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Abstract: This research work presents the topic of infinite multisets, their basic properties and 

cardinality from a somewhat different perspective. In this work, a new property of multisets,  

‘m-cardinality’, is defined using multiset functions. M-cardinality unifies and generalizes the 

definitions of cardinality, injection, bijection, and surjection to apply to multisets. M-cardinality 

takes into account both the number of distinct elements in a multiset and the number of copies of 

each element (i.e., the multiplicity of the elements). Based on m-cardinality, ‘m-cardinal numbers’ 

are defined as a generalization of cardinal numbers in the context of multisets. Some properties 

of m-cardinal numbers associated with finite and infinite msets have been researched. Concrete 

examples of transfinite m-cardinal numbers are given, corresponding to infinite msets which are 

less than ℵ0 (the cardinality of the countably infinite set). It has been established that between 

finite numbers and ℵ0 there exist hierarchies of transfinite m-cardinals, corresponding to infinite 

msets. Furthermore, there are examples of infinite msets with negative multiplicity that have a 

cardinality less than zero. We prove that there is a decreasing sequence of transfinite m-cardinal 

numbers, corresponding to infinite msets with negative multiplicity, and in this sequence, there is 

not a smallest transfinite m-cardinal number.   
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1 Introduction 

In mathematics, a multiset (shortened to mset) is a modification of the concept of a set. Unlike 

sets, in msets each element may occur more than once. The multiplicity of an element is defined 

as the number of times (number of copies) it occurs in the mset. For example, in the mset 

⦃𝑎, 𝑎, 𝑏, 𝑐⦄, the element 𝑎 has multiplicity 2, and the two elements 𝑏, 𝑐 have multiplicity 1. 

Multiple occurrences of an element in an mset are treated without preference [7]. The same 

elements in the mset (in this case the elements 𝑎, 𝑎) are indistinguishable from one another. 

This research work presents the topic of infinite msets, their basic properties and cardinality. 

A definition of msets is given in the first part of the work and the basic operations and relations 

with them are presented. By means of the introduced operations with msets, the possibility of 

getting msets with negative and even fraction multiplicity is illustrated. The present article 

proposes broadening the concept of cardinality so that this concept is applicable to finite and 

infinite msets. A new property of multisets, ‘m-cardinality’, is defined using multiset functions. 

Relations are introduced which allow comparing finite and infinite msets and defining their  

m-cardinality. Some of the basic properties of these relations are formulated and proved. In the 

second part of the work the m-cardinality of infinite msets is investigated, comparisons are made, 

and the m-cardinality of concrete msets is determined. The existence of still unresearched 

hierarchies of infinities (corresponding to infinite msets) with m-cardinality less than the cardinality 

of a countably infinite set (ℵ0), has been established. Therefore, between finite numbers and ℵ0 

there is an unlimited number of different transfinite m-cardinals, corresponding to infinite msets.  

2 Definitions and properties 

All elements of the viewed msets are taken in a fixed set 𝑈 which we will call a universe. An 

element of 𝑈 that does not belong to a given mset will naturally have multiplicity of 0 in this mset.  

An mset 𝐴  can be formally defined as an ordered pair     

𝐴 = ⦃𝐴∗, 𝑚𝐴⦄, 

where 𝐴∗ is a given set. Here 𝑚𝐴: 𝐴
∗ → 𝕂≠0 is a function giving each element its multiplicity 

from 𝐴∗ to a class 𝕂≠0 of non-zero rational numbers and non-zero cardinal numbers (𝑚𝐴 ≠ 0). 

For each 𝑎 ∈ 𝐴∗, 𝑚𝐴(𝑎) is the characteristic value of 𝑎 in 𝐴 and indicates the number of 

occurrences of the element 𝑎 in 𝐴. (Hereon, msets will be denoted with ⦃ ⦄ brackets, and traditional 

sets will be denoted with { } brackets.) In fact, 𝐴∗ is the set of all distinguishable (distinct) elements 

of an mset 𝐴 and is called its support or root set: 

𝐴∗ ≔ {𝑥 ∈ 𝑈 | 𝑚𝐴 (𝑥) ≠ 0}.                                                   (1) 

In the present work, the root set 𝐴∗ is a countable set (finite or infinite). The mset will also be 

written in the following way:  

𝐴 = ⦃𝑎⦄𝑚𝐴
= ⦃𝑎1, 𝑎2, 𝑎3, . . . ⦄𝑚𝐴  (𝑎1),𝑚𝐴 (𝑎2),𝑚𝐴 (𝑎3),...  . 

The root set will also be denoted in the following way: 

𝐴∗ = ⦃𝑎1, 𝑎2, 𝑎3, . . . ⦄𝑚𝐴 (𝑎1),𝑚𝐴 (𝑎2),𝑚𝐴 (𝑎3),...
∗ = {𝑎1, 𝑎2, 𝑎3, . . . }. 
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The cardinality of the root set 𝐴∗ is denoted by |𝐴∗| = |⦃𝑎1, 𝑎2, 𝑎3, . . . ⦄𝑚𝐴 (𝑎1),𝑚𝐴 (𝑎2),𝑚𝐴 (𝑎3),...
∗|.  

Let 𝑎 appear 𝑚 times in the mset 𝐴. It is denoted by 𝑎 ∈𝑚 𝐴. Let ⦃𝑥⦄𝑡 denote the mset that 

contains exactly 𝑡 copies of 𝑥 and nothing else. 

We will call the sum of the multiplicities of all elements of the mset total multiplicity of the 

mset, and we will denote it in the following way:  

𝜇(𝐴) = 𝜇(⦃𝑎1, 𝑎2, 𝑎3, . . . ⦄𝑚𝐴  (𝑎1),𝑚𝐴 (𝑎2),𝑚𝐴 (𝑎3),...
) = ∑ 𝑚𝐴 (𝑎).𝑎∈𝐴∗                 (2) 

Let us look at msets 𝐴 = ⦃𝐴∗ ,𝑚𝐴⦄ and  𝐵 = ⦃𝐵∗ ,𝑚𝐵 ⦄. We will define the following relations: 

𝐴 is an msubset of 𝐵, denoted by 𝐴 ⊆  𝐵, if 

𝑚𝐴 (𝑥) ≤ 𝑚𝐵 (𝑥), ∀𝑥 ∈ 𝐴∗.  

Two msets 𝐴 and 𝐵 are equal, denoted by 𝐴 =  𝐵, if   

𝑚𝐴 (𝑥) = 𝑚𝐵  (𝑥), 𝑥 ∈ 𝐴∗  ∨ 𝑥 ∈ 𝐵∗ .  

The union 𝐶 of two msets 𝐴 and 𝐵 is defined as: 

𝐶 = 𝐴 ∪ 𝐵 = ⦃𝐴∗ ∪ 𝐵∗, max (𝑚𝐴, 𝑚𝐵)⦄. 

The intersection 𝐶 between two msets 𝐴 and 𝐵 is defined as: 

𝐶 = 𝐴 ∩ 𝐵 = ⦃𝐴∗ ∩ 𝐵∗ ,min (𝑚𝐴,𝑚𝐵)⦄. 

The sum 𝐶 of these two msets 𝐴 and 𝐵 is defined as: 

𝐶 = 𝐴 + 𝐵 = ⦃𝐴∗ ∪ 𝐵∗, 𝑚𝐴 + 𝑚𝐵⦄. 

The difference 𝐶 of these two msets 𝐴 and 𝐵 is defined as: 

𝐶 = 𝐴–𝐵 = ⦃𝐴∗ ∪ 𝐵∗, 𝑚𝐴 − 𝑚𝐵⦄. 

Since the range of the characteristic function is the class of all of non-zero rational numbers 

and non-zero cardinal numbers, there is no limitation on negative values of the multiplicity in the 

last operation – the difference of the msets. It is interesting to note that the limitation on negative 

values of the multiplicity can be ignored without considerably affecting the other properties and 

operations. These generalizations of the msets with negative multiplicity are examined in detail 

in many research works [2, 3, 5]. 

In this way, we can examine msets with a negative multiplicity (sometimes called a signed 

mset or, hybrid/shadow mset [3, 9]), a fraction multiplicity and even a multiplicity which is a 

random real number (for example, real-valued msets, fuzzy sets [2]). The negative multiplicity is, 

in fact, the removing or deleting of an element from the mset.   

For example, in the mset 𝐴 = ⦃𝑎, 𝑏, 𝑐⦄2,–3,–2 the element 𝑎 appears twice, the element 𝑏 is 

removed three times, and the element 𝑐 is removed twice. If we look at the mset 𝐵 = ⦃𝑎, 𝑏, 𝑐⦄1,4,2, 

then    

𝐴 + 𝐵 = ⦃𝑎, 𝑏, 𝑐⦄3,1,0 = ⦃𝑎, 𝑏⦄3,1. 

Let us look at the mset 𝐷 = ⦃𝑎, 𝑑⦄
1,
1

2

. Here the element 𝑑 has a fraction multiplicity which is 

equal to 
1

2
. We will have:  

𝐷 + 𝐷 = 2𝐷 = ⦃𝑎, 𝑑⦄2,1. 

The empty mset Ø = ⦃ ⦄ is the unique mset with an empty support and has total multiplicity 0. 

The empty mset is an msubset of any possible mset: ∀𝐴 (Ø ⊆ 𝐴).  
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Let 𝐴 = ⦃𝐴∗, 𝑚𝐴 ⦄ and  𝐵 = ⦃𝐵∗, 𝑚𝐵 ⦄ be two msets. Let us denote: 

𝐴̅ = −𝐴 = ⦃𝐴∗, −𝑚𝐴 ⦄ and 𝐵̅ = −𝐵 = ⦃𝐵
∗, −𝑚𝐵 ⦄. 

We will call msets 𝐴̅ and 𝐵̅ absolute complement msets.  

Theorem 2.1. It is easy to prove that De Morgan properties are valid: 

𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ = 𝐴̅ ∩ 𝐵̅ ,                                                                 (3) 

𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ = 𝐴̅ ∪ 𝐵 ̅.                                                                 (4) 

Proof. Indeed,  

𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ = ⦃𝐴∗ ∪ 𝐵∗ ,max(𝑚𝐴,𝑚𝐵)⦄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ⦃𝐴∗ ∪ 𝐵∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , – max(𝑚𝐴,𝑚𝐵)⦄ 

= ⦃𝐴∗ ∩ 𝐵∗,min(−𝑚𝐴, −𝑚𝐵)⦄ = 𝐴̅ ∩ 𝐵̅ 

and 

𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ = ⦃𝐴∗ ∩ 𝐵∗, min(𝑚𝐴,𝑚𝐵)⦄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ⦃𝐴∗ ∩ 𝐵∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , – min(𝑚𝐴, 𝑚𝐵)⦄ 

= ⦃𝐴∗ ∪ 𝐵∗ ,max(−𝑚𝐴, −𝑚𝐵)⦄ = 𝐴̅ ∪ 𝐵̅ .    

