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are old but most are new. They are applied to novel studies of
∑∞

n=0
amn

10n+1 , m = 1, 2, 3, including
their convergence criteria, and applied to many standard sequences, as particular cases of a generic
{an}. The detailed development of the algebra of the pertinent theorems, and their associated
lemmas and corollaries, should open up new vistas for interested number theorists with the
concluding results on series values.
Keywords: Arithmetic sequence, Balancing sequence, Fermat sequence, Fibonacci sequence,
Geometric sequence, Jacobsthal sequence, Leonardo sequence, Lucas sequence, Mersenne
sequence, Padovan sequence, Pell sequence, Perrin sequence.
2020 Mathematics Subject Classification: 11B39, 11A25.

1 Introduction

Infinite series, built around sequences which generalize the Fibonacci sequences and the so-called
Tribonacci sequences, are the focus of this paper. These are related in a fundamental sense to
some of the work of Melham and Shannon three decades ago [12]. Table 1 contains a summary
of some of the results from the paper, set out in a way for the interested reader to try to extend, as
well as to navigate the details of the current paper.

{an} m = 1 m = 2 m = 3

{Mn} 1
72

3
54

7
18

{Sn} 17
72

15
54

11
18

{Pn} 1
79

2
41

#

{Qn} 18
79

14
41

#

{Jn} 1
88

1
54

3
22

{Jn} 19
88

15
54

13
22

{Fn} 1
89

1
71

2
59

{Fn+1} 10
89

9
71

9
59

{Ln} 19
89

17
71

16
59

{Len} 91
801

91
639

103
531

{Ln} 171
801

153
639

144
531

Table 1.
∑∞

n=0
amn

10n+1 , m = 1, 2, 3. # Does not satisfy the condition for convergence.
The special sequences are defined in Table 2. Len and Ln are defined in Section 6.

The principal results of this paper are theorems which deal with the roots, both distinct and
repeated, of the pertinent quadratic characteristic equations of the second order sequences, which
lead directly to the infinite series with appropriate conditions for convergence. These include
involvement of well-known and well-established results of Henry Gould, Rudi Lidl, Harald
Niederreiter, Morgan Ward, and [12] in particular, as further links to the past.
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2 Preliminaries

Definition 2.1. [13] A number sequence {an} is called a sequence of order 2 if it satisfies the
recurrence relation of order 2:

an = pan−1 + qan−2, n ≥ 2, (1)

for some constants p, q ̸= 0 and initial conditions a0, a1.

Given the initial conditions a0, a1, and the recurrence relation (1), the entire sequence can be
determined. Many common sequences, such as arithmetic sequences, geometric sequences, and
Fibonacci sequences, are examples of second order linear recurrence sequence (refer to Table 2
below, see [6]).

Sequence of numbers {an} a0 a1 p q

Integers 0, 1, 2, 3, . . . 0 1 2 −1

Arithmetic sequence (common difference d) a a+ d 2 −1

Geometric sequence (common ratio r) a r r + 1 −r
Fibonacci sequence Fn 0 1 1 1

Lucas sequence Ln 2 1 1 1

Fermat sequence of the first kind Tn 1 3 3 −2

Fermat sequence of the second kind Sn 2 3 3 −2

Pell sequence of the first kind Pn 1 2 2 1

Pell sequence of the second kind Qn 2 2 2 1

Balancing sequence Bn 0 1 6 −1

Lucas-balancing sequence Cn 1 3 6 −1

Mersenne sequence Mn 0 1 3 −2

Jacobsthal sequence Jn 0 1 1 2

Jacobsthal–Lucas sequence Jn 2 1 1 2

Table 2. Some common sequences.

Theorem 2.1. Let {an} be a second order linear recurrence sequence (1). Suppose α and β are
two roots of the characteristic equation x2 − px− q = 0, then

an =


(
a1−βa0
α−β

)
αn −

(
a1−αa0
α−β

)
βn, if α ̸= β;

na1α
n−1 − (n− 1)a0α

n, if α = β.
(2)

The proof for Theorem 2.1 can be found in [4] and [13].
The purpose of this paper is to investigate the series in the form of

∑∞
n=0

an
rn+1 , with r > 1.

One well-known series of this form, which piqued the curiosity of many and inspired this paper,
is the Fibonacci sum

∑∞
n=0

Fn

10n+1 = 1
89

= 1
F11

, [11].
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3 Main results

In our main theorem, we will use the following lemma.

Lemma 3.1. Suppose |t| < 1. Then

∞∑
n=0

tn =
1

1− t
.

