjecture.
One corollary of this conjecture is that if the sequence x,D(x), D2(x), . . . is eventually periodic,
then the period is 1. That is Dk(x) = pp for some prime p when k ≫ 0. Given y > 1, it is not
hard to show [15, Corollary 3] that there are finitely many (possibly 0) x such that D(x) = y. We
call x an anti-derivative of y. Ufnarovski and Åhlander made the following conjecture.

Conjecture 1.2. [15, Conjecture 8] For every integer n ≥ 0 there are infinitely many x > 0 such
that x has exactly n anti-derivatives.

Let νp be the p-adic valuation. One can show that D(0) = 0 and for x > 0, D has the
following explicit formula

D(x) = x
∑
p

νp(x)

p
.

This is a finite sum as there are only finitely many p such that νp(x) ̸= 0. It is natural to generalize
D to Q as νp is well-defined over Q. We will use D to denote the arithmetic derivative defined
on Q in the introduction section. This generalization allows positive integers to have more
anti-derivatives than they have in N. For example, 2 does not have an anti-derivative in N but
D(−21/16) = 2. The only anti-derivatives of 1 in N are the prime numbers but D(−5/4) = 1.
Another direction to generalize D is, instead of differentiating with respect to all prime numbers,
we only differentiate with respect to a set of primes. More specifically, let T ⊂ P be a nonempty
set of rational primes. For 0 ̸= x ∈ Q, we define

DQ,T (x) = x
∑
p∈T

νp(x)

p
.

This is called the arithmetic subderivative over Q with respect to T , first introduced by Haukkanen,
Merikoski, and Tossavainen [5]. If T = P, then DQ,T = D. If T = {p} contains a single
prime number, then DQ,T = DQ,p is called the arithmetic partial derivative with respect to p, first
introduced by Kovič [9].

The authors of this paper have proved [2, Theorem 9] that the following sequence of integers

νp(x), νp(DQ,p(x)), νp(D
2
Q,p(x)), . . .
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is eventually periodic of period ≤ p . An immediate corollary of this result is a positive answer
to a conjecture similar to Conjecture 1.1 in the case of arithmetic partial derivative. We have to
replace pp in Conjecture 1.1 by bpp where νp(b) = 0 since DQ,p(bp

p) = bpp. In the same paper,
we also proved a criterion to determine when an integer has integral anti-partial derivatives, and
as application, we gave a positive answer to a conjecture similar to Conjecture 1.2 in the case of
arithmetic partial derivative.

A natural next step is to generalize the arithmetic derivative to number fields and their rings of
integers. The Leibniz rule can be used to generalize D to all unique factorization domains (UFD)
R. In every equivalence class {x irreducible in R | x = ux′, u ∈ R×}, we choose an element
x0 and define DR(x0) = 1 (similar to D(p) = 1). For all units u ∈ R×, we define DR(u) = 0

(similar to D(±1) = 0). By the unique factorization property and the Leibniz rule, we can extend
the definition of D to the entire ring R as well as its field of fraction Frac(R). Let P be a set
of chosen irreducible elements as described above, one from each equivalence classes. For every
x ∈ Frac(R), if x = up1 · · · pkq−1

1 · · · q−1
ℓ with u ∈ R× and pi, qj ∈ P (pi, qj are not necessarily

pairwise distinct) then

DR(x) = x
( k∑

i=1

1

pi
−

ℓ∑
j=1

1

qj

)
.

There are two major obstacles with this generalization. First, for every number field K, it is well
known that OK is not necessarily a UFD. It has been proved that this idea will fail for non-UFD
[4]. Second, this definition of DR(x) depends on the choice of irreducible elements set P as well
as the ring. There is no canonical way to choose x0 within each equivalence classes. Also, for
an irreducible element x ∈ P ⊂ R, we have DR(x) = 1. But if we consider x ∈ Frac(R) and
define the arithmetic derivative over Frac(R), then we will get DFrac(R)(x) = 0 since all nonzero
elements of Frac(R) are invertible. In other words, suppose x ∈ R1 ⊂ R2, we do not necessarily
have DR1(x) = DR2(x). This phenomenon makes it hard to generalize D to all number fields in
a consistent way using this definition.

To get around the first obstacle, Mistri and Pandey [10] defined the arithmetic derivative of an
ideal in the ring of integers OK of a number field K. This generalization uses the fact that every
fractional ideal of K can be uniquely factorized into a product of prime ideals in OK . Suppose
I = p1p2 · · · pk is an ideal of OK where pi are primes ideals of OK with pi | pi (again pi and
pi are not necessarily pairwise distinct). Then the arithmetic derivative of I is an ideal of OK

defined by

DK(I) =
(
p1p2 · · · pk

k∑
i=1

1

pi

)
.

This means that the arithmetic derivative of every ideal of OK is a principal ideal in OK generated
by an integer. From the definition, it is easy to see that DZ(n) = (D(n)) where DZ(n) is the
arithmetic derivative of the ideal (n) and D(n) is the usual arithmetic derivative of an integer. This
property is certainly welcomed as part of the generalization but the second obstacle mentioned
above still exists. For example, let K = Q(i) and we have 2OK = (1 + i)(1 − i), hence
DK(2OK) = 4OK . On the other hand, DZ(2Z) = Z. This means that if x ∈ K1 ⊂ K2, we do
not necessarily have DK1(xOK1) ⊂ DK2(xOK2).
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In this paper, we propose a new way to define the arithmetic derivative (resp. the arithmetic
subderivative) DK (resp. DK,T ) on every finite Galois extension K/Q in a consistent way in
the following sense. First DK(x) = D(x) for all x ∈ Q, so DK is a true extension of D from
Q to K. Second, if K1 and K2 are two finite Galois extensions, then for every x ∈ K1 ∩ K2,
we have DK1(x) = DK2(x). This means that the definition of arithmetic derivative of x does
not depend on the choice of the Galois extension. Because the arithmetic derivative satisfies
DK(x)/x ∈ Q, we can even generalize it to every number field L/Q (not necessarily Galois) by
taking a restriction DL(x) := DK(x) = x · (DK(x)/x) ∈ L where K is a finite Galois extension
containing x. Please refer to Section 3 for detailed definition.

At the local level, suppose K is a finite extension of the p-adic rational numbers Qp. Let νp
be the unique valuation on K that extends the p-adic valuation νp on Q. It only makes sense
to study the arithmetic partial derivative DK,p over K. As part of the study of the behavior
of the sequence x,DK,p(x), D

2
K,p(x), . . ., we give a complete description of the behavior of the

following so-called νp sequence of x

νp(x), νp(DK,p(x)), νp(D
2
K,p(x)), . . . .

Theorem 1.3. Let K be a finite extension over Qp and p be the unique prime ideal of OK . For
every x ∈ K, we have the following three properties.

1. If νp(νp(x)) ≥ 0 or νp(x) ∈ {0,+∞}, then the νp sequence of x is eventually periodic of
period ≤ p.

2. If νp(νp(x)) < 0, then the νp sequence of x converges to −∞.

3. The νp sequence of x is eventually +∞ if and only if

νp(x) ∈ {0, 1, . . . , p− 1,+∞}.

See Lemma 2.2, Proposition 2.4, and Theorem 2.8 for a proof of Theorem 1.3. Using the
same idea as in our previous paper [2], we are also able to give a positive answer to a similar
conjecture to Conjecture 1.2 in the p-adic fields case as well.

Theorem 1.4 (Theorem 2.14). Let K be a finite extension over Qp. For each positive integer n,
there are infinitely many x0 ∈ K such that DK,p(x0) has exactly n anti-partial derivatives in K.

One difficulty of studying the iteration of arithmetic derivatives is that the arithmetic derivative
is neither additive nor a group homomorphism. But if one considers the so-called logarithmic
derivative ld(x) := D(x)/x, it is not hard to see that ld : Q× → Q is a group homomorphism
from the multiplicative group to the additive group, just like the usual logarithmic function. As
we generalize D to DK , we also study the generalization of ld to ldK . In particular, we have
shown that ldK(K

×) are also isomorphic as subgroups of Q for any finite Galois extension K;
see Theorem 4.2. We also give a concrete description of the exact image of ldK(K

×) when K is
a quadratic extension.
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It is not surprising that the arithmetic derivative function D is not continuous over Q because
given two rational numbers that are close by (in the sense of the Archimedean metric), their
prime factorizations can be drastically different. In fact, Haukkanen, Merikoski and Tossavainen
[6] have shown that for every x ∈ Q, the arithmetic subderivative DQ,T (and in particular the
arithmetic derivative) can obtain arbitrary large values in any small neighborhood of x. Therefore
DQ,T is clearly not continuous with respect to the standard Archimedean topology of Q. But what
about the p-adic topology? In another paper, Haukkanen, Merikoski and Tossavainen [7] have
proved that the arithmetic partial derivative DQ,p is always continuous. They have also shown in
some cases, the arithmetic subderivative DQ,T can be continuous at some points but discontinuous
at other points. Major cases have been left open. For example, it is unknown whether DQ,T is
continuous or not at nonzero points when T is an infinite set. As we generalize arithmetic partial
derivatives to p-adic local fields and arithmetic subderivative to number fields, it makes sense to
study whether the generalizations are p-adically continuous or not. We state our results in two
theorems, one for the arithmetic partial derivative case and one for the arithmetic subderivative
case.