Let 𝛺 denote the empty mset, which contains null multiplicities for all elements in the 

respective support [5]. We will have: 

𝛺 = ⦃𝑥1, 𝑥2, . . . , 𝑥𝑁⏟        
𝑁 elements

⦄0,0,...,0⏟    
𝑁 times

= ⦃ ⦄ .                                                  (5) 

The absolute complement can be formally defined as follows: 

𝐴̅ = 𝛺 − 𝐴.                                                                       (6) 

(In the definition of the absolute complement, the empty mset has been used instead of the 

universe mset [5].)  

The Cartesian product of two msets 𝐴 and 𝐵 is defined as [6]: 

𝐴 ⨯ 𝐵 = ⦃𝑎, 𝑏, (𝑎, 𝑏)⦄𝑚𝐴,𝑚𝐵,𝑘  , where 𝑘 = 𝑚𝐴𝑚𝐵 . 

The entry of the form ⦃𝑎, 𝑏, (𝑎, 𝑏)⦄𝑚𝐴,𝑚𝐵,𝑘  denotes that 𝑎 is repeated 𝑚𝐴 times, 𝑏 is repeated 

𝑚𝐵 times and the pair (𝑎, 𝑏) is repeated 𝑘 times. The counts of the members of the domain and 

codomain vary with respect to the counts of the 𝑎 coordinate and 𝑏 coordinate in 

⦃𝑎, 𝑏, (𝑎, 𝑏)⦄𝑚𝐴,𝑚𝐵,𝑘. We introduce the notation 𝑚1(𝑎, 𝑏) and 𝑚2(𝑎, 𝑏), where 𝑚1(𝑎, 𝑏) denotes 

the count of the first coordinate in the ordered pair (𝑎, 𝑏) and 𝑚2(𝑎, 𝑏) denotes the count of the 

second coordinate in the ordered pair (𝑎, 𝑏). 

Example 2.1. If 𝐴 = ⦃𝑥, 𝑦⦄2,3, 𝐵 = ⦃𝑧⦄4 are two msets, then  

𝐴 ⨯ 𝐵 = ⦃𝑥, 𝑦⦄2,3 ⨯ ⦃𝑧⦄4 = ⦃𝑥, 𝑧, (𝑥, 𝑧) ⦄2,4,8, ⦃𝑦, 𝑧, (𝑦, 𝑧) ⦄3,4,12 . 

The Cartesian product of three or more nonempty msets is defined by generalizing the definition 

of the Cartesian product of two msets. 
 

An msubset 𝑅 of 𝐴 ⨯ 𝐴 is said to be an mset relation on 𝐴 if every member ⦃𝑎, 𝑏⦄𝑚𝐴,𝑚𝐵
 of 

𝑅 has a count, product of 𝑚1(𝑎, 𝑏) and 𝑚2(𝑎, 𝑏), [6]. We denote ⦃𝑎⦄𝑚𝐴
 related to ⦃𝑏⦄𝑚𝐵

 by 

⦃𝑎⦄𝑚𝐴
𝑅⦃𝑏⦄𝑚𝐵

. 
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The Domain and Range of the mset relation 𝑅 on 𝐴 are defined as follows [6]:  

Dom 𝑅 = [⦃ 𝑎 ∈𝑡 𝐴 ∶ ∃ 𝑏 ∈𝑠 𝐴 such that ⦃𝑎⦄𝑡𝑅⦃𝑏⦄𝑠⦄ where 𝑚𝐷𝑜𝑚𝑅(𝑎)

=  sup {𝑚1(𝑎, 𝑏) ∶  𝑎 ∈
𝑡 𝐴],  

Ran 𝑅 = ⦃ 𝑏 ∈𝑠 𝐴 ∶ ∃ 𝑎 ∈𝑡 𝐴 such that ⦃𝑎⦄𝑡𝑅⦃𝑏⦄𝑠⦄ where 𝑚𝑅𝑎𝑛𝑅(𝑏)

=  sup {𝑚2(𝑎, 𝑏) ∶  𝑏 ∈
𝑠 𝐴]. 

An mset relation 𝑓 is called an mset function if for every element ⦃𝑎⦄𝑟 in Dom 𝑓, there is 

exactly one ⦃𝑏⦄𝑙 in Ran 𝑓 such that ⦃𝑎, 𝑏⦄𝑟,𝑙 is in 𝑓 with the pair occurring only 𝑚1(𝑎, 𝑏) 

times, [6]. For functions between arbitrary msets, it is essential that images of indistinguishable 

elements of the domain must be indistinguishable elements of the range but the images of the 

distinct elements of the domain need not be distinct elements of the range. 

Most authors [1, 4, 6, 8] identify the cardinality of the mset with its total multiplicity. But the 

two notions have different significance and meaning. In the set theory, if two sets have the same 

cardinalities, then a bijection (one-to-one correspondence) can be established between them, and 

vice versa. A similar dependence would be expected in the mset theory, too, when examining two 

msets with the same total multiplicities. The following elementary example shows that it is not 

the case. The two msets ⦃𝑎⦄3 and ⦃𝑎, 𝑏⦄2,1 have the same total multiplicities but obviously, 

a bijection between the corresponding root sets {𝑎} and {𝑎, 𝑏} cannot be found (as it is in the set 

theory). This means that the notion of total multiplicity in the mset theory is not a generalization 

of the notion of cardinality in the set theory. Furthermore, if we examine infinite msets, then we 

will obtain infinite total multiplicities, but this will not allow us to compare these msets in a way 

analogous to comparing infinite sets. The infinite total multiplicity of the mset may be due to the 

infinite cardinality of the root sets, or to the infinite multiplicity of some of the elements of the 

mset, or both. In the case of infinite msets a new concept of cardinality is needed, similar to the 

concept of the cardinality of infinite sets. For this purpose, we will define the notions of  

m-injection (one-to-one), m-surjection (onto), m-bijection (one-to-one and onto) and  

m-cardinality which are applicable to finite and infinite msets, and are a generalization of the 

corresponding notions of the set theory. On the basis of these notions we will define the binary 

relations ‘≺ , ≍, ≻’ , through which we will compare the m-cardinality of the finite and infinite 

msets.  
 

Let 𝐴 = ⦃𝐴∗, 𝑚𝐴 ⦄ and 𝐵 = ⦃𝐵∗,𝑚𝐵 ⦄ be two msets.  
 

Definition I. The mset function 𝑓: 𝐴 → 𝐵 is an m-injection if and only if 

(i) 𝑓: 𝐴∗ → 𝐵∗ is an injection and 

(ii) 𝜇(𝐴) ≤ 𝜇(𝐵), i. e. , ∑ 𝑚𝐴 (𝑎) ≤ ∑ 𝑚𝐵 (𝑏).

𝑏∈𝐵∗𝑎∈𝐴∗

 

 

Definition II. The mset function 𝑓: 𝐴 → 𝐵 is an m-bijection if and only if 

(i) 𝑓: 𝐴∗ → 𝐵∗ is a bijection and 

(ii) 𝜇(𝐴) = 𝜇(𝐵), i. e. , ∑ 𝑚𝐴 (𝑎) = ∑ 𝑚𝐵 (𝑏).

𝑏∈𝐵∗𝑎∈𝐴∗
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Definition III. The mset function 𝑓: 𝐴 → 𝐵 is an m-surjection if and only if 

(i) 𝑓: 𝐴∗ → 𝐵∗ is a surjection and 

(ii) 𝜇(𝐴) ≥ 𝜇(𝐵), i. e. , ∑ 𝑚𝐴 (𝑎) ≥ ∑ 𝑚𝐵 (𝑏).

𝑏∈𝐵∗𝑎∈𝐴∗

 

The modification of the definitions for injection, bijection, and surjection allows for the 

application of the concept of cardinality to msets in a similar way as in set theory. 
 

For msets 𝐴 and 𝐵, we define the binary relations: 

 

Definition IV. 𝐴 ≼ 𝐵 means that there is an m-injection 𝑓:𝐴 → 𝐵 (or equivalently there exists an 

m-surjection 𝑔:𝐵 → 𝐴). In this case we will say that the m-cardinality of 𝐴 is less than or equal 

to the m-cardinality of 𝐵 and we will denote it in the following way: |𝐴| ≤ |𝐵|.  
 

Definition V. 𝐴 ≍ 𝐵 means that there is an m-bijection 𝑓: 𝐴 → 𝐵. In this case we will say that the 

m-cardinality of 𝐴 is equal to the m-cardinality of 𝐵 and will denote it in the following way:  

 
|𝐴| = |𝐵|. 
 

Definition VI. 𝐴 ≺ 𝐵 means that 𝐴 ≼ 𝐵 ∧ ∼ 𝐴 ≍ 𝐵. In this case we will say that the  

m-cardinality of 𝐴 is less than the m-cardinality of 𝐵 and will denote it in the following way: 

|𝐴| < |𝐵|.  
 

Therefore, the ‘m-cardinality’ is determined by the total multiplicity of the msets and by the 

cardinality of the root sets. 

The Definitions I–III, which we propose, differ minimally from the definitions for injection, 

bijection and surjection ([1], p. 46, [6], p.765). For example, in the definitions for injection, 

bijection and surjection, the conditions (ii)  ∑ 𝑚𝐴(𝑎) ⋛ ∑ 𝑚𝐵(𝑏)𝑏∈𝐵∗𝑎∈𝐴∗  are replaced with the 

conditions ∀𝑥[𝑥 ∈ 𝐴∗ → 𝑚1 (𝑥, 𝑓(𝑥) ) ⋛ 𝑚2 (𝑥, 𝑓(𝑥) )], respectively (see ([1], p. 46, [6], p.765). 

By introducing ‘m-cardinality’, we generalize the definitions of cardinality, injection, 

bijection, and surjection to apply to msets. 

Figures 1.1–1.12 below present different cases that illustrate the similarities and differences 

between injection, surjection, bijection and m-injection, m-surjection, m-bijection respectively. 
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1.1. Injection and M-injection 1.2. Injection and M-injection 

 

a                     x 

 

 

 

a                     x 

 

 

 

 

                       x 

 

 

 

𝑓: ⦃𝑎⦄2 → ⦃𝑥⦄3 , 
𝑓 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄2,3,2 . 

 
|⦃𝑎⦄2

∗| = |⦃𝑥⦄3
∗| = 1 ;  

𝑚1(𝑎, 𝑥) = 2 < 𝑚2(𝑎, 𝑥) = 3 ; 
𝜇(⦃𝑎⦄2) = 2 < 𝜇(⦃𝑥⦄3) = 3 . 

