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Abstract: Let k be a non-negative integer and q > 1 be a positive integer. Let sq(k) be the sum
of digits of k written in base q. In 1940, Bush proved that Aq(x) =

∑
k≤x sq(k) is asymptotic

to q−1
2
x logq x. In 1968, Trollope proved an explicit formula for the error term of A2(n − 1),

labeled by −E2(n), where n is a positive integer. In 1975, Delange extended Trollope’s result
to an arbitrary base q by another method and labeled the error term nFq(logq n). When q = 2,
the two formulas of the error term are supposed to be equal, but they look quite different. We
proved directly that those two formulas are equal. More interestingly, Cooper and Kennedy in
1999 applied Trollope’s method to extend −E2(n) to −Eq(n) with a general base q, and we also
proved directly that nFq(logq n) and −Eq(n) are equal for any q.
Keywords: Digital sums, Asymptotic, Error term.
2020 Mathematics Subject Classification: 11A25, 11A63, 11N37.

1 Introduction

Let q > 1 be a fixed integer and denote by sq(k) the sum of digits of k written in base q when k

is a positive integer, i.e.,
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sq(k) =
m∑
i=0

ai

where k =
m∑
i=0

aiq
i for some non-negative integer m and 0 ≤ ai < q , am > 0. Define sq(0) = 0.

It was L.E. Bush [3] who first showed in 1940 that

Aq(x) =
∑
k≤x

sq(k) ∼
q − 1

2
x logq x as x → ∞. (1)

In 1948, R. Bellman and H.N. Shapiro [2] proved that when q = 2,∑
k≤x

s2(k) =
1

2
x log2 x+O(x log log x). (2)

Their method was extended to an arbitrary base by C. Gadd and the second author [7] recently
with the same error term, and they also fixed a major error in Bellman and Shapiro’s paper [2],
although the error term was not the best possible one.

In 1949, L. Mirsky [8] proved that∑
k≤x

sq(k) =
q − 1

2
x logq x+O(x), (3)

where O(x) is the best possible error term. Many other authors have also proved (3) using
different methods ( [1], [4], and [9]).

In 1968, J. P. Trollope [10] discovered the following result: Let g2(x) be periodic of period
one and defined on [0, 1] by

g2(x) =


1
2
x, if 0 ≤ x ≤ 1

2

1
2
(1− x), if 1

2
< x ≤ 1

(4)

and put

f2(x) =
∞∑
i=0

1

2i
g2(2

ix).

Now, if n = 2m(1 + x), where 0 ≤ x < 1, one has

n−1∑
k=0

s2(k) =
1

2
n log2 n− E2(n), (5)

where
E2(n) = 2m−1 (2f2(x) + (1 + x) log2(1 + x)− 2x) . (6)

This explicit formula of the error term was derived based on a function ϕ related to a part of an
explicit formula of A2(x), and a continuous extension of ϕ. Trollope said that his result could be
generalized for any base q, but that the calculations are much more complicated.
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In 1975, H. Delange [6] extended Trollope’s results by a much simpler method that even
works for any base as follows: There exists a function Fq : R → R of period one, which is
continuous and nowhere differentiable, such that

n−1∑
k=0

sq(k) =
q − 1

2
n logq n+ nFq(logq n) (7)

for all n ≥ 1.
In fact,

Fq(x) =
q − 1

2
(1 + [x]− x) + q1+[x]−xhq(q

x−[x]−1), (8)

where

hq(x) =
∞∑
r=0

jq(q
rx)

qr
(9)

and

jq(x) =

∫ x

0

(
[qt]− q[t]− q − 1

2

)
dt. (10)

Delange’s method was based on turning the coefficients of a q-base expansion of an integer
into integrals, followed by evaluating the sum of digital sum functions in terms of those integrals.