Theorem 1.5. Suppose K is a number field. Let p be a prime ideal of OK . Then the arithmetic
partial derivative DK,p is p-adically continuous at every point in K. Moreover DK,p is strictly
differentiable and twice strictly differentiable (with respect to the ultrametric | · |νp) at every
nonzero point in K but DK,p is not strictly differentiable (with respect to the ultrametric | · |νp)
at 0.

See Theorems 5.2, 5.3, and 5.4 for a proof of Theorem 1.5. The same result is true for
arithmetic partial derivative over p-adic fields.

Theorem 1.6. Suppose K is a number field. Let p be a prime ideal and T be a nonempty subset
of prime ideals of OK .

1. The arithmetic subderivative DK,T is p-adically continuous but not strictly differentiable
(with respect to the ultrametric | · |νp) at 0.

2. If T ̸= {p}, then the arithmetic subderivative DK,T is p-adically discontinuous at every
nonzero point in K.

See Theorems 5.6, 5.8, 5.9, and 5.12 for a proof of Theorem 1.6. By letting K = Q and
p = (p) in Theorem 1.6, we are able to give answers to all the open questions in [7, Section 7].

In general, it is unclear to us how to piece together the information of arithmetic partial
derivatives to understand the arithmetic derivatives. New prime factors may arise in the dynamical
system Di(x) following each successive differentiation and predicting new prime factors of D(x)

relies on the ability of predicting prime factors of a+b when knowing the prime factors of a and b.
There is a widespread intuition that the abc conjecture should be related to arithmetic derivatives
of some sort. Pasten has formalized this idea in [11].
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2 p-adic fields

2.1 Definition

Fix a rational prime p. Let Qp be the field of p-adic rational numbers and νp the p-adic valuation.
We denote the p-adic absolute value by | · |νp . Recall that the arithmetic partial derivative (with
respect to p) DQ,p : Q → Q is defined by

DQ,p(x) :=

xνp(x)/p, if x ̸= 0;

0, if x = 0.

One can extend DQ,p to DQp,p with the same formula because νp is well-defined on Qp. We can
further extend DQp,p to p-adic fields because νp can be uniquely extended to a discrete valuation
over p-adic fields. Let K be a finite extension of Qp of degree n = [K : Qp]. Let OK be the ring
of integers, which is a discrete valuation ring with maximal ideal p and residue field OK/p. Let
f = f(K|Qp) = [OK/p : Fp] be the inertia degree and e = e(K|Qp) the ramification index, that
is, the unique integer such that pOK = pe. We have n = ef . It is well known [13, Chapter 2
Proposition 3] that K is again complete with respect to the p-adic topology. There exists a unique
discrete valuation νp : K → Q ∪ {+∞} that extends νp defined by

νp(x) :=
1

n
νp(NK/Qp(x)),

where NK/Qp : K → Qp is the norm. We know that νp(K) = Z/e. For every x ∈ K, we set
k = k(x) := νp(νp(x)), so k ≥ −νp(e). The discrete valuation νp defines a unique absolute value
on K, which will be denoted by | · |νp , that extends the p-adic absolute value on Qp:

|x|νp =
n
√∣∣∣NK/Qp(x)

∣∣∣
νp
.

We can extend DQp,p to DK,p : K → K as follows:

DK,p(x) :=

xνp(x)/p, if x ̸= 0;

0, if x = 0.

One can check that DK,p satisfies the Leibniz rule. It is evident that DK,p(x) = DQp,p(x) for all
x ∈ Qp. Note that the definition of DK,p is independent of the choice of uniformizers of OK .

Let K and K ′ be two finite extensions over Qp such that x ∈ K ∩ K ′ =: K ′′. Let νp,
νp′ , νp′′ be the unique discrete valuations that extend νp to K, K ′, and K ′′ respectively. Clearly
νp|K′′ = νp′ |K′′ = νp′′ . Therefore we have DK,p(x) = xνp(x)/p = xνp′′(x)/p = xνp′(x)/p =

DK′,p′(x) ∈ K ∩ K ′. This implies that the definition of arithmetic partial derivative of x is
independent of the choice of finite extensions where x lies.

Remark 2.1. Let q be another prime different from p. The q-adic valuation νq defined on Q
does not extend to Qp or finite extensions of Qp. Therefore, unlike the case of Q where we have
one arithmetic partial derivative for each prime number, there is only one well-defined arithmetic
partial derivative for Qp and for finite extensions of Qp.
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2.2 Periodicity of νp sequence

Let K/Qp be a finite extension and let x ∈ K. Let p be the maximal ideal of OK and νp the
unique discrete valuation that extends νp. We call the following sequence

νp(x), νp(DK,p(x)), νp(D
2
K,p(x)), . . .

the νp sequence of x. Note that the νp sequence of x is independent of the choice of K. If
νp(D

j
K,p(x)) = +∞ for some integer j ≥ 0, then Dj

K,p(x) = 0 and thus Di
K,p(x) = 0 for

all i ≥ j. If νp(D
i
K,p(x)) < +∞ for all i ≥ 0, then we call the sequence of increments of

consecutive terms

νp(DK,p(x))− νp(x), νp(D
2
K,p(x))− νp(DK,p(x)), νp(D

3
K,p(x))− νp(D

2
K,p(x)), . . .

the incp sequence of x. Suppose νp(x) = bpk where νp(b) = 0 and k ≥ −νp(e). Then the
increment is

νp(DK,p(x))− νp(x) = νp(
νp(x)

p
) = νp(bp

k−1) = k − 1 = νp(νp(x))− 1. (1)

Lemma 2.2. The following two statements are equivalent:

1. The νp sequence of x is eventually +∞.

2. νp(x) ∈ {0, 1, 2, . . . , p− 1,+∞}.

Proof. Suppose νp(x) ∈ {0, 1, 2, . . . , p− 1,+∞}. If νp(x) = +∞, then x = 0, and DK,p(x) = 0

for all n ≥ 0. If νp(x) = 0, then x is a unit in OK , and thus Dn
K,p(x) = 0 for all n ≥ 1.

If νp(x) = j for some 1 ≤ j ≤ p − 1, then νp(D
i
K,p(x)) = j − i for 1 ≤ i ≤ j. From

νp(D
i
K,p(x)) = 0 we get Di

K,p(x) is a unit in OK , and thus Dn
K,p(x) = 0 for all n > j.

Now we show that if νp(x) ̸∈ {0, 1, 2, . . . , p − 1,+∞}, then the νp sequence of x is not
eventually +∞. It suffices to show that νp(Di

K,p(x)) ̸= 0 for all i ≥ 0. We consider three
mutually disjoint cases.

Case 1. Suppose νp(x) ̸∈ Z. Then νp(DK,p(x)) ̸∈ Z by (1). By induction, we get νp(Di
K,p(x)) ̸∈

Z since νp(νp(D
i−1
K,p(x)))− 1 ∈ Z. In particular, νp(Di

K,p(x)) ̸= 0.

Case 2. Suppose νp(x) ≥ p is an integer. If p ∤ νp(x), then νp(x) > p and k = 0, and so
νp(DK,p(x)) = νp(x)− 1 ≥ p. If p | νp(x), then k ≥ 1, and thus νp(DK,p(x)) ≥ νp(x) ≥ p

by (1). Therefore νp(DK,p(x)) ≥ p > 0. By induction, we get νp(Di
K,p(x)) ̸= 0.

Case 3. Suppose νp(x) = bpk < 0 is an integer. Since |bpk| ≥ pk > k− 1, we get νp(DK,p(x)) =

bpk + (k − 1) < 0. By induction, we get νp(Di
K,p(x)) ̸= 0.