 

a                     x 

 

 

b                     y 

 

 
 

                       y 

 

 

𝑓: ⦃𝑎, 𝑏⦄1,1 → ⦃𝑥, 𝑦⦄1,2 , 

𝑓 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄1,1,1, ⦃𝑏, 𝑦, (𝑏, 𝑦)⦄1,2,1. 

 

|⦃𝑎, 𝑏⦄1,1
∗| = |⦃𝑥, 𝑦⦄1,2

∗| = 2 ; 

𝑚1(𝑎, 𝑥) = 𝑚2(𝑎, 𝑥) = 1 , 

𝑚1(𝑏, 𝑦) = 1 < 𝑚2(𝑏, 𝑦) = 2 ; 

𝜇(⦃𝑎, 𝑏⦄1,1) = 2 < 𝜇(⦃𝑥, 𝑦⦄1,2) = 3 . 

 

1.3. M-injection, but not injection 1.4. M-injection, but not injection  

 

 

a                     x 

 
 

 

                   a 

 
b                     y 

 
 

                      z 

 

 

 

 

𝑓: ⦃𝑎, 𝑏⦄2,1 → ⦃𝑥, 𝑦, 𝑧⦄1,1,1 , 

𝑓 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄2,1,2, ⦃𝑏, 𝑦, (𝑏, 𝑦)⦄1,1,1. 
 

|⦃𝑎, 𝑏⦄2,1
∗| = 2 < |⦃𝑥, 𝑦, 𝑧⦄1,1,1

∗| = 3 ;  
𝑚1(𝑎, 𝑥) = 2 > 𝑚2(𝑎, 𝑥) = 1 , 
𝑚1(𝑏, 𝑦) = 𝑚2(𝑏, 𝑦) = 1 ; 
𝜇(⦃𝑎, 𝑏⦄2,1) = 𝜇(⦃𝑥, 𝑦, 𝑧⦄1,1,1) = 3 . 

 

                   a                     x 

 

 

         
                   a                    
 

                                          y 

 
 

                                          y 

 

 

 

 

𝑓: ⦃𝑎⦄2 → ⦃𝑥, 𝑦⦄1,2 , 

𝑓 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄2,1,2. 
 

|⦃𝑎⦄2
∗| = 1 < |⦃𝑥, 𝑦⦄1,2

∗| = 2 ;  
𝑚1(𝑎, 𝑥) = 2 > 𝑚2(𝑎, 𝑥) = 1 ; 

𝜇(⦃𝑎⦄2) = 2 < 𝜇(⦃𝑥, 𝑦⦄1,2) = 3 . 
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1.5. Surjection and M-surjection 1.6. Surjection and M-surjection 

 

                   a                    x 

 
 

 

                   a 

 

 

 

                    a                   x 

 

 

𝑓: ⦃𝑎⦄3 → ⦃𝑥⦄2 , 

𝑓 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄3,2,3. 
 

|⦃𝑎⦄3
∗| = |⦃𝑥⦄2

∗| = 1 ;  

𝑚1(𝑎, 𝑥) = 3 > 𝑚2(𝑎, 𝑥) = 2 ; 

𝜇(⦃𝑎⦄3) = 3 > 𝜇(⦃𝑥⦄2) = 2 . 

 

                   a                    x 

 

 

 
 

                   a 

 
 

 

                    b                    y 

 

 

𝑓: ⦃𝑎, 𝑏⦄2,1 → ⦃𝑥, 𝑦⦄1,1 , 
𝑓 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄2,1,2, ⦃𝑏, 𝑦, (𝑏, 𝑦)⦄1,1,1. 

 

|⦃𝑎, 𝑏⦄2,1
∗| = |⦃𝑥, 𝑦⦄1,1

∗| = 2 ;  
𝑚1(𝑎, 𝑥) = 2 > 𝑚2(𝑎, 𝑥) = 1 , 
𝑚1(𝑏, 𝑦) = 𝑚2(𝑏, 𝑦) = 1 ; 
𝜇(⦃𝑎, 𝑏⦄2,1) = 3 > 𝜇(⦃𝑥, 𝑦⦄1,1) = 2 . 

 

1.7. M-surjection but not surjection 1.8. M-surjection but not surjection  

 

                   a                    x   

 

 

 

                   b                    x 

 

 

 

 

                   c                     y 

 

 

𝑓: ⦃𝑎, 𝑏, 𝑐⦄1,1,1 → ⦃𝑥, 𝑦⦄2,1 , 

𝑓 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄1,2,1, ⦃𝑏, 𝑥, (𝑏, 𝑥)⦄1,2,1, 

⦃𝑐, 𝑦, (𝑐, 𝑦)⦄1,1,1 . 
 

|⦃𝑎, 𝑏, 𝑐⦄1,1,1
∗| = 3 > |⦃𝑥, 𝑦⦄2,1

∗| = 2 ;  

𝑚1(𝑎, 𝑥) = 1 < 𝑚2(𝑎, 𝑥) = 2 , 

𝑚1(𝑏, 𝑥) = 1 < 𝑚2(𝑏, 𝑥) = 2 , 

𝑚1(𝑐, 𝑦) = 𝑚2(𝑐, 𝑦) = 1 ; 

𝜇(⦃𝑎, 𝑏, 𝑐⦄1,1,1) = 𝜇(⦃𝑥, 𝑦⦄2,1) = 3. 

 

                   a                    x 

 

 

 

                   b                    x 

 

 

 

 

                    c                    y 

 

 

𝑓: ⦃𝑎, 𝑏, 𝑐⦄1,1,1 → ⦃𝑥, 𝑦⦄2,1 , 

𝑓 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄1,2,1, ⦃𝑏, 𝑦, (𝑏, 𝑦)⦄1,1,1, 

⦃𝑐, 𝑦, (𝑐, 𝑦)⦄1,1,1 .  
 

|⦃𝑎, 𝑏, 𝑐⦄1,1,1
∗| = 3 > |⦃𝑥, 𝑦⦄2,1

∗| = 2 ;  

𝑚1(𝑎, 𝑥) = 1 < 𝑚2(𝑎, 𝑥) = 2 , 

𝑚1(𝑏, 𝑦) = 𝑚2(𝑏, 𝑦) = 1 , 

𝑚1(𝑐, 𝑦) = 𝑚2(𝑐, 𝑦) = 1 ; 

𝜇(⦃𝑎, 𝑏, 𝑐⦄1,1,1) = 𝜇(⦃𝑥, 𝑦⦄2,1) = 3. 
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1.9. Bijection and m-bijection 1.10. Bijection and m-bijection 

 

a                     x 

 
 

 

a                     x 

 

 
 

b                     y 

 

 

𝑓: ⦃𝑎, 𝑏⦄2,1 → ⦃𝑥, 𝑦⦄2,1 , 

𝑓 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄2,2,2, ⦃𝑏, 𝑦, (𝑏, 𝑦)⦄1,1,1. 

|⦃𝑎, 𝑏⦄2,1
∗| = |⦃𝑥, 𝑦⦄2,1

∗| = 2 ;  

𝑚1(𝑎, 𝑥) = 𝑚2(𝑎, 𝑥) = 2 , 

𝑚1(𝑏, 𝑦) = 𝑚2(𝑏, 𝑦) = 1 ; 

𝜇(⦃𝑎, 𝑏⦄2,1) = 𝜇(⦃𝑥, 𝑦⦄2,1) = 3 . 

 

                    a                    x 

 

 

 
                    a                     y 

 

 

 

 

                    b                     y 

 

 
𝑓: ⦃𝑎, 𝑏⦄2,1 → ⦃𝑥, 𝑦⦄1,2 , 

𝑓 = ⦃𝑎, 𝑦, (𝑎, 𝑦)⦄2,2,2, ⦃𝑏, 𝑥, (𝑏, 𝑥)⦄1,1,1 . 

|⦃𝑎, 𝑏⦄2,1
∗| = |⦃𝑥, 𝑦⦄1,2

∗| = 2 ;  

𝑚1(𝑎, 𝑦) = 𝑚2(𝑎, 𝑦) = 2 , 

𝑚1(𝑏, 𝑥) = 𝑚2(𝑏, 𝑥) = 1 ; 

𝜇(⦃𝑎, 𝑏⦄2,1) = 𝜇(⦃𝑥, 𝑦⦄1,2) = 3 . 

 

1.11. M-bijection, but not bijection 1.12. M-bijection, but not bijection  

(only surjection) 

 

                   a                    x 

 

 
              x 

                   b 
 

 

 

                   b                    y 

 

 

        𝑓: ⦃𝑎, 𝑏⦄
1,2
→ ⦃𝑥, 𝑦⦄

2,1
 , 

𝑓 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄1,2,1, ⦃𝑏, 𝑦, (𝑏, 𝑦)⦄2,1,2. 

 

|⦃𝑎, 𝑏⦄1,2
∗| = |⦃𝑥, 𝑦⦄2,1

∗| = 2 ;  

𝑚1(𝑎, 𝑥) = 1 < 𝑚2(𝑎, 𝑥) = 2 , 

𝑚1(𝑏, 𝑦) = 2 > 𝑚2(𝑏, 𝑦) = 1 ; 

𝜇(⦃𝑎, 𝑏⦄1,2) = 𝜇(⦃𝑥, 𝑦⦄2,1) = 3 . 

 

              1                    1 

                    1 
 

                   2                     2 

                   2                         
 

                    3                    3 

                    3                     
 

                    ⁝                     ⁝ 
 

 

𝑓: ⦃1,2,3,… ⦄ 2,2,2,…⏟    
ℵ0 times

→ ⦃1,2,3,… ⦄ 1,1,1,…⏟    
ℵ0 times

= {1,2,3, . . .⏟    
ℵ0 elements

} = ℤ+, 

𝑓 =  ⦃1,1, (1,1)⦄2,1,2, ⦃2,2, (2,2)⦄2,1,2, ⦃3,3, (3,3)⦄2,1,2, …, 

|⦃1,2,3, . . .⏟    

ℤ+
⦄2,2,2,...⏟    

ℵ0

∗| = |⦃1,2,3, . . .⏟    

ℤ+
⦄1,1,1,...⏟    

ℵ0

∗| = ℵ0 ;  

𝑚1(1,1) = 2 > 𝑚2(1,1) = 1 , 

𝑚1(2,2) = 2 > 𝑚2(2,2) = 1 , 

𝑚1(3,3) = 2 > 𝑚2(3,3) = 1 ,… ; 

𝜇 (⦃1,2,3, . . .⏟    

ℤ+
⦄2,2,2,...⏟    

ℵ0

) = 𝜇 (⦃1,2,3, . . .⏟    

ℤ+
⦄1,1,1,...⏟    

ℵ0

) = ℵ0 . 