Delange even derived a more general formula for the sum of digital sum functions up to a
certain real number x. The formula says, for all real numbers x ≥ 1, we have∑

n≤x

sq(n) =
q − 1

2
x logq x+ xFq(logq n)− hq(x) + (1 + [x]− x)sq([x]). (11)

As Trollope suggested, Cooper and Kennedy [5], in 1999, extended the error term −E2(n)

to −Eq(n) as follows: Let gq(x) be periodic of period 1
q−1

and on
[
0, 1

q−1

]
be equal to the

piecewise linear function connecting the points
(

a
q2−q

, (q−a)a
2q

)
where a is a nonnegative integer

and 0 ≤ a ≤ q. Let

fq(x) =
∞∑
i=0

1

qi
gq(q

ix).

Now, if n = qm(1 + x(q − 1)), where 0 ≤ x < 1, one has

n−1∑
k=0

sq(k) =
q − 1

2
n logq n− Eq(n), (12)

where

Eq(n)=qm
(
fq(x)+

q−1

2
(1+(q−1)x) logq(1+(q−1)x)−am(1−am+(q−1)x)− (am−1)am

2

)
,

(13)
with

n =
m∑
i=0

aiq
i = amq

m + nm−1. (14)

In Section 2, we will show that −E2(n) = nF2(log2 n) directly. In Section 3, we will show
−Eq(n) = nFq(logq n) without all the details, but point out some differences from the base 2

case.

313



2 The binary case

Define {x} = x− [x], i.e, the fractional part of x. From (8), for q = 2, we have

F2 (log2 n) =
1

2
(1− {log2 n}) + 21−{log2 n}h2

(
2{log2 n}−1

)
. (15)

If n = 2m(1 + x), then we have

log2 n = log2(2
m(1 + x)) = log2(2

m) + log2(1 + x) = m+ log2(1 + x). (16)

Since 0≤x<1, we have 0≤ log2(1+x)<1. Thus, we can conclude that {log2 n} = log2(1+x).
With this equation, we can get

21−{log2 n} = 21−log2(1+x) =
2

1 + x
and 2{log2 n}−1 =

1 + x

2
.

Therefore, (15) becomes

F2 (log2 n) =
1

2
(1− log2(1 + x)) +

2

1 + x
h2

(
1 + x

2

)
. (17)

Now, we need to evaluate h2

(
1+x
2

)
. To do that, we need an explicit formula for j2. From (10),

we have

j2(x) =

∫ x

0

(
[2t]− 2[t]− 1

2

)
dt

=

∫ x

0

(
[2([t] + {t})]− 2[t]− 1

2

)
dt

=

∫ x

0

(
[2[t] + 2{t}]− 2[t]− 1

2

)
dt

=

∫ x

0

(
2[t] + [2{t}]− 2[t]− 1

2

)
dt

=

∫ x

0

(
[2{t}]− 1

2

)
dt.

We can see that the integrand function [2{t}] − 1

2
is periodic with period 1, so is j2(x). When

0 ≤ t < 1
2
, [2{t}]− 1

2
= −1

2
and when 1

2
≤ t < 1, [2{t}]− 1

2
=

1

2
. Therefore, on [0, 1], we have

j2(x) =

−1
2
x, if 0 ≤ x < 1

2
,

−1
2
(1− x), if 1

2
≤ x ≤ 1.

For simplification, we omit the subscript 2 for the rest of this section. Note that j = −g from (4)
and so h = −f . From the definition of h (see (9)), we have
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h

(
1 + x

2

)
=

∞∑
r=0

j(2r · 1+x
2
)

2r

= j

(
1 + x

2

)
+

∞∑
r=1

j(2r · 1+x
2
)

2r

= j

(
1 + x

2

)
+

∞∑
r=0

j(2r(1 + x))

2r+1

= j

(
1 + x

2

)
+

1

2
h(x)

= j

(
1 + x

2

)
− 1

2
f(x).

Now we substitute this into (17) and we get

F2 (log2 n) =
1

2
(1− log2(1 + x)) +

2

1 + x

(
j

(
1 + x

2

)
− 1

2
f(x)

)
. (18)

Since 0 ≤ x < 1, we have
1

2
≤ 1 + x

2
< 1. Thus, j

(
1 + x

2

)
= −1

2

(
1− 1 + x

2

)
. Now,

substituting this into (18), we have

F2 (log2 n) =
1

2
− log2(1 + x)

2
+

2

1 + x

(
−1

2

(
1− 1 + x

2

)
− 1

2
f(x)

)
= − log2(1 + x)

2
− f(x)

1 + x
+ 1− 1

1 + x
.