Combining all three cases, we have proved that if νp(x) /∈ {0, 1, 2, . . . , p − 1,+∞}, then the νp
sequence of x is not eventually +∞.
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Remark 2.3. Ufnarovski and Åhlander conjecture [15, Conjecture 8] that there exists an infinite
sequence an of different natural numbers such that a1 = 1 and DQ(an) = an−1 for n ≥ 2. Here
DQ is the arithmetic derivative (not arithmetic partial derivative) defined on Q. The same question
can be asked for DK,p. Suppose there exists an infinite sequence an ∈ K such that a1 = 1 and
DK,p(an) = an−1 for n ≥ 2. Let N = p+1 and we know that the νp sequence of aN is eventually
+∞ because νp(D

N
K,p(aN)) = νp(DK,p(a1)) = νp(0) = +∞. By the proof of Lemma 2.2, we

know that νp(a2) = 1, νp(a3) = 2, . . . , νp(aN−1) = p − 1, and there does not exist aN such that
DK,p(aN) = aN−1. Hence the conjecture is false over K for arithmetic partial derivative. On a
related note, if we let a1 ∈ K\O×

K for some finite extension K/Qp, then it is possible to find an
infinite sequence an ∈ K such that DK,p(an) = an−1 for all n ≥ 2. For example, let K = Q,
a1 = pp

2 , and for all m ≥ 1, let a2m = pp
2+1/(p2 + 1)m and a2m+1 = pp

2
/(p2 + 1)m. It is easy to

check that DQ,p(a2m+1) = a2m and DQ,p(a2m) = a2m−1.

The next proposition tells us if νp(νp(x)) < 0, then the incp sequence of x is constant and
negative. As a result of that, the νp sequence of x converges to −∞.

Proposition 2.4. Let x ∈ K be a nonzero element such that νp(x) = bpk with νp(b) = 0 and
k < 0. Then the incp sequence of x is a constant sequence with negative terms

(k − 1, k − 1, k − 1, . . .).

As a result, the νp sequence of x converges to −∞.

Proof. Equation (1) implies that the first term of the incp sequence of x is indeed k − 1. Since

νp(x) + (k − 1) = bpk + (k − 1) = pk(b+ (k − 1)p−k)

where νp(b + (k − 1)p−k) = 0, we can write νp(DK,p(x)) = b′pk where b′ := b + (k − 1)p−k

with νp(b
′) = 0. Since νp(νp(DK,p(x))) = νp(νp(x)), we see that the second term of the incp

sequence of x is again k − 1. In the meantime, we can write νp(D
2
K,p(x)) = b′′pk for some

b′′ := b′+(k−1)p−k where νp(b′′) = 0. By induction, we see that every term of the incp sequence
of x is equal to k − 1. Therefore νp(D

n
K,p(x)) = νp(x) + n(k − 1) → −∞ as n → ∞.

If the νp sequence of x is eventually +∞, then it is periodic of period 1. For the rest of this
subsection, we assume that the νp sequence of x is not eventually +∞ and νp(νp(x)) > 0. We
will show that under these conditions, the νp sequence of x is eventually periodic of period ≤ p.
The next proposition gives a recipe of the initial terms of the incp sequence of x if νp(νp(x)) > 0.

Proposition 2.5. Let x ∈ K be a nonzero element such that νp(x) = bpk with νp(b) = 0 and
k > 0. Denote k′ := (k − 1 mod p) + 1 ≤ p. The first k′ terms of the incp sequence of x are

(k − 1,−1,−1, . . . ,−1︸ ︷︷ ︸
(k−1 mod p) copies

).

Proof. The first term of the incp sequence of x is indeed k − 1 by (1). We have

νp(DK,p(x)) = bpk + (k − 1).
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If k′ = 1, then there is nothing further to prove. If k′ = 2, we have k ≡ 2 (mod p) and thus
p ∤ (bpk + (k − 1)). By (1) again, we get the second term of the incp sequence of x is

νp(D
2
K,p(x))− νp(DK,p(x)) = −1

and νp(D
2
K,p(x)) = bpk + (k − 2). The proof is complete by induction on k′.

Corollary 2.6. Let x ∈ K be a nonzero element such that νp(x) = bpk with νp(b) = 0 and
1 ≤ k ≤ p. Then the νp sequence and the incp sequence of x are periodic of period k.

Proof. If 1 ≤ k ≤ p, then k′ = (k − 1 mod p) + 1 = k − 1 + 1 = k. The first k + 1 terms of the
νp sequence are

(bpk, bpk + (k − 1), bpk + (k − 2), . . . , bpk + 1, bpk).

It is now clear that the νp sequence and the incp sequence of x are periodic of period k.

We will see later that the periodicity predicted by Corollary 2.6 will eventually happen as part
of the νp sequence of x for all nonzero x ∈ K as long as νp(νp(x)) ≥ 0 and the νp sequence of x
is not eventually +∞.

Definition 2.7. For any integer k ≥ 1, we call the following sequence

Sk,p := (k − 1,−1,−1, . . . ,−1︸ ︷︷ ︸
(k−1 mod p) copies

)

the k-segment (with respect to p).

We define a sequence of integers κ0, κ1, κ2, . . . recursively from νp(x) that will allow us to
predict the period of the νp sequence of x. Let κ0 := νp(x) mod p and κ1 := νp(⌊κ0⌋p). Here
⌊x⌋p := x− (x mod p). For i ≥ 2, we define

κi :=

νp(⌊κi−1 − 1⌋p), if κi−1 < +∞;

+∞, if κi−1 = +∞.
(2)

It is clear that if 1 ≤ κi ≤ p, then κi+1 = +∞; if p+ 1 ≤ κi < +∞, then κi+1 < logp(κi). If
the νp sequence of x is not eventually +∞, then there exists a unique positive integer N = N(x)

such that 1 ≤ κN ≤ p, and κi = +∞ for all i > N .

Theorem 2.8. Let x ∈ K be a nonzero element such that νp(x) = bpk with νp(b) = 0 and k ≥ 0.
If the νp sequence of x is not eventually +∞, then the incp sequence of x is of the form

(−1,−1, . . . ,−1︸ ︷︷ ︸
κ0 copies

,Sκ1,p,Sκ2,p,Sκ3,p, . . . ,SκN ,p,SκN ,p,SκN ,p, . . .).

As a result, the νp sequence and the incp sequence of x are eventually periodic of period κN .

Proof. For 0 ≤ i ≤ κ0, we have νp(Di
K,p(x)) = b− i = νp(x)− i. Hence the first κ0 terms of the

incp sequence of x are
(−1,−1, . . . ,−1︸ ︷︷ ︸

κ0 copies

).
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We can write νp(D
κ0
K,p(x)) = b0p

κ1 with κ1 ≥ 1. By Proposition 2.5, we know that the next
κ′
1 := (κ1 − 1 mod p) + 1 term of the incp sequence is the κ1-segment

Sκ1,p = (κ1 − 1,−1,−1, . . . ,−1︸ ︷︷ ︸
(κ1−1 mod p) copies

).

Furthermore, we get νp(Dκ0+i
K,p (x)) = bpκ1 +(κ1− i) for 0 ≤ i ≤ κ′

1. As κ1−κ′
1 = ⌊κ1−1⌋p and

κ2 = νp(⌊κ1 − 1⌋p), we can write νp(D
κ0+κ′

1+1
K,p (x)) = b1p

κ2 . If κ2 ≥ 1, by Proposition 2.5 again,
we know that the next κ′

2 := (κ2− 1 mod p)+1 term of the incp sequence is the κ2-segment. Let
N = N(x) be the unique positive integer such that 1 ≤ κN ≤ p. By induction, we know that the
initial terms of the incp sequence of x is of the form

(−1,−1, . . . ,−1︸ ︷︷ ︸
κ0 copies

,Sκ1,p,Sκ2,p,Sκ3,p, . . . ,SκN ,p).

Corollary 2.6 implies that if bN−1p
κN is a term in the νp sequence of x, then SkN ,p will appear

repeatedly in the incp sequence of x. This ends of the proof of the theorem.

2.3 Anti-partial derivatives

We fix a finite extension K/Qp in this subsection. Note that not all elements in K have an
anti-partial derivative. For example, suppose x ∈ K is an anti-partial derivative of pp−1 ∈ K,
then Dp+1

K,p (x) = 0 and thus the νp sequence of x is eventually +∞. By Lemma 2.2, νp(x) ∈
{0, 1, 2, . . . , p − 1,+∞}, but that is not possible as νp(DK,p(x)) = p − 1. Therefore pp−1 does
not have anti-partial derivative in K. Given an element y ∈ K, if y has an anti-partial derivative
in K, we want to know how many there are. We start with y = 0. Let x ∈ K such that

DK,p(x) =
xνp(x)

p
= 0.

Then xνp(x) = 0 which implies that x = 0 or νp(x) = 0. Hence the anti-partial derivative of 0 in
K is

{x ∈ K : νp(x) = 0} ∪ {0}.

Lemma 2.9. For every 0 ̸= y ∈ K, if there exists x ∈ K such that DK,p(x) = y, then x ∈ Qp(y).

Proof. Since DK,p(x) = xνp(x)/p = y and νp(x)/p ∈ Q, we know that x ∈ Qp(y).