Figure 1. Comparison between injection, surjection, bijection  

and m-injection, m-surjection, m-bijection, respectively. 
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Msets with equal total multiplicities do not always have the same m-cardinalities. For example, 

the msets  {𝑎, 𝑏, 𝑐} and ⦃𝑥, 𝑦⦄2,1 both contain three elements, but {𝑎, 𝑏, 𝑐} ≻ ⦃𝑥, 𝑦⦄2,1, because  

the mset {𝑎, 𝑏, 𝑐} contains three different elements, and the mset ⦃𝑥, 𝑦⦄2,1 contains two  

different elements (i.e., the mset functions 𝑓1,2: ⦃𝑎, 𝑏, 𝑐⦄1,1,1 → ⦃𝑥, 𝑦⦄2,1 , 𝑓1 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄1,2,1,

⦃𝑏, 𝑥, (𝑏, 𝑥)⦄1,2,1, ⦃𝑐, 𝑦, (𝑐, 𝑦)⦄1,1,1  and 𝑓2 = ⦃𝑎, 𝑥, (𝑎, 𝑥)⦄1,2,1,  ⦃𝑏, 𝑦, (𝑏, 𝑦)⦄1,1,1,  ⦃𝑐, 𝑦, (𝑐, 𝑦)⦄1,1,1 

are m-surjective; see Figures 1.7 and 1.8).   

Furthermore, it is not always possible to compare two msets for their m-cardinality. For 

example, for the two msets ⦃𝑎, 𝑏⦄2,2 and {𝑥, 𝑦, 𝑧} none of the three relations is fulfilled, i.e.,  

⦃𝑎, 𝑏⦄2,2 ⊀ {𝑥, 𝑦, 𝑧} , ⦃𝑎, 𝑏⦄2,2 ⊁ {𝑥, 𝑦, 𝑧}, ⦃𝑎, 𝑏⦄2,2 ≭ {𝑥, 𝑦, 𝑧}. The reason for this is that there is 

neither an m-injection, nor an m-surjection between the two msets. Indeed, |⦃𝑎, 𝑏⦄2,2
∗
| = 2 

< |{𝑥, 𝑦, 𝑧}| = 3  and 𝜇(⦃𝑎, 𝑏⦄2,2) = 4 > 𝜇({𝑥, 𝑦, 𝑧}) = 3, i.e., Definitions I–VI are not fulfilled.   

Let us consider the function 

𝑓: ⦃1,2,3, … ⦄ 2,2,2,…⏟    
ℵ0 times

→ ⦃1,2,3,… ⦄ 1,1,1,…⏟    
ℵ0 times

= {1,2,3, . . .⏟    
ℵ0 elements

} = ℤ+,  

𝑓 =  ⦃1,1, (1,1)⦄2,1,2, ⦃2,2, (2,2)⦄2,1,2, ⦃3,3, (3,3)⦄2,1,2, … . 

This function is an m-bijection, but not a bijection (only a surjection), see Figure 1.12. If we define 

the m-cardinality of msets using the relations of injection, bijection, and surjection, then we will 

arrive at the inequality: 

|⦃1,2,3,… ⦄2,2,2,...⏟    
ℵ0

| > |{1,2,3, . . .⏟    
ℵ0

}|. 

However, this inequality is illogical. Considering that ⦃1,2,3,… ⦄2,2,2,...⏟    
ℵ0

= {1,2,3, . . .⏟    
ℵ0

} + {1,2,3, . . .⏟    
ℵ0

} 

and ℵ0 + ℵ0 = ℵ0, we should expect  

|⦃1,2,3,… ⦄2,2,2,...⏟    
ℵ0

| = |{1,2,3, . . .⏟    
ℵ0

}| = ℵ0. 

On the other hand, if we define the m-cardinality of msets using the relations of m-injection, 

m-bijection, and m-surjection, then we will arrive at the logical equality  

|⦃1,2,3,… ⦄2,2,2,...⏟    
ℵ0

| = |{1,2,3, . . .⏟    
ℵ0

}|. 

This example shows that it is more logical to define the m-cardinality of msets through the 

relations of m-injection, m-bijection, and m-surjection, rather than through the relations of 

injection, bijection, and surjection. 

If the mset 𝐴 is a traditional set, then the notion of m-cardinality will actually coincide with 

the notion of the cardinality of a set. Indeed, if 𝑚𝐴(𝑎) = 1, ∀𝑎 ∈ 𝐴
∗, i.e., 𝐴 = ⦃𝐴∗ ,𝑚𝐴 ⦄ = 𝐴

∗, 

then we will have: |𝐴| = |𝐴∗| = 𝜇(𝐴). 
 

Let there be two msets 𝐴 and 𝐵, with corresponding root sets 𝐴∗and 𝐵∗ and corresponding total 

multiplicities 𝜇(𝐴) and 𝜇(𝐵). The following properties follow from the above definitions. 
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Property I. If 𝜇(𝐴) = 𝜇(𝐵) and |𝐴∗| < |𝐵∗|, then 𝐴 ≺ 𝐵, i.e.,  |𝐴| < |𝐵|. 

Proof. If |𝐴∗| < |𝐵∗|, then the function 𝑓: 𝐴∗ → 𝐵∗ which maps elements of set 𝐴∗ to elements of 

set 𝐵∗ is an injection, and vice versa. Equivalently, if |𝐴∗| < |𝐵∗|, then the function 𝑔:𝐵∗ → 𝐴∗ 

is a surjection (the Partition Principle). Because |𝐴∗| ≠ |𝐵∗|, the function 𝑓:𝐴∗ → 𝐵∗ is not a 

bijection, hence 𝐴 ≭ 𝐵. (Equivalently, the function 𝑔:𝐵∗ → 𝐴∗ is not a bijection.) By condition, 

𝜇(𝐴) = 𝜇(𝐵). According to Definition I, the mset function 𝑓: 𝐴 → 𝐵 is an m-injection. 

(Furthermore, according to Definition III, the mset function 𝑔:𝐵 → 𝐴 is an m-surjection.) 

According to Definition IV and Definition VI, we will have 𝐴 ≺ 𝐵, by which we proved 

Property I.   

 

Property II. If |𝐴∗| = |𝐵∗| and 𝜇(𝐴) < 𝜇(𝐵), then 𝐴 ≺ 𝐵, i.e.,  |𝐴| < |𝐵|. 

Proof. If |𝐴∗| = |𝐵∗|, then the function 𝑓: 𝐴∗ → 𝐵∗ which maps elements of set 𝐴∗ to elements of 

set 𝐵∗, is a bijection (both injective and surjective), and vice versa. (Equivalently, if |𝐴∗| = |𝐵∗|, 

then the function 𝑔:𝐵∗ → 𝐴∗ is a bijection.) But by condition 𝜇(𝐴) < 𝜇(𝐵), hence 𝐴 ≭ 𝐵. 

According to Definition I, the mset function 𝑓: 𝐴 → 𝐵 is an m-injection. (Furthermore, according 

to Definition III, the mset function 𝑔: 𝐵 → 𝐴  is an m-surjection.) According to Definition IV and 

Definition VI, we will have  𝐴 ≺ 𝐵 by which we proved Property II.    

 

Property III. |𝐴̅| = −|𝐴| is fulfilled for msets 𝐴 and 𝐴̅ . If 𝜇(𝐴) = 0, then 𝐴̅ ≍ 𝐴, i.e.,  |𝐴̅| = |𝐴|. 

Proof. Since 𝐴̅ = −𝐴, and 𝐴∗ = 𝐴̅∗, |𝐴∗| = |𝐴̅∗|, so the function 𝑓: 𝐴∗ → 𝐴̅∗ is a bijection (both 

injective and surjective). (Equivalently, the function 𝑔: 𝐴̅∗ → 𝐴∗ is a bijection.) Furthermore, 

𝜇(𝐴̅) = −𝜇(𝐴), hence we will have: |𝐴̅| = |−𝐴| = −|𝐴|. If we assume that 𝜇(𝐴) = 0, then 

𝜇(𝐴̅) = 𝜇(𝐴), and, therefore, 𝐴̅ ≍ 𝐴.   

 

Property IV. Let us assume that |𝐴| < |𝐵| . If  𝜇(𝐴) = 𝜇(𝐵), then |𝐴̅| < |𝐵̅|.  If |𝐴∗| = |𝐵∗|, then 

|𝐴̅| > |𝐵̅|. 

Proof. It is clear that 𝐴̅∗ = 𝐴∗ , 𝐵̅∗ = 𝐵∗ , 𝜇(𝐴̅) = −𝜇(𝐴) , 𝜇(𝐵̅) = −𝜇(𝐵). Let us first suppose 

that 𝜇(𝐴) = 𝜇(𝐵). We will have 𝜇(𝐴̅) = 𝜇(𝐵̅). Since |𝐴| < |𝐵| , so in this case |𝐴∗| < |𝐵∗|  

(i.e., |𝐴̅∗| < |𝐵̅∗|.) Therefore, |𝐴̅| < |𝐵̅|.  

Now let us suppose that |𝐴∗| = |𝐵∗| (i.e., |𝐴̅∗| = |𝐵̅∗|). Since |𝐴| < |𝐵| , so in this case  

𝜇(𝐴) < 𝜇(𝐵) , i.e., 𝜇(𝐴̅) > 𝜇(𝐵̅). Therefore, |𝐴̅| > |𝐵̅|.  

 

We will introduce a new concept, ‘m-cardinal number’. The m-cardinal number describes the 

m-cardinality of a mset. If the considered mset is a traditional set, then the notion of m-cardinal 

number coincides with the notion of the cardinal number of a set. It is clear that ⦃𝑎⦄2, {𝑎} and 

{𝑎, 𝑏} have different m-cardinal numbers. It is easy to verify that according to Properties I and II, 

{𝑎} ≺ ⦃𝑎⦄2 ≺ {𝑎, 𝑏} is fulfilled.  (The cardinal number of the set {𝑎} is 1, and that of the set {𝑎, 𝑏} 

is 2.)  Therefore, the m-cardinal number of the mset ⦃𝑎⦄2 is greater than 1, but less than 2 (see 

Properties I and II). 
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3 M-cardinality of infinite msets 

We will go on to examine infinite msets. With these msets the cardinality of the root set and/or 

the multiplicity of the individual elements are infinite cardinal numbers. Accordingly, when we 

operate with these numbers, we will apply the cardinal arithmetic, assuming the Axiom of Choice. 