Theorem 3.1. [10] Let {an} satisfy the second order linear recurrence sequence defined in (1).
Suppose α and β are two different roots to the characteristic equation x2 − px − q = 0, k is a
positive integer, and r > 1 satisfying

k <

⌈
log r

log(max{|α|, |β|})

⌉
. (3)

Then

∞∑
n=0

ank
rn+1

=
a0r − a0 · α

k+1−βk+1

α−β + a1 · α
k−βk

α−β

(r − αk)(r − βk)
. (4)

Proof. From Theorem 2.1 and Lemma 3.1, we have

∞∑
n=0

ank
rn+1

=
1

r

∞∑
n=0

[(
a1 − βa0
α− β

)
αnk

rn
−
(
a1 − αa0
α− β

)
βnk

rn

]

=
1

r

[(
a1 − βa0
α− β

) ∞∑
n=0

αnk

rn
−
(
a1 − αa0
α− β

) ∞∑
n=0

βnk

rn

]

=
1

r

[(
a1 − βa0
α− β

)
r

r − αk
−
(
a1 − αa0
α− β

)
r

r − βk

]
=

1

α− β

[
(α− β)a0r − a0(α

k+1 − βk+1) + a1(α
k − βk)

(r − αk)(r − βk)

]
=
a0r − a0 · α

k+1−βk+1

α−β + a1 · α
k−βk

α−β

(r − αk)(r − βk)

Note that Lemma 3.1 can be used because (3) is equivalent to

max

{
|α|k

r
,
|β|k

r

}
< 1,

which is a necessary criterion for the convergence of the present geometric series.

If the characteristic equation x2 − px− q = 0 has repeated roots, we have a similar result.

Lemma 3.2. Suppose |t| < 1. Then

∞∑
n=1

ntn =
t

(1− t)2
.

286



Proof. Differentiating the geometric series in Lemma 3.1 with respect to t, we have
∞∑
n=1

ntn−1 =
1

(1− t)2
.

Hence,
∞∑
n=1

ntn =
t

(1− t)2
.

Theorem 3.2. Let {an} satisfy the second order linear recurrence sequence defined in (1). Suppose
α is a repeated root to the characteristic equation x2 − px − q = 0 and satisfies k <

⌈
log r
log |α|

⌉
.

Then
∞∑
n=0

ank
rn+1

=
a0r − (k + 1)a0α

k + ka1α
k−1

(r − αk)2
, (5)

where k is a positive integer and r > 1.

Proof. By Theorem 2.1 and Corollary 3.2, we have
∞∑
n=0

ank
rn+1

=
∞∑
n=0

nka1α
nk−1

rn+1
−

∞∑
n=0

(nk − 1)a0α
nk

rn+1

=
ka1
αr

∞∑
n=1

n

(
αk

r

)n
− ka0

r

∞∑
n=1

n

(
αk

r

)n
+
a0
r

∞∑
n=0

(
αk

r

)n
=
ka1
αr

·
αk

r(
1− αk

r

)2 − ka0
r

·
αk

r(
1− αk

r

)2 +
a0
r

· 1

1− αk

r

r

=
ka1α

k−1

(r − αk)2
− ka0α

k

(r − αk)2
+

a0
r − αk

=
a0r − (k + 1)a0α

k + ka1α
k−1

(r − αk)2

Note that the condition k <
⌈

log r
log |α|

⌉
if and only if |α|k

r
< 1, which guarantees convergence of the

geometric series seen in the above steps. We then impose the ceiling function since k is a positive
integer.

Remark 3.1. In future proofs, the equivalence between k <
⌈

log r
log |α|

⌉
and |α|k

r
< 1 will be

exercised implicitly, trusting that the reader will recognize when it is used. Similarly, the
equivalence between k <

⌈
log r

log(max{|α1|,|α2|,...,|αn|})

⌉
and max

{
|α1|k
r
, |α2|k

r
, . . . , |αn|k

r

}
< 1 will

be used in the later sections.

Remark 3.2. Let α be fixed and β → α in the right hand side of (4). Since

lim
β→α

αk − βk

α− β
= lim

β→α

k−1∑
j=0

αjβk−j−1 = kαk−1,

then the limit of the right hand side of (4) is the same as (5).
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Example 3.1. Let an = n, where a0 = 0, a1 = 1, and an satisfies

an = 2an−1 − an−2, n ≥ 2.

The characteristic equation x2 − 2x+ 1 = 0 has two repeated roots. By Theorem 3.2, we have

∞∑
n=1

nk

rn+1
=

k

(r − 1)2
, r > 1.

For example, let k = 1 and r = 2, we obtain
∑∞

n=1
n

2n+1 = 1 that leads to
∑∞

n=1
n
2n

= 2.

Example 3.2. Let {an} be an arithmetic sequence with a0 = 0 and a common difference d such
that an = a+ nd. Since {an} satisfies

an = 2an−1 − an−2, n ≥ 2,

we have by Theorem 3.2 that,

∞∑
n=0

a+ nkd

rn+1
=
a(r − 1) + kd

(r − 1)2
, r > 1.