Let x1, x2 ∈ K with DK,p(x1) = DK,p(x2). If νp(x1) = 0, then DK,p(x1) = 0 = DK,p(x2).
Thus νp(x2) = 0. Hence νp(x1) = 0 if and only if νp(x2) = 0.

Suppose νp(x1), νp(x2) ̸= 0. Let νp(x1) = b1p
k1 and νp(x2) = b2p

k2 where νp(b1b2) = 0. We
get

b1p
k1 − b2p

k2 = k2 − k1. (3)

Suppose k1 = k2, then (3) implies that νp(x1) = νp(x2). Hence

x1 =
DK,p(x1)p

νp(x1)
=

DK,p(x2)p

νp(x2)
= x2.

This means that x1 = x2 if and only if k1 = k2.
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If k1 ̸= k2, without loss of generality, we assume k1 < k2. Suppose k1 < 0, then (3) implies
that

b1 − b2p
k2−k1 = p−k1(k2 − k1).

This is a contradiction because νp(b1 − b2p
k2−k1) = 0 and νp(p

−k1(k2 − k1)) ≥ −k1 > 0. Hence
if k1 < 0, then DK,p(x1) has exactly one anti-partial derivative.

Suppose k1 > 0. There is an element x0 ∈ K in the set of all anti-partial derivatives
of DK,p(x1) with the smallest possible k0. We call x0 the primitive anti-partial derivative of
DK,p(x1). Equation (3) implies that

b0p
k0 − bpk1 = k1 − k0, (4)

As x0 is primitive, we have k0 ≤ k1 and (4) implies that pk0(b0 − bpk1−k0) = k1 − k0. Let

k1 − k0 = pk0c for some c ∈ Z≥0. Then b0 − bpp
k0c = c. So b =

b0 − c

pp
k0c

and νp(b0 − c) = pk0c

since νp(b) = 0. Let

C(x0) :=
{
c ∈ Z≥0 : νp(b0 − c) = pk0c

}
.

It is easy to see that C(x0) is finite because as c ≫ 0, νp(b0 − c) < pk0c.

Theorem 2.10. With the above notations, suppose x0 is the primitive anti-partial derivative of
DK,p(x0). Let νp(x0) = b0p

k0 with νp(b0) = 0 and k0 > 0. There is a one-to-one correspondence
between C(x0) and the set of all anti-partial derivatives of DK,p(x0). Furthermore, suppose
we fix a uniformizer π ∈ p ⊂ OK and let e be the ramification index of K/Qp, we can write
x0 = α0π

eb0pk0 and p = αpπ
e with α0, αp ∈ O×

K . If x = απebpk is an anti-partial derivative of
DK,p(x0) such that νp(b) = 0 and α ∈ O×

K , then there exists a unique c ∈ C(x0) such that

k = pk0c+ k0 ∈ Z≥0, b =
b0 − c

pk−k0
=

b0 − c

pp
k0c

, α =
α0b0
b

αk0−k
p ∈ O×

K .

Proof. We show that every anti-partial derivative x of DK,p(x0) is associated with a unique c ∈
C(x0). If x = x0, then we associate x with c = 0. Suppose x ̸= x0. Let νp(x) = bpk. Since
x0 is the primitive anti-partial derivative and νp(x0) ̸= 0, we know that b ̸= 0 and k > k0. Then
pk0(b0 − bpk−k0) = k − k0 and thus νp(k − k0) = k0. Let k − k0 = pk0c where c > 0 and
νp(c) = 0. By plugging k − k0 = pk0c into pk0(b0 − bpk−k0) = k − k0, we get b0 − bpk−k0 = c.
Since νp(b) = 0, we know that νp(b0 − c) = pk0c.

Then we show that for each c ∈ C(x0), we can define a unique x = x(c) such that DK,p(x) =

DK,p(x0). Since νp(b0 − c) = pk0c, there exists b ∈ Q with νp(b) = 0 such that b0 − c = bpp
k0c.

Set k := pk0c+ k0. We can compute

bpk + k − 1 =
b0 − c

pk−k0
pk + k − 1 = (b0 − c)pk0 + pk0c+ k0 − 1

= (b0 − c)pk0 + pk0c+ k0 − 1 = b0p
k0 + k0 − 1.

Set x := απebpk where α = α0b0α
k0−k
p /b. We have

DK,p(x) =
xνp(x)

p
=

απebpkebpk

p
= αbeπebpkpk−1 = αbeαk−1

p πe(bpk+k−1)

= α0b0eα
k0−1
p πe(b0pk0+k0−1) =

α0b0e

p
πeb0pk0pk0 =

x0νp(x0)

p
= DK,p(x0).

367



Corollary 2.11. For any nonzero y ∈ K, the set {x ∈ K : DK,p(x) = y} is finite (possibly
empty).

For the rest of this subsection, we will prove Conjecture 1.2 for partial derivatives over any
finite extension K/Qp. We will show that for each positive integer n, there exists infinitely many
x ∈ Qp such that DQp,p(x) has exactly n anti-partial derivatives in Qp. By Lemma 2.9, we
know that all anti-partial derivatives of DQp,p(x) must be in Qp and thus DQp,p(x) has exactly n

anti-partial derivatives in any finite extension K/Qp. The first lemma gives us a way to construct
k0 ∈ Z>0 such that if νp(νp(x0)) = k0, then x0 is the primitive anti-partial derivative of DK,p(x0).

Lemma 2.12. For every integer m ≥ 2, let k0 = k0(m) := p+p2+ · · ·+pm. For every x0 ∈ Qp,
if νp(νp(x0)) = k0, then x0 is the primitive anti-partial derivative of DQp,p(x0).

Proof. Suppose x0 is not the primitive anti-partial derivative of DQp,p(x0). Let x ̸= x0 be another
anti-partial derivative of DQp,p(x0) with νp(x) = bpk such that k < k0. If k < 0, we know that
DQp,p(x0) has exactly one anti-partial derivative. Hence k ≥ 0. Since DQp,p(x) = DQp,p(x0), we
get bpk − b0p

k0 = k0 − k. This means that νp(k0 − k) = k. It suffices to show that no 0 ≤ k < k0
satisfies this relation. It is clear that k ̸= 0 because νp(k0) = 1, and k ̸= 1 because νp(k0−1) = 0.
Suppose k > 1. If νp(k0 − k′) = k for some k′ > 0, then k′ ≥ p + · · · + pk−1 > k. Therefore
there does not exist an anti-partial derivative x with k < k0. This means that x0 is the primitive
anti-partial derivative of DQp,p(x0).

The next lemma allows us to construct b0 for every k0 > 0 such that there are exactly n − 1

different possible values of c ∈ Z>0 such that νp(b0 − c) = pk0c. This means that the set C(x0)

has exactly n elements (with 0 included).

Lemma 2.13. Fix a positive integer k. Let c1 = 0, and for i ≥ 2, let ci := pp
kci−1 + ci−1. Suppose

Cn := {c ∈ Z>0 : νp(cn+1 − c) = pkc}.

Then Cn = {c2, . . . , cn}.

Proof. We first note that for any 1 ≤ i < j,

cj − ci =

j−1∑
m=i

(cm+1 − cm) =

j−1∑
m=i

pp
kcm

and so νp(cj − ci) = pkci. This shows that cm ∈ Cn if and only if m ∈ {2, 3, . . . , n}.
Next, we show that no other integers are in Cn. If c ∈ Cn where c > cn+1, then c − cn+1 =

αpp
kc, where α > 0. By definition of cn+1, c− cn+1 = c− (cn + pp

kcn). Thus

c− cn = α pp
kc + pp

kcn = pp
kcn

(
α pp

k(c−cn) + 1
)
.

This is a contradiction, since the expression on the right hand side is clearly larger than c − cn.
This shows that if c ∈ Cn, then c ≤ cn+1.
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Suppose c ∈ Cn where cm < c < cm+1 for some 2 ≤ m ≤ n. We have νp(cn+1 − cm+1) =

pkcm+1 when m < n. Since νp(cn+1 − c) = pkc, we have

νp(cm+1 − c) = νp

(
(cn+1 − c)− (cn+1 − cm+1)

)
= pkc.

Therefore cm+1 − c = γpp
kc for some γ > 0. By definition, cm+1 = pp

kcm + cm, and so we would
have

pp
kcm + cm = γpp

kc + c,

which is a contradiction, since the left side is clearly less than the right. This shows that if c ∈ Cn

and c ≤ cn+1, then c = cm for some 2 ≤ m ≤ n. This concludes the proof of the lemma.

Theorem 2.14. For each positive integer n, there are infinitely many x0 ∈ K such that DK,p(x0)

has exactly n anti-partial derivatives in K.