Let us examine the two infinite msets 𝐴 and ℤ+: 

ℤ+   1 2 3 . . .
↓     ↓ ↓ ↓  ↓
𝐴   1 1 1   1

 

Here ℤ+ = {1,2,3, . . . } is the set of the positive integers ℤ+ and 

𝐴 = ⦃1⦄1 + ⦃1⦄1 + ⦃1⦄1+ . . .⏟              
ℵ0

= ⦃1,1,1, . . .⏟    
ℵ0

⦄ = ⦃1,1,1, . . .⏟    
ℵ0

⦄1,1,1,...⏟    
ℵ0

= ⦃1⦄ℵ0 . 

It is clear that  

⦃1,2,3,… ⦄1,1,1,...⏟    
ℵ0

= {1,2,3, … } = ℤ+. 

Theorem 3.1. It holds that   

⦃1,1,1, . . .⏟    
 ℵ0 times

⦄ ≺ {1,2,3, . . .⏟    
ℵ0 elements

} , i. e., 

⦃1⦄ℵ0 ≺ ℤ
+    or   |⦃1⦄ℵ0| < |ℤ

+| = ℵ0.                                              (7) 

Proof. We will have: 

𝑓: {1,2,3,…⏟    
    ℤ+

} → ⦃1⦄ℵ0  , 

𝑓 = ⦃1,1, (1,1)⦄1,ℵ0,1, ⦃2,1, (2,1)⦄1,ℵ0,1, ⦃3,1, (3,1)⦄1,ℵ0,1, … =  ⦃𝑘, 1, (𝑘, 1)⦄1,ℵ0,1, 𝑘 ∈ ℤ+ . 

The proof follows from Property I. Indeed,  𝜇 (⦃1,2,3, . . .⏟    
  ℤ+

⦄1,1,1,...⏟    
ℵ0

) = 𝜇(⦃1⦄ℵ0) = ℵ0. Furthermore,  

⦃1,2,3, . . .⏟    
  ℤ+

⦄1,1,1,...⏟    
ℵ0

∗ = {1,2,3, . . .⏟    
ℵ0 elements

} = ℤ+ and ⦃1⦄ℵ0
∗ = {1}. It is clear that |{1,2,3, . . .⏟    

    ℤ+

}| = ℵ0 > |{1}| = 1. 

The mset function 𝑓: {1,2,3,…⏟    
    ℤ+

} → ⦃1⦄ℵ0  is an m-surjection. Therefore,  

  ⦃1⦄ℵ0 ≺ {1,2,3,…⏟    
    ℤ+

}  or    |⦃1⦄ℵ0| < |{1,2,3, …⏟    
    ℤ+

}| .  

What we got is that the infinity {1,2,3,…⏟    
    ℤ+

}   is “greater” than the infinity ⦃1,1,1, . . .⏟    
 ℵ0 times

⦄. The reason 

is that the infinity {1,2,3,…⏟    
    ℤ+

} is “richer” in elements, it contains an infinite number of different 

elements (ℵ0 different elements); whereas the infinity ⦃1,1,1, . . .⏟    
ℵ0

⦄ is “poorer” in elements, it only 

contains one single element which repeats infinite times (ℵ0 times). The m-cardinality of the mset 

⦃1,1,1, . . .⏟    
ℵ0

⦄ is infinite, but less than the smallest transfinite cardinal number ℵ0. Therefore, a 

transfinite cardinal m-number less than ℵ0 should be associated with the mset ⦃1,1,1, . . .⏟    
ℵ0

⦄. Let us 
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denote it with ℳ1
1 = |⦃1⦄ℵ0|. We will have: 

ℳ1
1 < ℵ0. 

Analogously, it is proved that 

  |⦃1⦄ℵ0| < |𝑋| = ℵ0, 

|⦃1⦄ℵ1| < |2
𝑋| = ℵ1,                                                              (8) 

 |⦃1⦄ℵ2| < |2
2𝑋| = ℵ2, … . 

Here 𝑋 is an infinite set with cardinality ℵ0. Here 2𝑋 denotes the power set of 𝑋.  

It is easily verified that ℳ1
1 > 1. Indeed,  |⦃1⦄ℵ0

∗| = |⦃1⦄1
∗| = |{1}| = 1 and 𝜇(⦃1⦄ℵ0) =

ℵ0 > 𝜇(⦃1⦄1) = 1. According to Property II, we will have: |⦃1⦄ℵ0| > |⦃1⦄1| = 1 , i.e., ℳ1
1 > 1. 

(The mset function 𝑓: ⦃1⦄ℵ0 → ⦃1⦄1 , 𝑓 = ⦃1,1, (1,1)⦄ℵ0,1,ℵ0   is an m-surjection.) 

Now let us look at the following mset: 

⦃1⦄ℵ0 + ⦃1,2⦄1,1 = ⦃1,2⦄(ℵ0+1),1 = ⦃1,2⦄ℵ0,1 . 

Theorem 3.2. It holds that  

  ⦃1⦄ℵ0 ≺ ⦃1,2⦄ℵ0,1 ≺ {1,2,3,…⏟    
    ℤ+

}.  (9) 

Proof. Here 

𝑓: {1,2,3,…⏟    
    ℤ+

} → ⦃1,2⦄ℵ0,1 , 𝑓 = ⦃1,2, (1,2)⦄1,1,1, ⦃𝑡, 1, (𝑡, 1)⦄1,ℵ0,1, 𝑡 > 1, 𝑡 ∈ ℤ+ 

and 

𝑔: ⦃1,2⦄ℵ0,1 → ⦃1⦄ℵ0  , 𝑔 = ⦃1,1, (1,1)⦄ℵ0,ℵ0,ℵ0 , ⦃2,1, (1,1)⦄1,ℵ0,1 . 

The proof follows from Property I. Indeed, 𝜇 (⦃1,2,3,…⏟    
    ℤ+

⦄1,1,1,...⏟    
ℵ0

) = 𝜇(⦃1,2⦄ℵ0,1) = 𝜇(⦃1⦄ℵ0) = ℵ0. 

Furthermore, ⦃1,2,3,… ⦄1,1,1,...⏟    
ℵ0

∗ = {1,2,3,… } = ℤ+,  ⦃1,2⦄ℵ0,1
∗ = {1,2},  ⦃1⦄ℵ0

∗ = {1}. It is clear that 

|{1,2,3,…⏟    
    ℤ+

}| = ℵ0 > |{1,2}| = 2 > |{1}| = 1. Therefore, the mset functions 𝑓: {1,2,3,…⏟    
    ℤ+

} →

⦃1,2⦄ℵ0,1  and 𝑔: ⦃1,2⦄ℵ0,1 → ⦃1⦄ℵ0 are m-surjective.          

Using Property I, it is proved analogously that  

 ⦃1⦄ℵ0 ≺ ⦃1,2⦄ℵ0,1 ≺ ⦃1,2,3⦄ℵ0,1,1 ≺ ⋯ ≺ ⦃1,2,3,… ⦄ℵ0,1,1,...⏟  
 ℵ0

≍ {1,2,3,…⏟    
    ℤ+

}. (10) 

Let us look at the transfinite m-cardinal numbers ℳ2
1 = |⦃1,2⦄ℵ0,1|, ℳ3

1 = |⦃1,2,3⦄ℵ0,1,1|, …  

We will have:   

 1 < ℳ1
1 <ℳ2

1  < ℳ3
1 < ⋯ < ℵ0. (11) 

Taking into consideration that |⦃1,2⦄1,1| = |{1,2}| = 2 , |⦃1,2,3⦄1,1,1| = |{1,2,3}| = 3,… , then 

formulae (9)–(11) can also be written in the following way: 
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ℳ2
1 =ℳ1

1 + 2 > ℳ1
1, 

 ℳ3
1 =ℳ2

1 + 3 > ℳ2
1, (12) 

    ℳ4
1 = ℳ3

1 + 4 > ℳ3
1, … 

We obtained the following interesting property of m-cardinal numbers: In the case under 

consideration, if we add a finite positive number to a transfinite m-cardinal number, we will get a 

new transfinite m-cardinal number that is greater than the initial one. 

Theorem 3.3.  It holds that for an arbitrary finite positive integer s, 

 ℳ𝑠
1 +ℳ𝑠+1

1 =ℳ𝑠+1
1  . (13) 

Proof. Indeed, ℳ𝑠
1 = |⦃1,2,3, . . . , 𝑠⦄ℵ0,1,1,...,1⏟    

𝑠−1

|, ℳ𝑠+1
1 = |⦃1,2,3, . . . , 𝑠, 𝑠 + 1⦄ℵ0,1,1,...,1⏟    

𝑠

| and  

ℳ𝑠
1 +ℳ𝑠+1

1 = |⦃1,2,3, . . . , 𝑠, 𝑠 + 1⦄(ℵ0+ℵ0),2,2,...,2⏟    ,1
𝑠−1

|. It is clear that 

|⦃1,2,3,… , 𝑠, 𝑠 + 1⦄(ℵ0+ℵ0),2,2,…,2⏟    ,1
𝑠−1

∗
| = |⦃1,2,3,… , 𝑠, 𝑠 + 1⦄ℵ0,1,1,…,1⏟    

𝑠

∗
| 

= |{1,2,3, . . . , 𝑠, 𝑠 + 1}| = 𝑠 + 1          

and 

𝜇 (⦃1,2,3, . . . , 𝑠, 𝑠 + 1⦄(ℵ0+ℵ0),2,2,...,2⏟    ,1
𝑠−1

) = 𝜇 (⦃1,2,3, . . . , 𝑠, 𝑠 + 1⦄ℵ0,1,1,...,1⏟    
𝑠

) = ℵ0. 

Therefore,  

ℳ𝑠
1 +ℳ𝑠+1

1 = |⦃1,2,3, . . . , 𝑠, 𝑠 + 1⦄(ℵ0+ℵ0),2,2,...,2⏟    ,1
𝑠−1

| = |⦃1,2,3,… , 𝑠, 𝑠 + 1⦄ℵ0,1,1,...,1⏟    
𝑠

| = ℳ𝑠+1
1 . 

This completes the proof.  

Let us denote:  ℳ𝑠
2 = |⦃1⦄ℳ𝑠

1 |,ℳ𝑠
3 = |⦃1⦄ℳ𝑠

2| ,ℳ𝑠
4 = |⦃1⦄ℳ𝑠

3| , … . 