If we let r = 2, we obtain

∞∑
n=1

a+ nkd

2n+1
= a+ kd.

When k = d = 1 and a = 0, we have the result in Example 3.1.

Remark 3.3. Example 3.2 can be used to find a closed expression for

∞∑
n=1

n2

rn+1
.

We start with the calculation

(r − 1)
∞∑
n=1

n2

rn+1
=

∞∑
n=1

(
n2

rn
− n2

rn+1

)
=

1

r
+

∞∑
n=1

(n+ 1)2 − n2

rn+1

=
1

r
+

∞∑
n=1

2n+ 1

rn+1

=
1

r
+

r + 1

(r − 1)2

where the last step comes from applying Example 3.2 with a = k = 1 and d = 2. Then

∞∑
n=1

n2

rn+1
=

1

r − 1

(
1

r
+

r + 1

(r − 1)2

)
=

2r2 − r + 1

r(r − 1)3
.
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Remark 3.4. Example 3.2 and Remark 3.3 can also be used to find a closed expression for

∞∑
n=1

n3

rn+1
.

A similar process to Remark 3.2 yields

(r − 1)
∞∑
n=1

n3

rn+1
=

∞∑
n=1

(
n3

rn
− n3

rn+1

)
=

1

r
+

∞∑
n=1

(n+ 1)3 − n3

rn+1

=
1

r
+

∞∑
n=1

3n2 + 3n+ 1

rn+1

=
1

r
+ 3

∞∑
n=1

n2

rn+1
+

∞∑
n=1

3n+ 1

rn+1

=
1

r
+ 3 · 2r

2 − r + 1

r(r − 1)3
+

r + 2

(r − 1)3
,

where the last step comes from applying Remark 3.2 and Example 3.2 with a = k = 1 and d = 3.
Then

∞∑
n=1

n3

rn+1
=

2r3 + 4r2 − 2r + 4

r(r − 1)4
.

Remarks 3.3 and 3.4 culminate into the following theorem that generalizes inductively to
integral powers.

Theorem 3.3. Let k be a positive integer and r > 1. Then

(r − 1)2
∞∑
n=1

nk

rn
= (r − 1)

(
k

∞∑
n=1

nk−1

rn
+

(
k

2

) ∞∑
n=1

nk−2

rn
+ · · ·+ k

∞∑
n=1

n

rn

)
+ r.

In particular, if r = 2, then

∞∑
n=1

nk

2n
= k

∞∑
n=1

nk−1

2n
+

(
k

2

) ∞∑
n=1

nk−2

2n
+ · · ·+ k

∞∑
n=1

n

2n
+ 2

Proof. Let S be the series,

S =
∞∑
n=1

nk

rn
=

1k

r
+

2k

r2
+ · · · .

Treating S as a power series
∑
nkzn where z = 1

r
, one can easily use the ratio test to find that

the radius of convergence is 1. Thus, S converges for |z| < 1, or r > 1.
Then algebraic manipulation begins by noting that

rS − S = 1k +
2k − 1k

r
+

3k − 2k

r2
+ · · ·
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and so,

(r − 1)S =
∞∑
n=1

(n+ 1)k − nk

rn
+ 1

=
∞∑
n=1

(
k
1

)
nk−1 +

(
k
2

)
nk−2 + · · ·+

(
k
k−1

)
n+ 1

rn
+ 1

= k

∞∑
n=1

nk−1

rn
+

(
k

2

) ∞∑
n=1

nk−2

rn
+ · · ·+ k

∞∑
n=1

n

rn
+

∞∑
n=1

1

rn
+ 1

= k

∞∑
n=1

nk−1

rn
+

(
k

2

) ∞∑
n=1

nk−2

rn
+ · · ·+ k

∞∑
n=1

n

rn
+

1

r − 1
+ 1.

Hence,

(r − 1)2S = (r − 1)2
∞∑
n=1

nk

rn
= (r − 1)

(
k

∞∑
n=1

nk−1

rn
+

(
k

2

) ∞∑
n=1

nk−2

rn
+ · · ·+ k

∞∑
n=1

n

rn

)
+ r.

Example 3.3. Making the following substitutions into Theorem 3.3, we calculate

r = 2,k = 2 :
∞∑
n=1

n2

2n
= 2

∞∑
n=1

n

rn
+ 2 = 6

r = 2,k = 3 :
∞∑
n=1

n3

2n
= 3

∞∑
n=1

n2

2n
+ 3

∞∑
n=1

n

rn
+ 2 = 26

r = 2,k = 4 :
∞∑
n=1

n4

2n
= 4

∞∑
n=1

n3

2n
+ 6

∞∑
n=1

n2

2n
+ 4

∞∑
n=1

n

2n
+ 2 = 150.