Proof. By Lemma 2.9, it suffices to assume that K = Qp and p = (p). For every integer m ≥ 2,
let k0 = k0(m) be defined as in Lemma 2.12, and let b0 = cn+1 be defined as in Lemma 2.13 for
k = k0. Set x0 := pb0p

k0 . Lemma 2.12 implies that x0 is the primitive anti-partial derivative of
DQp,p(x0). Lemma 2.13 implies that DQp,p(x0) has exactly n anti-partial derivatives. Therefore,
for each positive integer n, there exists infinitely many x0 ∈ Qp such that DQp,p(x0) has exactly
n anti-partial derivatives with x0 being its primitive anti-partial derivative.

3 Number fields

In this section, we will generalize arithmetic derivative and arithmetic partial derivative to number
fields. Recall that the explicit formula of the arithmetic derivative defined on Q:

DQ(x) = x
∑
p|x

νp(x)

p
.

Let K/Q be a number field of finite degree. One could mimic the above formula and define the
arithmetic derivative on K by the formula:

DK(x) = x
∑
p|x

νp(x)

p
,

where p are prime ideals in OK . The sum is finite as there are finitely many p such that νp(x) ̸= 0.
This formula presents a challenge. Let p ∈ Q be a rational prime. Then

DK(p) = p
∑
p|p

νp(p)

p
=

∑
p|p

νp(p) = g(p,K) · 1 = g(p,K),

where g(p,K) is the number of prime ideals in OK that divide p. When g(p,K) ̸= 1, DK(p) ̸=
DQ(p) so the above formula of DK does not give a true extension of DQ. In order for DK(x) =

DQ(x) for all x ∈ Q, we will need to divide g(p,K). Furthermore, let p1 and p2 be two prime
ideals in OK that divide p and let L/K be a finite extension. We know that in general g(p1, L) ̸=
g(p2, L) unless L/K is finite Galois. So we will start the generalization of DQ to finite Galois
extensions. Then we can further generalize DQ to number fields by taking restriction.
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3.1 Finite Galois extensions

Let K be a finite Galois extension of Q of degree n. Let OK be the ring of integers and p a
nonzero prime ideal of OK such that p ∈ p. There is a discrete valuation νp on K that extends
the p-adic valuation νp on Q. This induces a norm | · |νp = [OK : p]−νp(·) on K. Let Kνp be
the completion of K with respect to the p-adic topology and thus Kνp is a finite extension of
Qp such that p ∩ Q = (p) (denoted by p | p). Let e(Kνp|Qp) be the ramification index and
f(Kνp|Qp) := [OK/p : Fp] be the inertia degree of the extension Kνp/Qp. One has the following
decomposition:

pOK =
∏
p|p

pe(Kνp |Qp).

It is well known that for every fixed prime number p, we have the formula

n =
∑
p|p

e(Kνp|Qp)f(Kνp|Qp). (5)

The Galois group G(K/Q) acts transitively on the set of prime ideals {p ⊂ OK : p | p} for every
fixed prime p ∈ Q [13, Chapter 1, Section 7, Proposition 19]. This implies that for every nonzero
prime ideal p | p, the ramification index e(Kνp|Qp) and the inertia degree f(Kνp|Qp) depend only
on p. If we denote them by e(p,K) and f(p,K) respectively, then formula (5) becomes

n = e(p,K)f(p,K)g(p,K), (6)

where g(p,K) (again only depends on p) is the number of distinct prime ideals p such that p | p.
Now we can extend the arithmetic derivative DQ to K. For every nonzero x ∈ K, we define

DK(x) := x
∑
p|x

νp(x)

pg(p,K)
.

One can check that DK satisfies the Leibniz rule:

DK(xy) = xy
∑
p|xy

νp(xy)

pg(p,K)
= xy

∑
p|xy

νp(x) + νp(y)

pg(p,K)

=
(∑

p|xy

xνp(x)

pg(p,K)

)
y + x

(∑
p|xy

yνp(y)

pg(p,K)

)
=

(∑
p|x

xνp(x)

pg(p,K)

)
y + x

(∑
p|y

yνp(y)

pg(p,K)

)
= DK(x)y + xDK(y).

It is easy to check that DK(0) = 0. To check that DK : K → K extends DQ : Q → Q, recall
that for every prime p, we have νp(x) = νp(x) for every x ∈ Q. And so for every nonzero x ∈ Q,
we get

DK(x) = x
∑
p|x

νp(x)

pg(p,K)
= x

∑
p|x

(g(p,K) · νp(x)
pg(p,K)

)
= x

∑
p|x

νp(x)

p
= DQ(x).
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3.2 Number fields

Let K/Q be a number field and let L/K be an extension such that L/Q is finite Galois (e.g., one
can take L to be a Galois closure of K/Q). For every x ∈ K, one can define DK(x) = DL(x).
But we want to make sure that DL(x) = DK(x) for all x ∈ K so the definition of DK does not
depend on the choice of Galois extensions.

Lemma 3.1. Suppose K/Q and L/Q are finite Galois extensions. We have DK(x) = DL(x) for
every x ∈ K ∩ L.

Proof. We first assume that K ⊂ L. Since L/Q is Galois, we know that L/K is also Galois.
For every rational prime p and nonzero prime ideals p1 and p2 of OK with p1 | p and p2 | p, we
get g(p1, L) = g(p2, L). Let p and P be two prime ideals in OK and OL respectively such that
P | p | p. For every nonzero x ∈ K, we have

DL(x) = x
∑
P|x

νP(x)

pg(p, L)
= x

∑
p|x

∑
P|p

νp(x)

pg(p, L)

= x
∑
p|x

g(p, L)νp(x)

pg(p, L)g(p,K)
= x

∑
p|x

νp(x)

pg(p,K)
= DK(x).

This shows that DK(x) = DL(x) for all x ∈ K if K ⊂ L.
Now suppose K/Q and L/Q are two arbitrary finite Galois extensions. Since K ∩L is also a

finite Galois extension of Q, for every x ∈ K ∩ L, we have DK(x) = DK∩L(x) by the previous
paragraph. Using the same argument, we get DL(x) = DK∩L(x) for every x ∈ K ∩ L, and
therefore DK(x) = DL(x) for every x ∈ K ∩ L.

Suppose K/Q is a number field (not necessarily Galois). For every x ∈ K, we can define
DK(x) := DKGal(x) where KGal is a Galois closure of K/Q. When x ̸= 0, it is clear that
DK(x)/x ∈ Q and thus DK(x) ∈ K. We have a well-defined arithmetic derivative DK : K → K

when K is a number field.

3.3 Arithmetic subderivative

Let S be a (finite or infinite) subset of the prime numbers P. One can define the so-called
arithmetic subderivative DQ,S : Q → Q by

DQ,S(x) =
∑
p∈S

xνp(x)/p.

It is easy to see that DQ,S =
∑

p∈S Dp and DQ =
∑

p∈PDp. One can extend DQ,S to all finite
Galois extensions K/Q. Let T be a set of prime ideals of OK . For every nonzero x ∈ K, we
define

DK,T (x) := x
∑

p∈T,p|p

νp(x)

pg(p,K)
.

If T = {p} contains only one prime ideal, then we call DK,T = DK,p the arithmetic partial
derivative with respect to p. By taking K = Q and p = {p}, we can see DK,p is the generalization
of arithmetic partial derivative with respect to p. Suppose L/K is a finite Galois extension. Let
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TL/K = {P : P prime ideal of OL,∃ p ∈ T such that P | p}.

For every nonzero x ∈ K, we have

DL,TL/K
(x) =

∑
P∈TL/K ,P|p

xνP(x)

pg(p, L)
=

∑
p∈T

∑
P∈TL/K ,P|p

xνP(x)

pg(p, L)

=
∑
p∈T

g(p, L)
xνp(x)

pg(p,K)g(p, L)
=

∑
p∈T

xνp(x)

pg(p,K)
= DK,T (x).

In this case, DL,TL/K
extends DK,T .

If K/Q is a number field (not necessarily Galois), we can define DK,T via a larger Galois
extension. Let L/K be a finite extension such that L/Q is Galois. Let TL/K be defined as above.
We can define DK,T (x) := DL,TL/K

(x) for all x ∈ K. Again this definition does not depend
on the choice of Galois extensions. Let L1/K and L2/K be finite extensions such that L1/Q
and L2/Q are Galois. Let L3 := L1 ∩ L2 and T ′ := TL3/K . We note that TL1/K = T ′

L1/L3
and

TL2/K = T ′
L2/L3

. Therefore for every x ∈ K ⊂ L3, we have

DL1,TL1/K
(x) = DL1,T ′

L1/L3
(x) = DL3,T ′(x) = DL2,T ′

L2/L3
(x) = DL2,TL2/K

(x).