Theorem 3.4. It holds that 

 ℵ0 > ℳ𝑠
1 >ℳ𝑠

2 >ℳ𝑠
3 > ℳ𝑠

4 > ⋯ > 1. (14) 

Proof. It is clear that ℳ𝑠
1 = |⦃1,2,3,… , 𝑠⦄ℵ0,1,1,…,1⏟    

         𝑠−1

|. Using Property I, we can easily prove that 

ℵ0 > ℳ𝑠
1. Indeed, 

|⦃1,2,3,…⏟    
   ℤ+

⦄1,1,1,...⏟    
ℵ0

∗
| = ℵ0 > |⦃1,2,3,… , 𝑠⦄ℵ0,1,1,…,1⏟    

         𝑠−1

∗| = 𝑠     

and 

𝜇 (⦃1,2,3,…⏟    
    ℤ+

⦄1,1,1,...⏟    
ℵ0

) = 𝜇 (⦃1,2,3,… , 𝑠⦄ℵ0,1,1,…,1⏟    
         𝑠−1

) = ℵ0. 

Moreover, we will have  ℳ𝑠
1 >ℳ𝑠

2 > 1. Indeed,  

|⦃1,2,3,… , 𝑠⦄ℵ0,1,1,…,1⏟    
         𝑠−1

∗| = 𝑠 ≥ |⦃1⦄ℳ𝑠
1
∗
| = |⦃1⦄1

∗
| = 1           

and 

𝜇 (⦃1,2,3,… , 𝑠⦄ℵ0,1,1,…,1⏟    
         𝑠−1

) = ℵ0 > 𝜇(⦃1⦄ℳ𝑠
1) = ℳ𝑠

1 ≥ 𝜇(⦃1⦄ℳ1
1) = ℳ1

1 > 𝜇(⦃1⦄1) = 1. 
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According to Property II, we will have ℳ𝑠
2 > ℳ𝑠

3 > 1. Indeed, |⦃1⦄ℳ𝑠
1
∗| = |⦃1⦄ℳ𝑠

2
∗| =

|⦃1⦄1
∗
| = 1 and 𝜇(⦃1⦄ℳ𝑠

1) = ℳ𝑠
1 > 𝜇(⦃1⦄ℳ𝑠

2) = ℳ𝑠
2 > 𝜇(⦃1⦄1) = 1. This process can continue 

infinitely, and thus we will obtain the formula (14).   

Theorem 3.5. For an arbitrary finite positive integer 𝑡, it holds that: 

 1 < ℳ1
𝑡 <ℳ2

𝑡 < ℳ3
𝑡 < ⋯ < ℵ0.  (15) 

Proof. We will prove (15) using formula (11) and mathematical induction on 𝑡, starting with  

𝑡 = 1. According to formula (11), we will have 1 < ℳ1
1 <ℳ2

1 <ℳ3
1 < ⋯ < ℵ0. Let us assume 

that 1 < ℳ1
𝑝
<ℳ2

𝑝
< ℳ3

𝑝
< ⋯ < ℵ0 , where 𝑝 is an arbitrary finite positive integer. It is clear 

that ℳ1
𝑝+1

= |⦃1⦄ℳ1
𝑝| ,ℳ2

𝑝+1
= |⦃1⦄ℳ2

𝑝| ,ℳ3
𝑝+1

= |⦃1⦄ℳ3
𝑝| , … We will have  

|⦃1⦄1
∗
| = |⦃1⦄ℳ1

𝑝
∗| = |⦃1⦄ℳ2

𝑝
∗| = |⦃1⦄ℳ3

𝑝
∗
| = ⋯ = |⦃1⦄ℵ0

∗
| = 1 

and 

𝜇(⦃1⦄1) = 1 < 𝜇 (⦃1⦄ℳ1
𝑝) = ℳ1

𝑝
< 𝜇 (⦃1⦄ℳ2

𝑝) = ℳ2
𝑝
< 𝜇 (⦃1⦄ℳ3

𝑝) = ℳ3
𝑝
< ⋯ < 𝜇(⦃1⦄ℵ0)

= ℵ0. 
According to Property II, we will have ⦃1⦄1 ≺ ⦃1⦄ℳ1

𝑝 ≺ ⦃1⦄ℳ2
𝑝 ≺ ⦃1⦄ℳ3

𝑝 ≺ ⋯ ≺ ⦃1⦄ℵ0, i.e., 

1 < ℳ1
𝑝+1

< ℳ2
𝑝+1

< ℳ3
𝑝+1

< ⋯ < ℳ1
1 < ℵ0.           

Now let us denote: 

ℳ𝑠,𝑘−1
𝑡+1 = |⦃1,2,3,… , 𝑘⦄(ℳ𝑠

𝑡),1,1,…,1⏟    
               𝑘−1

|, 

where 𝑡, 𝑠, 𝑘 are arbitrary finite positive integers.  

Example 3.1. ℳ1,0
2 = ℳ1

2 = |⦃1⦄ℳ1
1|,  ℳ1,0

3 =ℳ1
3 = |⦃1⦄ℳ1

2|, … ,  ℳ2,0
2 =ℳ2

2 = |⦃1⦄ℳ2
1 |, …, 

ℳ1,1
2 = |⦃1,2⦄ℳ1

1,1|, … ,  ℳ3,2
2 = |⦃1,2,3⦄ℳ3

1,1,1|, … 

Theorem 3.6.  Using Properties I and II, we can prove the following relations (16)(17): 

 ℵ0 > ℳ𝑘
1 >ℳ𝑠,𝑘−1

2 >ℳ𝑠,𝑘−1
3 >ℳ𝑠,𝑘−1

4 > ⋯ > 𝑘 − 1,  (16) 

 1 < ℳ1
𝑡+1 ≤ ℳ1,𝑘−1

𝑡+1 < ℳ2,𝑘−1
𝑡+1 < ℳ3,𝑘−1

𝑡+1 < ⋯ < ℵ0. (17) 

(In formula (17), equality ℳ1
𝑡+1 =ℳ1,𝑘−1

𝑡+1  is obtained when 𝑘 = 1.) 

Proof. Indeed,  

|⦃1,2,3,…⏟    
  ℤ+

⦄1,1,1,...⏟    
ℵ0

∗
| = ℵ0 > |⦃1,2,3, … , 𝑘⦄ℵ0,1,1,…,1⏟    

               𝑘−1

∗
| = |⦃1,2,3,… , 𝑘⦄(ℳ𝑠

1),1,1,…,1⏟    
               𝑘−1

∗
|

= |⦃1,2,3,… , 𝑘⦄(ℳ𝑠
2),1,1,…,1⏟    

                𝑘−1

∗
| = ⋯ = |{1,2,3,… , 𝑘}| = 𝑘 

and 

𝜇 (⦃1,2,3,…⏟    
   ℤ+

⦄1,1,1,...⏟    
ℵ0

) = ℵ0 = 𝜇 (⦃1,2,3,… , 𝑘⦄ℵ0,1,1,…,1⏟    
       𝑘−1

) = ℵ0 + 𝑘 − 1

> 𝜇 (⦃1,2,3, … , 𝑘⦄(ℳ𝑠
1),1,1,…,1⏟    

               𝑘−1

) = ℳ𝑠
1 + 𝑘 − 1 > 𝜇 (⦃1,2,3,… , 𝑘⦄(ℳ𝑠

2),1,1,…,1⏟    
                𝑘−1

)

= ℳ𝑠
2 + 𝑘 − 1 > ⋯ > 𝑘 − 1. 
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(Here we used formula (14).) Therefore, formula (16) is fulfilled. 

Furthermore,  

|⦃1⦄1
∗
| = |⦃1⦄(ℳ1

𝑡)
∗
| = 1 ≤ |⦃1,2,3,… , 𝑘⦄(ℳ1

𝑡),1,1,…,1⏟    
               𝑘−1

∗
| = |⦃1,2,3,… , 𝑘⦄(ℳ2

𝑡),1,1,…,1⏟    
               𝑘−1

∗
| = ⋯

= |{1,2,3,… , 𝑘}| = 𝑘 < |⦃1,2,3,…⏟    
   ℤ+

⦄1,1,1,...⏟    
ℵ0

∗
| = ℵ0 

and 

𝜇(⦃1⦄1) = 1 < 𝜇(⦃1⦄(ℳ1
𝑡)) = ℳ1

𝑡 ≤ 𝜇 (⦃1,2,3, … , 𝑘⦄(ℳ1
𝑡),1,1,…,1⏟    

               𝑘−1

) = ℳ1
𝑡 + 𝑘 − 1

< 𝜇 (⦃1,2,3, … , 𝑘⦄(ℳ2
𝑡),1,1,…,1⏟    

               𝑘−1

) = ℳ2
𝑡 + 𝑘 − 1 < ⋯ < 𝜇 (⦃1,2,3,…⏟    

   ℤ+

⦄1,1,1,...⏟    
ℵ0

) = ℵ0

= ℵ0 + 𝑘 − 1. 
(Here we used formula (15).) Therefore, formula (17) is fulfilled.   

Theorem 3.7.  The following relations hold: 

 1 < ℳ𝑠
𝑡+1 < ℳ𝑠,1

𝑡+1 <ℳ𝑠,2
𝑡+1 <ℳ𝑠,3

𝑡+1 < ⋯ < ℵ0. (18) 

Proof. Indeed, Using Property I, 

(⦃1⦄1) = 1 < ℳ1
𝑡 ≤ 𝜇(⦃1⦄ℳ𝑠

𝑡) = ℳ𝑠
𝑡 ≤ 𝜇(⦃1,2⦄(ℳ𝑠

𝑡),1) = ℳ𝑠
𝑡 + 1 ≤ 𝜇(⦃1,2,3⦄(ℳ𝑠

𝑡),1,1)

= ℳ𝑠
𝑡 + 2 ≤ ⋯   < 𝜇 (⦃1,2,3,…⏟    

    ℤ+

⦄1,1,1,...⏟    
ℵ0

) = ℵ0 

and   

|⦃1⦄1
∗
| = |⦃1⦄ℳ𝑠

𝑡
∗
| = 1 < |⦃1,2⦄ℳ𝑠

𝑡,1
∗
| = 2 < |⦃1,2,3⦄ℳ𝑠

𝑡,1,1
∗
| = 3 < ⋯ < |⦃1,2,3,…⏟    

    ℤ+

⦄1,1,1,...⏟    
ℵ0

∗
| = ℵ0.  

This completes the proof.   

We obtained an infinite number of different sequences of decreasing transfinite m-cardinal 

numbers which are less than ℵ0 (the cardinal number corresponding to the countably infinite set). 

Therefore, if we examine the m-cardinality of infinite msets, it will appear that between the finite 

numbers and ℵ0 there are hierarchies of infinities which have not been investigated so far.  