At the same time, from (6), we get

E2(n) = 2mf(x) + 2m−1(1 + x) log2(1 + x)− 2mx

=
n

1 + x
f(x) +

n

2
log2(1 + x)− nx

1 + x

= −n

(
−1

2
log2(1 + x)− f(x)

1 + x
+ 1− 1

1 + x

)
= −nF2 (log2 n) .

Therefore, we have proven −E2(n) = nF2 (log2 n).

3 The q-base case

If n = qm(1 + x(q − 1)), where 0 ≤ x < 1, we can write

logq n = m+ logq(1 + (q − 1)x), (19)[
logq n

]
= m and

{
logq n

}
= logq(1 + (q − 1)x). (20)
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For simplification, we omit the subscript q. Now, we have

nFq

(
logq n

)
= n

[
q−1

2

(
1−logq(1+(q − 1)x)

)
+ q1−logq(1+(q−1)x)h(qlogq(1+(q−1)x)−1)

]
(21)

= n

[
q−1

2

(
1−logq(1+(q − 1)x)

)
+

q

1 + (q − 1)x
h

(
1+(q−1)x

q

)]
. (22)

To evaluate h, we first find a relation between j and g. From (10), we have

j(x) =

∫ x

0

(
[qt]− q[t]− q − 1

2

)
dt =

∫ x

0

(
[q{t}]− q − 1

2

)
dt.

When q = 2, it was easy to see j = −g with their explicit formulas. However, when q > 2, it is
not obvious to see the exact relation between j and g. Let us look at some graphs of the integrand
function in j and the graphs of j for some small q (Figure 1).

The integrand function of j3(x)

0 1
3

2
3

1

1
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The integrand function of j4(x)
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Figure 1. Integrand functions in j and the graphs of j for some small q
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When a is a positive integer such that 0 ≤ a ≤ q, we can evaluate j by evaluating the net area
of its integrand function: j

(
a
q

)
= (a−q)a

2q
. Hence, j((q−1)x) = −g(x) and h((q−1)x) = −f(x).

Now we can evaluate h and get

h

(
1 + (q − 1)x

q

)
=

∞∑
r=0

j
(
qr · 1+(q−1)x

q

)
qr

= j

(
1 + (q − 1)x

q

)
+

∞∑
r=1

j
(
qr · 1+(q−1)x

q

)
qr

= j

(
1 + (q − 1)x

q

)
+

1

q

∞∑
r=0

j(qr · (1 + (q − 1)x)

qr

= j

(
1 + (q − 1)x

q

)
+

1

q
h(1 + (q − 1)x)

= j

(
1 + (q − 1)x

q

)
+

1

q
h((q − 1)x)

= j

(
1 + (q − 1)x

q

)
− f(x)

q
.

If we substitute this into (20), we have

nFq

(
logq n

)
= n

[
q−1

2

(
1−logq(1+(q−1)x)

)
+

q

1 + (q−1)x

(
j

(
1+(q−1)x

q

)
− f(x)

q

)]
.

After comparing this equation and the equation of −Eq(n), we can cancel some terms and
factors, which brings it down to proving the following equation:

(1 + (q − 1)x)(q − 1)

2
+ qj

(
1 + (q − 1)x

q

)
= am(1− am + (q − 1)x) +

am(am − 1)

2
. (23)

Since
am
q

≤ 1 + (q − 1)x

q
<

am + 1

q
, (24)

we can evaluate j
(

1+(q−1)x
q

)
and get

j

(
1+(q−1)x

q

)
=
1

q

((
1−q

2

)
am+

(am−1)am
2

+(1 + (q−1)x−am)

(
am− q−1

2

))
. (25)

Substituting this equation into the left hand side of (23), we can see that (23) is true. Therefore,
we have proven −Eq(n) = nFq

(
logq n

)
.

4 Conclusion

The error term of the sum of digital sum functions Aq(n− 1) has two formulas that were derived
using different methods. However, they are the same quantity as we showed that one formula can
be derived directly from the other.
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