Remark 3.2. Let K/Q be a finite Galois extension. Just like in the local case, one can ask whether
Theorems 1.3 and 1.4 are true for DK,p. Note that in the global case DK,p(x) =

xνp(x)
pg(p,K)

, whereas
in the local case g(p,K) = 1. If νp(g(p,K)) = 0, then νp(DK,p(x)) = νp(x) + νp(νp(x)) − 1,
which is the same as Equation (1). In this case, Theorems 1.3 and 1.4 are still true and can be
proved in a similar fashion. If νp(g(p,K)) = a > 0, then νp(DK,p(x)) = νp(x)+νp(νp(x))−1−a.
In this case, the behavior of the νp sequence of x warrants further study.

4 Arithmetic logarithmic derivative

4.1 Local case

The logarithmic partial derivative (with respect to p) ldQ,p : Q× → Q is a homomorphism defined
by the formula

ldQ,p(x) = DQ,p(x)/x

because

ldQ,p(xy) =
DQ,p(xy)

xy
=

DQ,p(x)y + xDQ,p(y)

xy
= ldQ,p(x) + ldQ,p(y).

The image of ldQ,p is
ldQ,p(Q×) = {m/p : m ∈ Z} = ⟨1/p⟩ ∼= Z

and thus ldQ,p is not onto. Suppose ldQ,p(x) = 0, then DQ,p(x) = 0 and thus νp(x) = 0. Therefore

Ker(ldQ,p) = {x ∈ Q× : νp(x) = 0}.
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One can extend ldQ,p to Q×
p by the formula ldQp,p(x) := DQp,p(x)/x ∈ Q. Using the same

argument, we get

ldQp,p(Q×
p ) = {m/p : m ∈ Z}, Ker(ldQp,p) = {x ∈ Q×

p : νp(x) = 0}.

Let K/Qp be a finite extension. We can define ldK,p : K
× → Q as

ldK,p(x) :=
DK,p(x)

x
=

νp(x)

p
.

It is easy to see the kernel of ldK,p is

Ker(ldK,p) = {x ∈ K× : νp(x) = 0}.

The description of the image of ldK,p depends on whether p divides the ramification index e. Let
e = pr11 pr22 · · · prjj be the unique factorization of the ramification index into prime powers. If
p /∈ {p1, p2, . . . , pj}, then

ldK,p(K
×) = {m/pe : m ∈ Z} = ⟨1/p, 1/pr11 , . . . , 1/p

rj
j ⟩ ∼= Z.

If p ∈ {p1, p2, . . . , pj} and assume p = p1, then

ldK,p(K
×) = {m/pe : m ∈ Z} = ⟨1/pr1+1

1 , 1/pr22 , . . . , 1/p
rj
j ⟩ ∼= Z.

4.2 Global case

If K/Q is a finite Galois extension, one can define the arithmetic logarithmic derivative ldK :

K× → Q as

ldK(x) =
DK(x)

x
=

∑
p|x

νp(x)

pg(p,K)
∈ Q.

It is easy to show that ldK is a group homomorphism. When K = Q, we get that ldQ(x) =∑
p|x

νp(x)

p
. Hence ldQ(Q×) = ⟨1

p
: p ∈ P⟩. For every finite Galois extension K/Q, one can show

that ldK(K
×) are isomorphic as subgroups of Q. Before we prove this result, we need to recall a

concept called p-height in the classification of subgroups of Q. Let G be an (additive) subgroup
of Q and g ∈ G. The p-height of g in G is k if pkx = g is solvable in G and pk+1x = g is not.
If pkx = a has a solution for every k, then we say that the p-height of a in G is infinite. Let
Hpi,G(g) be the pi-height of g in G. Set HG(g) := (H2,G(g), H3,G(g), H5,G(g), . . .). It turned out
that HG(1) is an invariant of the subgroup G in the following sense.

Theorem 4.1. [8, Theorem 4] Let G1 and G2 be two subgroups of Q. Then G1
∼= G2 if and only

if HG1(1) and HG2(1) only differ in finitely many indices, and in the case Hpi,G1(1) ̸= Hpi,G2(1),
both of them are finite.

Theorem 4.2. Let K/Q be a finite Galois extension. Then ldK(K
×) ∼= ⟨1

p
: p ∈ P⟩ < Q.
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Proof. Let G := ⟨1
p
: p ∈ P⟩ < Q. It is easy to see that

HG = (1, 1, 1, . . .).

Let [K : Q] = n and νp(x) := νp(x)e(p,K) be the normalized discrete valuation. For every
x ∈ K×, we have

ldK(x) =
∑
p|x

νp(x)

pg(p,K)
=

∑
p|x

νp(x)

pg(p,K)e(p,K)
=

1

n

∑
p|x

νp(x)f(p,K)

p
.

Therefore

ldK(K
×) =

{ 1

n

∑
p|x

νp(x)f(p,K)

p
| x ∈ K×

}
=

〈f(p,K)

np
| p ∈ P

〉
=

〈 1

p1+νp(n)−νp(f(p,K))
| p ∈ P

〉
.

For every p ∈ P, we denote m(p) := 1 + νp(n)− νp(f(p,K)). It is easy to see that

HldK(K×) = (m(2),m(3),m(5), . . .).

As f(p,K) | n, we know that 1 ≤ m(p) < +∞. When p > n, we have νp(n) = νp(f(p,K)) = 0.
This implies that m(p) = 1 for all except for finitely many primes. Hence HG and HldK(K×) only
differ in finitely many indices, and in the case Hpi,G(1) ̸= Hpi,ldK(K×), both of them are finite.
Hence ldK(K

×) ∼= G by Theorem 4.1.

To determine the exact image of ldK in general is not easy. We give an example.

Example 4.3. Let K = Q(
√
D) be a quadratic extension, where D is a square free integer. We

rewrite the formula of ldK using the normalized discrete valuation νp = νp · e(p,K)

ldK(x) =
∑
p|x

νp(x)

pg(p,K)
=

∑
p|x

νp(x)

pg(p,K)e(p,K)
=

1

2

∑
p|x

νp(x)f(p,K)

p
.

It remains to determine when 2 is inert in K, that is, f(2, K) = 2. Let ∆K be the discriminant
of K, that is, ∆K = D if D ≡ 1 (mod 4) and ∆K = 4D if D ≡ 2, 3 (mod 4). Hence ∆K ≡
0, 1, 4, 5 (mod 8). We know that OK = Z[∆K+

√
∆K

2
]. The minimal polynomial of ∆K+

√
∆K

2
is

(X − ∆K +
√
∆K

2
)(X − ∆K −

√
∆K

2
) = X2 −∆KX +

∆2
K −∆K

4
.

We discuss the cases based on the value of ∆K mod 8.

1. If ∆K ≡ 0 (mod 8), then ∆2
K − ∆K ≡ 8 (mod 8). Hence ∆2

K−∆K

4
≡ 0 (mod 2).

Therefore

X2 −∆KX +
∆2

K −∆K

4
≡ X2 (mod 2),

and (2) = (2, ∆K+
√
∆K

2
)2 is ramified in this case, that is, e(2, K) = 2.
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2. If ∆K ≡ 1 (mod 8), then ∆2
K −∆K ≡ 1− 1 ≡ 0 (mod 8). Hence ∆2

K−∆K

4
≡ 0 (mod 2).

Therefore

X2 −∆KX +
∆2

K −∆K

4
≡ X2 +X ≡ X(X + 1) (mod 2),

and (2) = (2, ∆K+
√
∆K

2
)(2, ∆K+

√
∆K

2
+ 1) is totally split in this case, that is, g(2, K) = 2.

3. If ∆K ≡ 4 (mod 8), then ∆2
K −∆K ≡ 0− 4 ≡ 4 (mod 8). Hence ∆2

K−∆K

4
≡ 1 (mod 2).

Therefore

X2 −∆KX +
∆2

K −∆K

4
≡ X2 + 1 ≡ (X + 1)2 (mod 2),

and (2) = (2, ∆K+
√
∆K

2
+ 1)2 is ramified in this case, that is, e(2, K) = 2.

4. If ∆K ≡ 5 (mod 8), then ∆2
K −∆K ≡ 1− 5 ≡ 4 (mod 8). Hence ∆2

K−∆K

4
≡ 1 (mod 2).

Therefore

X2 −∆KX +
∆2

K −∆K

4
≡ X2 +X + 1 (mod 2),

which is irreducible. In this case, 2 is inert, that is, f(2, K) = 2.

If ∆K ≡ 5 (mod 8), then ∆K ≡ 1 (mod 4). In this case, ∆K = D and thus D ≡ 5 (mod 8).
Therefore

ldK(K
×) =

⟨1/2, 1/3, 1/5, . . . , ⟩, if D ≡ 5 (mod 8);

⟨1/4, 1/3, 1/5, . . . , ⟩, otherwise.

5 p-adic continuity and discontinuity

In this section, we study when arithmetic partial derivatives and arithmetic subderivatives are
p-adically continuous and discontinuous. When they are continuous, we will also study if they
are strictly differentiable. We first recall some definitions.