Theorem 3.8.  Using Properties I and II, we prove that: 

 ⦃1,2,3,4,…⏟      
     ℤ+

⦄ℵ0,1,1,1,,...⏟    
 ℵ0

≍ ⦃1,2,3,4,…⏟      
     ℤ+

⦄ℵ0,ℵ0,1,1,...⏟  
 ℵ0

≍ ⋯ ≍ ⦃1,2,3,4,…⏟      
     ℤ+

⦄ℵ0,ℵ0,ℵ0,ℵ0,...⏟        
ℵ0

≍ {1,2,3,4,…⏟      
     ℤ+

}. (19) 

Proof. Here we have used the fact that   

𝜇 (⦃1,2,3,4… ⦄ℵ0,1,1,1,,…⏟    
 ℵ0

) = 𝜇 (⦃1,2,3,4,… ⦄ℵ0 ,ℵ0,1,1,…⏟  
 ℵ0

) = ⋯ = 𝜇 (⦃1,2,3,4,… ⦄ℵ0,ℵ0,ℵ0,ℵ0,…⏟        
ℵ0

) 

                                                    = 𝜇 ({1,2,3,…⏟    
     ℤ+

}) = ℵ0.  

Theorem 3.9.  The following relations hold between msets with negative multiplicity: 

 ⦃1⦄1 ≻ ⦃1⦄−1 ≻ ⦃1⦄−2 ≻ ⦃1⦄−3 ≻ ⋯ ≻ ⦃1⦄–ℵ0 . (20) 
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Proof. We will prove, for example, that ⦃1⦄1 ≻ ⦃1⦄–1. The other relations are proved in an 

analogous way. The proof follows from Property II. Indeed, ⦃1⦄–1
∗ = ⦃1⦄1

∗ = {1}. It is clear  

that |⦃1⦄–1
∗| = |⦃1⦄1

∗| = |{1}| = 1. Furthermore, 𝜇(⦃1⦄1) = 1 > 𝜇(⦃1⦄–1) =–1. Therefore,  

⦃1⦄1 ≻ ⦃1⦄−1. Analogously, it is proved that ⦃1⦄1 ≻ ⦃1⦄−1 ≻ ⦃1⦄−2 ≻ ⦃1⦄−3 ≻ ⋯ ≻ ⦃1⦄–ℵ0.   

Theorem 3.10.  The following relations hold: 

⦃1⦄−ℵ0 ≺ ⦃1⦄ℵ0, 

⦃1,2⦄−ℵ0,−1 ≺ ⦃1,2⦄ℵ0,1, 

 ⦃1,2,3⦄−ℵ0,−1,−1 ≺ ⦃1,2,3⦄ℵ0,1,1,  (21) 

⋯ 

⦃1,2,3,…⏟    
  ℤ+

⦄−1,−1,−1,...⏟        
ℵ0

≺ ⦃1,2,3,…⏟    
  ℤ+

⦄1,1,1,...⏟    
ℵ0

≍ {1,2,3,…⏟    
            ℤ+

}. 

Proof. The proof follows from Property II. For example, to prove that ⦃1⦄−ℵ0 ≺ ⦃1⦄ℵ0, we take 

into consideration that |⦃1⦄−ℵ0
∗| = |⦃1⦄ℵ0

∗| = 1 and 𝜇(⦃1⦄−ℵ0) = −ℵ0 < 𝜇(⦃1⦄ℵ0) = ℵ0.  

Let us denote with ℳ̅1
1, ℳ̅2

1, ℳ̅3
1, … , ℵ̅0 the transfinite m-cardinal numbers corresponding  

to the viewed msets: ℳ̅1
1 = |⦃1⦄−ℵ0|, ℳ̅2

1 = |⦃1,2⦄(−ℵ0),−1|, ℳ̅3
1 = |⦃1,2,3⦄(−ℵ0),−1,−1|, … , 

ℵ̅0 = |⦃1,2,3,…⏟    
  ℤ+

⦄–1,–1,–1,...⏟        
ℵ0

| = −ℵ0.  

Theorem 3.11.  We will have:  

⦃1⦄−ℵ0 ≺ ⦃1,2⦄(−ℵ0),−1 ≺
⦃1,2,3⦄(−ℵ0),−1,−1 ≺ ⋯ ≺ ⦃1,2,3,…⏟    

     ℤ+

⦄(−ℵ0),–1,–1,...⏟      
ℵ0

≍ ⦃1,2,3,…⏟    

   ℤ+

⦄–1,–1,–1,...⏟        
ℵ0

, i. e.,                       

ℳ̅1
1 < ℳ̅2

1 < ℳ̅3
1 < ⋯ < −ℵ0              

and 

 ℳ̅1
1 <ℳ1

1, ℳ̅2
1 <ℳ2

1  , ℳ̅3
1 <ℳ3

1 , … (22) 

Proof. This follows from Properties III and IV.          

Therefore, the smallest possible infinity in this hierarchy will be the infinity ℳ̅1
1, 

corresponding to mset ⦃1⦄−ℵ0.  

Let us denote  ℳ̅𝑠
2 = |⦃1⦄−ℳ𝑠

1|, ℳ̅𝑠
3 = |⦃1⦄−ℳ𝑠

2| , ℳ̅𝑠
4 = |⦃1⦄−ℳ𝑠

3| , …. Here 𝑠 is an arbitrary 

finite positive integer. 

Theorem 3.12.  It holds that: 

 ℳ̅1
1 < ℳ̅𝑠

2 < ℳ̅𝑠
3 < ℳ̅𝑠

4 < ⋯ . (23) 

Proof. Indeed, |⦃1⦄ℵ0
∗
| = |⦃1⦄ℳ𝑠

1
∗| and 𝜇(⦃1⦄ℵ0) = ℵ0 > 𝜇(⦃1⦄ℳ𝑠

1) = ℳ𝑠
1, therefore 

 ℳ1
1 >ℳ𝑠

2. Furthermore,  ℳ1
1 > ℳ𝑠

2 >ℳ𝑠
3 > ℳ𝑠

4 > ⋯   (see formula (14)) and |⦃1⦄−ℵ0
∗
| =

|⦃1⦄−ℳ𝑠
1
∗| = |⦃1⦄−ℳ𝑠

2
∗| = |⦃1⦄−ℳ𝑠

3
∗| = ⋯ = 1. According to Property IV, we will have   

ℳ̅1
1 < ℳ̅𝑠

2 < ℳ̅𝑠
3 < ℳ̅𝑠

4 < ⋯ .   
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Theorem 3.13.  It holds that for an arbitrary finite positive integer 𝑡, 

 ℳ̅1
𝑡+1 > ℳ̅2

𝑡+1 > ℳ̅3
𝑡+1 > ⋯. (24) 

Proof. This follows from Property IV and formula (15).          

Let us denote with ℳ̅𝑠,𝑘−1
𝑡+1 = |⦃1,2,3, … , 𝑘⦄(–ℳ𝑠

𝑡),−1,−1,…,−1⏟        
                𝑘−1

| the transfinite m-cardinal numbers 

corresponding to the respective msets. (Here 𝑡, 𝑠, 𝑘 are arbitrary finite positive integers.)  

Example 3.2.  

ℳ̅1,0
2 = ℳ̅1

2 = |⦃1⦄−ℳ1
1|, …, 

ℳ̅1,1
2 = |⦃1,2⦄−ℳ1

1,−1|, ℳ̅3,2
2 = |⦃1,2,3⦄−ℳ3

1,−1,−1|, … 

Theorem 3.14.  We will have: 

 −ℵ0 > ℳ̅𝑘
1 < ℳ̅𝑠,𝑘−1

2 < ℳ̅𝑠,𝑘−1
3 < ℳ̅𝑠,𝑘−1

4 < ⋯ < −𝑘 + 1, (25) 

 −𝑘 + 1 > ℳ̅1,𝑘−1
𝑡+1 > ℳ̅2,𝑘−1

𝑡+1 > ℳ̅3,𝑘−1
𝑡+1 > ℳ̅4,𝑘−1

𝑡+1 > ⋯  (26) 

Proof. Indeed,   

|⦃1,2,3,…⏟    
   ℤ+

⦄–1,–1,–1,…⏟        
ℵ0

∗
| = ℵ0 > |⦃1,2,3,… , 𝑘⦄(−ℵ0),−1,−1,…,−1⏟        

               𝑘−1

∗
| = 

|⦃1,2,3,… , 𝑘⦄(−ℳ𝑠
1),−1,−1,…,−1⏟        
               𝑘−1

∗
| = |⦃1,2,3,… , 𝑘⦄(−ℳ𝑠

2),−1,−1,…,−1⏟        
                𝑘−1

∗
| = ⋯ = |{1,2,3,… , 𝑘}| = 𝑘 , 

and 

𝜇 (⦃1,2,3,…⏟    
   ℤ+

⦄–1,–1,–1,...⏟        
ℵ0

) = −ℵ0 = 𝜇 (⦃1,2,3,… , 𝑘⦄(−ℵ0),−1,−1,…,−1⏟        
               𝑘−1

) = −ℵ0 − 𝑘 + 1

< 𝜇 (⦃1,2,3, … , 𝑘⦄(−ℳ𝑠
1),−1,−1,…,−1⏟        
               𝑘−1

) = −ℳ𝑠
1 − 𝑘 + 1

< 𝜇 (⦃1,2,3, … , 𝑘⦄(−ℳ𝑠
2),−1,−1,…,−1⏟        
                𝑘−1

) = −ℳ𝑠
2 − 𝑘 + 1 < ⋯ < −𝑘 + 1. 

Above, we used formula (14) and Properties I and II. Therefore, formula (25) is fulfilled. 

Furthermore, 

|⦃1,2,3,… , 𝑘⦄(−ℳ1
𝑡),−1,−1,…,−1⏟        
               𝑘−1

∗
| = |⦃1,2,3,… , 𝑘⦄(−ℳ2

𝑡),−1,−1,…,−1⏟        
               𝑘−1

∗
| = ⋯ = |{1,2,3,… , 𝑘}| = 𝑘 

and  

−𝑘 + 1 > 𝜇 (⦃1,2,3,… , 𝑘⦄(−ℳ1
𝑡),−1,−1,…,−1⏟        
               𝑘−1

) = −ℳ1
𝑡 − 𝑘 + 1 > 

𝜇 (⦃1,2,3,… , 𝑘⦄(−ℳ2
𝑡),−1,−1,…,−1⏟        
               𝑘−1

) = −ℳ2
𝑡 − 𝑘 + 1 > ⋯. 