Let K be a field and ν : K → R ∪ {+∞} be a discrete valuation. For all x, y ∈ K, we
have ν(x+ y) ≥ min{ν(x), ν(y)}. An important property of ν that we will use repeatedly in this
subsection is that if ν(x) ̸= ν(y), then ν(x+ y) = min{ν(x), ν(y)}. If c is a real number number
between 0 and 1, then the discrete valuation ν induces an absolute value on K as follows:

|x|ν :=

c ν(x), if x ̸= 0;

0, if x = 0.

We then have the formula |x + y|ν ≤ max{|x|ν , |y|ν} and thus | · | is an ultrametric absolute
value. The subset OK = {x ∈ K : ν(x) ≥ 0} is a ring with the unique maximal ideal p =

{x ∈ K : ν(x) > 0}. Let f : K → K be a function. We say that f is p-adically continuous at
a point x ∈ K if for every ϵ > 0, there exists δ > 0 such that for every |y − x|ν < δ, we have
|f(y) − f(x)|ν < ϵ. Equivalently, to show that f is p-adically continuous at x, it is enough to
show that for every sequence xi,
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lim
i→+∞

ν(x− xi) = +∞ implies lim
i→+∞

ν(f(x)− f(xi)) = +∞.

On the contrary, to show that f is p-adically discontinuous at x, it is enough to find one sequence
xi such that

lim
i→+∞

ν(x− xi) = +∞ and lim
i→+∞

ν(f(x)− f(xi)) ̸= +∞.

Recall that f is differentiable at a point x if the difference quotients (f(y) − f(x))/(y − x)

have a limit as y → x (y ̸= x) in the domain of f . When the absolute value of the domain is
ultrametric, we study the so-called strict differentiability. For more details on p-adic analysis, we
refer the reader to [12].

Definition 5.1. Let K be a field equipped with an ultrametric absolute value | · |ν . We say that
f : K → K is strictly differentiable at a point x ∈ K (with respect to | · |ν) if the difference
quotients

Φf(u, v) =
f(u)− f(v)

u− v

have a limit as (u, v) → (x, x) while u and v remaining distinct. Similarly, we say that f is twice
strictly differentiable at a point x if

Φ2f(u, v, w) =
Φf(u,w)− Φf(v, w)

u− v

tends to a limit as (u, v, w) → (x, x, x) while u, v, and w remaining pairwise distinct.

5.1 Partial derivative

Let K/Q be a finite Galois extension of degree n. Let p ∈ Q be a rational prime and p be a
prime ideal in OK such that p | p. The discrete valuation νp that extends νp defines an ultrametric
absolute value on K by

|x|νp =
n√
|NKνp/Qp(x)|νp .

Theorem 5.2. Let K be a number field and p a prime ideal of OK . The arithmetic partial
derivative DK,p is p-adically continuous on K.

Proof. Suppose K/Q is Galois. We first show that DK,p is continuous at nonzero x ∈ K. Let xi

be a sequence that converges to x p-adically. Since x ̸= 0, we can rename the sequence as xix

without loss of generality. As i → +∞, we know that

νp(x− xix) = νp(x) + νp(1− xi) → +∞.

This implies that νp(1− xi) → +∞ as i → +∞. As a result, we also know that νp(xi) = 0 when
i ≫ 0 because if νp(xi) ̸= 0, then νp(1− xi) = min{νp(1), νp(xi)} = 0. Therefore DK,p(xi) = 0

when i ≫ 0. To show that DK,p(xi) converges to DK,p(x) p-adically, it is enough to observe that
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νp(DK,p(x)−DK,p(xix)) = νp(DK,p(x)−DK,p(x)xi −DK,p(xi)x)

= νp(DK,p(x)(1− xi))

= νp(DK,p(x)) + νp(1− xi) → +∞

as i → +∞. The case x = 0 will be covered in Theorem 5.6.
Suppose K/Q is a number field, not necessarily Galois. Let L/K be a finite extension such

that L/Q is Galois. Let P be a prime ideal of OL such that P | p. By the previous paragraph, we
know that DL,P is P-adically continuous on L (and thus on K). Let xi ∈ K be a sequence that
converges to x ∈ K p-adically. Since νp(y) = νP(y) for all y ∈ K, we know that xi converges
to x P-adically. As DL,P is P-adically continuous on L, we know that DL,P(xi) converges to
DL,P(x) P-adically, and thus p-adically. This shows that DL,P is p-adically continuous on K.
Let T = {p}. We know that by definition DK,p(x) = DL,TL/K

(x) =
∑

P|p DL,P. This implies
that DK,p is continuous on K.

Since DK,p is p-adically continuous on K, the next question is whether DK,p is strictly
differentiable on K with respect to the ultrametric | · |νp .

Theorem 5.3. Let K be a number field and p a prime ideal of OK . The arithmetic partial
derivative DK,p is strictly differentiable and twice strictly differentiable (with respect to the
ultrametric | · |νp) at every nonzero x ∈ K.

Proof. Let L/K be a finite extension such that L/Q is Galois. Let T = {p}. We have DK,p(x) =

DL,TL/K
(x) =

∑
P|pDL,P.

We first show that DK,p is strictly differentiable at x ̸= 0. Suppose a sequence (ui, vi)

converges to (x, x) p-adically while ui and vi remaining distinct. This implies that (ui, vi)

converges to (x, x) P-adically. When i ≫ 0, we have νP(ui) = νP(vi) = νP(x). We can
compute

ΦDK,p(ui, vi) =
DK,p(ui)−DK,p(vi)

ui − vi
=

∑
P|pDL,P(ui)−

∑
P|pDL,P(vi)

ui − vi

=

∑
P|p

uiνP(x)

pg(p,L)
−
∑

P|p
viνP(x)

pg(p,L)

ui − vi
=

∑
P|p

νP(x)

pg(p, L)
=

DK,p(x)

x
.

Therefore the limit of ΦDK,p(ui, vi) is equal to DK,p(x)/x as i → +∞. This shows that DK,p

is strictly differentiable at any nonzero x ∈ K, and the derivative of DK,p is a constant function,
defined by

(DK,p)
′(x) = DK,p(x)/x = ldK,p(x).

We then show that DK,p is twice strictly differentiable at nonzero points. Suppose a sequence
(ui, vi, wi) converges to (x, x, x) p-adically while ui, vi, and wi remaining pairwise distinct. Then
for all i ≫ 0, we have

Φ2DK,p(ui, vi, wi) =
ΦDK,p(ui, wi)− ΦDK,p(vi, wi)

ui − vi
=

0

ui − vi
= 0.

Hence DK,p is twice strictly differentiable at nonzero points and the second derivative is the
constant zero function.
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Theorem 5.4. Let K be a number field and p a prime ideal of OK . The arithmetic partial
derivative DK,p is not strictly differentiable (with respect to the ultrametric | · |νp) at 0.

Proof. This theorem is a direct corollary of a more generalized Theorem 5.8.

Remark 5.5. Theorems 5.2, 5.3, and 5.4 hold in the local case of finite extensions over Qp.

5.2 Subderivative

Theorem 5.6. Let K/Q be a number field and p be a prime ideal of OK . Let T be a nonempty
set of prime ideals in OK . The arithmetic subderivative DK,T is p-adically continuous at x = 0.

Proof. Let L/K be a finite extension such that L/Q is Galois. Suppose xi ∈ K is a sequence that
converges to x p-adically in K. Let P be a prime ideal of OL such that P | p. Then xi converges
to x P-adically in L. Hence

lim
i→+∞

νP(x− xi) = lim
i→+∞

νP(xi) = +∞.

We have

νp(DK,T (xi)) = νP(DL,TL/K
(xi))

= νP

(
xi

∑
Q∈TL/K ,Q|q

νQ(xi)

qg(q, L)

)
= νP(xi) + νP

( ∑
Q∈TL/K ,Q|q

νQ(xi)

qg(q, L)

)
= νP(xi) + νP

( 1

[L : Q]

∑
Q∈TL/K ,Q|q

νQ(xi)e(q, L)f(q, L)

q

)
≥ νP(xi)− νP([L : Q]))− νP(

∏
Q∈TL/K ,Q|q

q).

As lim
i→+∞

νP(xi) = +∞, we have

lim
i→+∞

νp(DK,T (x)−DK,T (xi)) = +∞.

Corollary 5.7. Let T be a nonempty set of (rational) prime numbers. The arithmetic subderivative
DQ,T is p-adically continuous at x = 0.

Theorem 5.8. Let K/Q be a number field and p a prime ideal of OK . Let T be a nonempty set
of prime ideals in OK . The arithmetic subderivative DK,T : K → K is not strictly differentiable
(with respect to the ultrametric | · |νp) at 0.

Proof. Let L/K be a finite extension such that L/Q is Galois. Let P be a prime ideal of OL such
that P | p | p.

We prove this theorem in two cases. First, we assume that there exists a prime ideal p′ ∈ T

such that p′ | p. Let mp be the number of prime ideals in TL/K that divide p. For positive integer
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i ≥ 1, define ui = pi+1, vi = pi. It is clear that ui ̸= vi and (ui, vi) converges to (0, 0) p-adically.
We can compute the difference quotient

ΦDK,T (ui, vi) =
DK,T (ui)−DK,T (vi)

ui − vi
=

DL,TL/K
(ui)−DL,TL/K

(vi)

ui − vi

=

(i+1)pi+1mp

pg(p,L)
− ipimp

pg(p,L)

pi+1 − pi
=

mp

g(p, L)

(i+ 1)p− i

p2 − p
.

The p-adic valuation of ΦDK,T (ui, vi) is greater than or equal to νp(mp)− νp(g(p, L)) if p | i and
is equal to νp(mp) − νp(g(p, L)) − 1 if p | i. Hence ΦDK,T (ui, vi) does not have a limit as the
sequence (ui, vi) → (0, 0).

Second, we assume that there does not exist a prime ideal p′ ∈ T such that p′ | p. Let q ∈ T

be such that q ∤ p and Q ∈ TL/K such that Q | q | q. Let mq be the number of prime ideals in
TL/K that divide q. For positive integer i ≥ 1, define ui = (pq)i+1, vi = (pq)i. It is clear that
ui ̸= vi and (ui, vi) converges to (0, 0) p-adically. We can compute the difference quotient

ΦDK,T (ui, vi) =
DK,T (ui)−DK,T (vi)

ui − vi
=

DL,TL/K
(ui)−DL,TL/K

(vi)

ui − vi

=

(i+1)(pq)i+1mq

qg(q,K)
− i(pq)imq

qg(q,K)

(pq)i+1 − (pq)i
=

mq

g(q,K)

(i+ 1)pq − i

pq2 − q
.

The p-adic valuation of ΦDK,T (ui, vi) is greater than or equal to νp(mq)− νp(g(q,K))+1 if p | i
and is equal to νp(mq) − νp(g(q,K)) if p | i. Hence ΦDK,T (ui, vi) does not have a limit as the
sequence (xi, yi) → (0, 0).

Theorem 5.9. Let K/Q be a number field of degree n. Let p be a prime ideal of OK with p | p.
Let {p} ≠ T be a nonempty set of prime ideals in OK such that there exists a prime ideal in T that
does not divide p. Then the arithmetic subderivative DK,T : K → K is p-adically discontinuous
at every nonzero x ∈ K.

Proof. We first assume K/Q is Galois. For each prime q ∈ P, let rq be the number of prime ideals
q ∈ T such that q | q. Let PT := {q ∈ P | rq ̸= 0, q ̸= p} and we know 0 ≤ νp(g(q,K)) ≤ νp(n)

for all q ∈ PT . Let q0 ∈ PT be a prime such that νp(g(q0, K)) = min{νp(g(q,K)) | q ∈ PT}.
Let M := max{νp(j) : 1 ≤ j ≤ n} + 1. For each integer i ≥ 1, the Dirichlet’s theorem
on arithmetic progression implies there are infinitely many primes in the arithmetic progression
qp

M

0 , qp
M

0 +pi, qp
M

0 +2pi, . . .. Set n0 := 0. For each i ≥ 1, let ni > ni−1 be a positive integer such
that qi := qp

M

0 + nip
i is a prime, that is, one prime from each arithmetic progression. Hence we

know that p, q0, q1, q2, . . . is a list of pairwise distinct prime numbers. Let xi := qp
M

0 x/qi ∈ K.
One can show that

lim
i→+∞

νp(x− xi) = lim
i→+∞

νp

(xnip
i

qi

)
= lim

i→+∞
νp(xnip

i) = +∞.

This means that the sequence xi converges to x p-adically. We now show that DK,T (xi) does not
converge to DK,T (x) p-adically. We have
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DK,T (x)−DK,T (xi) = DK,T (x)−
(qpM0

qi
DK,T (x) + xDK,T

(qpM0
qi

))
=

nip
i

qi
DK,T (x)− x

DK,T (q
pM

0 )qi − qp
M

0 DK,T (qi)

q2i

=
nip

i

qi
DK,T (x)−

xrq0p
Mqp

M−1
0

g(q0, K)qi
+

xqp
M

0 DK,T (qi)

q2i
.

We analyze the p-adic valuation of each of three summands separately. For the first summand,
we have

lim
i→+∞

νp

(nip
i

qi
DK,T (x)

)
= lim

i→+∞
νp(p

i) = +∞.

For the second summand, as i ≫ 0, we have

νp

(xrq0pMqp
M−1

0

g(q0, K)qi

)
= νp

( xrq0p
M

g(q0, K)

)
= νp

( xrq0
g(q0, K)

)
+M.

For the third summand, if qi /∈ PT , then DK,T (qi) = 0 so it has no contribution to the p-adic
valuation. On the other hand, if qi ∈ PT , then we have

νp

(xqpM0 DK,T (qi)

q2i

)
= νp

( xqp
M

0 rqi
g(qi, K)q2i

)
= νp

( xrqi
g(qi, K)

)
.

Since 1 ≤ rqi ≤ n, we know that M > νp(rqi) by definition. We also know that νp(g(q0, K)) ≤
νp(g(qi, K)) for all i ≥ 1. Hence

νp

( xrq0
g(q0, K)

)
+M > νp

( xrqi
g(qi, K)

)
.

This implies that

νp(DK,T (x)−DK,T (xi)) =

νp

(
xrqi

g(qi,K)

)
, if qi ∈ PT ;

νp

(
xrq0

g(q0,K)

)
+M, if qi /∈ PT .

This implies that
lim

i→+∞
νp(DK,T (x)−DK,T (xi)) ̸= +∞.

Now we assume that K/Q is not necessarily Galois. Let L/K be a finite extension such that
L/Q is Galois, and P a prime ideal of OL such that P | p. Since T contains a prime ideal that
does not divide p, we know that TL/K also contains a prime ideal that does not divide p. Let
xi ∈ K be defined as above. Then we know that xi converges to x p-adically in K, and thus
P-adically in L since νp and νP agree on K. Since L/Q is Galois, we know that

lim
i→+∞

(νP(DL,TL/K
(xi)−DL,TL/K

(x))) ̸= +∞.

Hence

lim
i→+∞

(νp(DK,T (xi)−DK,T (x)) = lim
i→+∞

(νP(DL,TL/K
(xi)−DL,TL/K

(x))) ̸= +∞.

This shows that DK,T is discontinuous at x.
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Corollary 5.10. Let {p} ≠ T be a nonempty set of prime numbers. The arithmetic subderivative
DQ,T is p-adically discontinuous at any nonzero x ∈ Q.

Proof. Apply Theorem 5.9 by taking K = Q and p = (p).

Remark 5.11. Corollaries 5.7 and 5.10 together give answers to all open questions about p-adic
continuity and discontinuity of arithmetic subderivative over Q listed in [7, Section 7].

The only case that is left for consideration is when all prime ideals in T sit above the same p.
This case will be fully answered by the next theorem when we assume T is finite.

Theorem 5.12. Let K/Q be a number field of degree n. Let p be a prime ideal of OK with p | p.
Let {p} ≠ T be a nonempty finite set of prime ideals in OK . Then the arithmetic subderivative
DK,T : K → K is p-adically discontinuous at any nonzero x ∈ K.

Proof. We first assume K/Q is Galois. Let T \ {p} = {p1, . . . , pn}. By the Chinese remainder
theorem, for each i ≥ 1, there exists xi ∈ K such that νp(1−xi) = i, νp1(xi) = 1, and νpj(xi) = 0

for 2 ≤ j ≤ n. This implies that νp(xi) = 0. Hence for all i ≥ 1, we have

DK,T (xi) =
xi

p1g(p1, K)
.

The sequence xix converges to x p-adically because as i → +∞, we have

νp(x− xix) = νp(1− xi) + νp(x) → +∞.

On the other hand, DK,T (xix) does not converge to DK,T (x) p-adically because as i ≫ 0, we
have

νp(DK,T (x)−DK,T (xix)) = νp(DK,T (x)− xiDK,T (x)− xDK,T (xi))

= νp

(
DK,T (x)(1− xi)−

xxi

p1g(p1, K)

)
= νp(x)− νp(p1)− νp(g(p1, K)).

Hence
lim

i→+∞
νp(DK,T (x)−DK,T (xix)) ̸= +∞,

and DK,T is discontinuous at x.
If K/Q is not necessarily Galois, then one can prove that DK,T is discontinuous at x using

the same strategy as in Theorem 5.9.
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