The last equation used Formula (15) and Properties I and II. Therefore, Formula (26) is  

fulfilled.   
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Corollary 3.1. Since 𝑘 ≥ 1, then according to formulae (25) and (26) we will have: 

 ℳ̅𝑘
1 < ℳ̅𝑠,𝑘−1

2 < ℳ̅𝑠,𝑘−1
3 < ℳ̅𝑠,𝑘−1

4 < ⋯ < 0,  (27) 

 0 > ℳ̅1,𝑘−1
𝑡+1 > ℳ̅2,𝑘−1

𝑡+1 > ℳ̅3,𝑘−1
𝑡+1 > ℳ̅4,𝑘−1

𝑡+1 > ⋯. (28) 

We obtained an interesting result: there are infinite msets with negative multiplicity (for example, 

ℳ̅1
1 = |⦃1⦄–ℵ0|), which have m-cardinality less than zero.   

Theorem 3.15.  Using Property II, we can prove the following relations: 

  ⦃1⦄−ℵ0 ≻ ⦃1⦄−ℵ1 ≻ ⦃1⦄−ℵ2 ≻ ⋯  (29) 

Proof. Indeed, 

|⦃1⦄−ℵ0
∗
| = |⦃1⦄−ℵ1

∗
| = |⦃1⦄−ℵ2

∗
| = ⋯ = 1 

and, furthermore,  

𝜇(⦃1⦄−ℵ0) = −ℵ0 > 𝜇(⦃1⦄−ℵ1) = −ℵ1 > 𝜇(⦃1⦄−ℵ2) = −ℵ2 > ⋯                            

Let us substitute: 

ℳ̅ℵ1
1 = |⦃1⦄−ℵ1|, ℳ̅ℵ2

1 = |⦃1⦄−ℵ2|, … 

We will have: 

 ℳ̅1
1 > ℳ̅ℵ1

1 > ℳ̅ℵ2
1 > ⋯  (30) 

We obtained a decreasing sequence of transfinite m-cardinal numbers, corresponding to infinite 

msets with negative multiplicity, with no smallest transfinite m-cardinal number in this sequence. 

 

Theorem 3.16. According to Property I, also valid is the relation: 

   ⦃1,2,3,4,5,6,… ⦄1
2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
,
1

128
,..
 ≻ ⦃1⦄1 . (31) 

Proof. Here 

𝑓: ⦃1,2,3,4,5,6,… ⦄1
2
 ,
1
4
 ,
1
8
 ,
1
16
 ,
1
64
,
1
128

,..
→ ⦃1⦄1 , 

𝑓 = ⦃1,1, (1,1)⦄1
2
,1,
1
2
, ⦃2,1, (2,1)⦄1

4
,1,
1
4
, ⦃3,1, (3,1)⦄1

8
,1,
1
8
, … =  ⦃𝑘, 1, (𝑘, 1)⦄ 1

2𝑘
,1,
1

2𝑘
, 𝑘 ∈ ℤ+ . 

We will have 

𝜇(⦃1⦄1) = 𝜇 (⦃1,2,3,4,5,6, . . . ⦄1
2
 ,
1
4
 ,
1
8
 ,
1
16
 ,
1
64
,
1
128

 ,…
) = 1 

And, furthermore,  

|⦃1⦄1
∗| = 1 < |⦃1,2,3,4,5,6, . . . ⦄1

2
 ,
1
4
 ,
1
8
 ,
1
16
 ,
1
64
,
1
128

 ,…

∗| = ℵ0. 

Therefore, the mset function 𝑓: ⦃1,2,3,4,5,6,… ⦄1
2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
,
1

128
,..
→ ⦃1⦄1 is an m-surjection.  

These msets have equal total multiplicity, which is equal to 1, but they have different  

m-cardinality.   
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Using Property II, we can prove the following relations (32)–(36): 

  ⦃1,2,3,4,5,6, . . . ⦄1
2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
,
1

128
 ,⋯
≺ ⦃1,2,3,4,5,6,… ⦄

1,
1

2
,
1

 3
,
1

4
,
1

5
,
1

6
 ,...
≍ {1,2,3,4,5,6,…⏟        

      ℤ+

}. (32) 

(Here we used that 𝜇 (⦃1,2,3,4,5,6, . . . ⦄1
2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
,
1

128
 ,…
) = 1 < 𝜇 (⦃1,2,3,4,5,6, . . . ⦄

1,
1

2
,
1

 3
,
1

4
,
1

5
,
1

6
 ,...
) =

𝜇 ({1,2,3,…⏟    
      ℤ+

}) = ℵ0. ) 

  ⦃1,2,3,4,5,6, . . . ⦄
1,–

1

2
,
1

 3
,–
1

4
,
1

5
,–
1

6
 ,...
 ≺ ⦃1,2,3,4,5,6, . . . ⦄1

2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
,
1

128
 ,…
  (33) 

(Here we used that  

𝜇 (⦃1,2,3,4,5,6, . . . ⦄
1,–

1

2
,
1

 3
,–
1

4
,
1

5
,–
1

6
 ,...
) = ln(2) < 𝜇 (⦃1,2,3,4,5,6, . . . ⦄

 
1

2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
,
1

128
 ,…
) = 1. ) 

  ⦃1,2,3,4,5,6, . . . ⦄
−1,

1

2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
 ,...
≺ ⦃1,2,3,4,5,6,… ⦄1

2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
,
1

128
 ,…

 (34) 

(Here we used that  

𝜇 (⦃1,2,3,4,5,6, . . . ⦄
−1,

1

2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
 ,...
) = 0 < 𝜇 (⦃1,2,3,4,5,6, . . . ⦄1

2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
,
1

128
 ,…
) = 1. ) 

  ⦃1⦄
 
1

2
 
+ ⦃1⦄

 
1

4

+⦃1⦄
 
1

8
 
+ ⦃1⦄

 
1

16

+ ⦃1⦄
 
1

64

+⋯ = ⦃1,1,1,1,1,… ⦄
 
1

2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
 ,...
= ⦃1⦄1. (35) 

(Here we used that  𝜇(⦃1⦄1) = 1 = 𝜇 (⦃1,1,1,1,1, . . . ⦄ 1
2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
 ,...
) = 1.) 

Using Property III, we can easily prove the following relations (36)–(40): 

  ⦃1,2⦄1,–1 ≍ ⦃1,2⦄−1,1 (36) 

 ⦃1,2,3,4⦄1,–1,1,–1 ≍ ⦃1,2,3,4⦄−1,1,−1,1 (37) 

⋯ 

 ⦃1,2,3,4, . . . ,2𝑛⦄1,–1,1,−1,...,−1⏟          
2𝑛

≍ ⦃1,2,3,4, . . . ,2𝑛⦄−1,1,−1,1,...,1⏟        
2𝑛

   (38) 

  ⦃1,2,3,4,5,6, . . . ⦄
−1,

1

2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
 ,...
 ≍ ⦃1,2,3,4,5,6,… ⦄

1,−
1

2
 ,− 

1

4
 ,− 

1

8
 ,−

1

16
 ,−

1

64
 ,...
. (39) 

(In the last formula, we used that  𝜇 (⦃1,2,3,4,5,6, . . . ⦄
−1,

1

2
 ,
1

4
 ,
1

8
 ,
1

16
 ,
1

64
 ,...
) = 0. )  

We will present two interesting formulae by which real-valued msets are obtained. The 

multiplicities of these msets are equal to the well-known mathematical constants 𝜋 and 𝑒: 

  ⦃1⦄
 
4

1

+⦃1⦄
− 
4

3
 
+ ⦃1⦄

 
4

5

+⦃1⦄
− 
4

7
 
+ ⦃1⦄

 
4

9

+⋯ = ⦃1,1,1,1,1, . . . ⦄
 
4

1
 ,− 

4

3
 ,
4

5
 ,−
4

7
 ,
4

9
 ,...
= ⦃1⦄𝜋 , (40) 

 

  ⦃1⦄1 + ⦃1⦄ 1
1!

+⦃1⦄
 
1

2!
 
+ ⦃1⦄

 
1

3!

+ ⦃1⦄
 
1

4!

+⋯ = ⦃1,1,1,1,1, … ⦄
 1 ,

1

1!
 ,
1

2!
 ,
1

3!
 ,
1

4!
 ,...
= ⦃1⦄𝑒 . (41) 

(In the last formulae we used that  𝜇 (⦃1,1,1,1,1, . . . ⦄
 
4

1
 ,− 

4

3
 ,
4

5
 ,−
4

7
 ,
4

9
 ,...
) =

4

1
 −  

4

3
+ 

4

5
 −

4

7
+ 

4

9
−⋯ =

𝜋  and 𝜇 (⦃1,1,1,1,1, . . . ⦄
 1 ,

1

1!
 ,
1

2!
 ,
1

3!
 ,
1

4!
 ,...
) = 1 + 

1

1!
+ 

1

2!
+

1

3!
+ 

1

4!
+⋯ = 𝑒.) 
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Finally, we will present a formula that illustrates the relationship between infinite msets and 

infinite series: 

  ⦃1⦄1 + ⦃1⦄ 𝑥
1!
+⦃1⦄

 
𝑥2

2!
 
+ ⦃1⦄

 
𝑥3

3!

+ ⦃1⦄
 
𝑥4

4!

+⋯ = ⦃1,1,1,1,1,… ⦄
 1 ,

𝑥

1!
 ,
𝑥2

2!
 ,
𝑥3

3!
 ,
𝑥4

4!
 ,...
= ⦃1⦄𝑒𝑥 .     (42) 

4 Conclusion 

The present work examines and characterizes infinite msets. It presents the possibility of obtaining 

msets with elements of negative or fraction multiplicity. A new concept of ‘m-cardinal number’ 

is introduced, which is a generalization of the concept of cardinal number in the context of 

multisets. So far it has been assumed that the smallest transfinite cardinal number is ℵ0, the 

cardinal number corresponding to a countably infinite set. Concrete examples of transfinite  

m-cardinal numbers are given in the paper, corresponding to infinite msets, less than ℵ0.  

Upon investigating infinite msets, it has been established that there is an infinite number of 

different sequences of decreasing transfinite m-cardinal numbers which are less than ℵ0. 

Therefore, between the finite numbers and ℵ0 there are hierarchies of infinities which have not 

been investigated so far.  

Furthermore, there are infinite msets with negative multiplicity which have an m-cardinality 

less than zero. It has been proved that there is a decreasing sequence of transfinite m-cardinal 

numbers, corresponding to infinite msets with negative multiplicity, without a smallest transfinite 

m-cardinal number in this sequence.   

The concepts and methods presented can find interesting applications and help the 

improvement and development of a variety of spheres, such as the set theory, mathematical logic, 

probability and statistics, combinatorics, order theory, computer science, data science, artificial 

intelligence, etc. 
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