Remark 3.5. Let {an} be a second order linear recurrence sequence satisfying (1). If a1 =

αa0 ̸= 0, where α is a root of the characteristic equation x2 − px − q = 0, then substituting
into the formula of Theorem 2.1, it can be deduced that (regardless of whether the characteristic
equation has repeated roots) an = a0α

n; therefore, {an} forms a geometric sequence. If k is
a positive integer,

{
ank

rn+1

}
also forms a geometric sequence with the common ratio αk

r
. Hence,∑∞

n=0
ank

rn+1 converges if and only if |α|k
r
< 1.

On the other hand, if it is known that {an} is a geometric sequence satisfying (1) with the
common ratio d, substituting n = 2 in (1) yields

a0d
2 = p(a0d) + qa0.

Dividing both sides by a0, we obtain d2 = pd+ q. Hence, d is the root of x2 − px− q = 0.

When k = 1, the formula
∑∞

n=0
an
rn+1 can be further simplified:

Corollary 3.1. Let {an} satisfy the second order linear recurrence sequence defined in (1).
Suppose α and β are two roots to the characteristic equation x2−px−q = 0 such that |α|, |β| < r.
Then

∞∑
n=0

an
rn+1

=
a0(r − p) + a1
r2 − pr − q

.
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Proof. In Theorem 3.1 and 3.2, regardless of whether x2 − px − q = 0 has repeated roots, i.e.,
α = β or α ̸= β, we have

∞∑
n=0

an
rn+1

=
a0r − a0(α + β) + a1

(r − α)(r − β)

=
a0r − a0(α + β) + a1
r2 − (α + β)r + αβ

.

Furthermore, from the relationship between the roots and coefficients of the quadratic equation

α + β = p, αβ = −q,

we have
∞∑
n=0

an
rn+1

=
a0(r − p) + a1
r2 − pr − q

.

Remark 3.6. Alternatively, we may prove Corollary 3.1 in the following way. This way, we do
not need to use the roots of the characteristic equation to prove the formula

∑∞
n=0

an
rn+1 . However,

we will still need the roots to prove the convergence of
∑∞

n=0
an
rn+1 .

Proof. Let an+2 = pan+1 + qan. Then

∞∑
n=0

an+2

rn+1
= p

∞∑
n=0

an+1

rn+1
+ q

∞∑
n=0

an
rn+1

.

Since
∞∑
n=0

an+2

rn+1
= r2

∞∑
n=0

an
rn+1

− (ra0 + a1),

∞∑
n=0

an+1

rn+1
= r

∞∑
n=0

an
rn+1

− a0,

we have

r2
∞∑
n=0

an
rn+1

− (ra0 + a1) = pr

∞∑
n=0

an
rn+1

− pa0 + q

∞∑
n=0

an
rn+1

.

Then

(r2 − pr − q)
∞∑
n=0

an
rn+1

= (r − p)a0 + a1.

Hence,

∞∑
n=0

an
rn+1

=
a0(r − p) + a1
r2 − pr − q

.

The next corollary focuses on the special case p = q = 1 and r = 10.
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Corollary 3.2. Let {an} satisfy the second order linear recurrence sequence an = an−1 + an−2 ,
n ≥ 2, with initial conditions a0 and a1. Then

∞∑
n=0

an
10n+1

=
9a0 + a1

89
.

Proof. Applying Theorem 3.1, we obtain

∞∑
n=0

an
10n+1

=
10a0 − a0 · ϕ

2−ψ2

ϕ−ψ + a1 · ϕ−ψϕ−ψ

(10− ϕ)(10− ψ)

=
10a0 − a0(ϕ+ ψ) + a1
100− 10(ϕ+ ψ) + ϕψ

=
9a0 + a1

100− 10− 1

=
9a0 + a1

89
.

In particular, if a0 = 0 and a1 = 1, we have
∑∞

n=0
an

10n+1 =
∑∞

n=0
Fn

10n+1 = 1
89

([11]).

4 Lucas sequence of the first kind

Definition 4.1. [13, 17] A second-order linear recursive sequence {un} is called a Lucas sequence
of the first kind if it satisfies

un = pun−1 + qun−2, (6)

for some constants p, q ̸= 0 and initial conditions u0 = 0, u1 = 1.

Theorem 4.1. Let {un} be the Lucas sequence of the first kind. Let α and β be two roots of the
characteristic equation x2 − px− q = 0 and satisfy

k <

⌈
log r

log(max{|α|, |β|})

⌉
,

where r > 1. Then

∞∑
n=1

unk
rn+1

=
uk

r2 − (αk + βk)r + (−q)k
.

Proof. Note that

k <

⌈
log r

log(max{|α|, |β|})

⌉
if and only if max

{∣∣∣∣αkr
∣∣∣∣ , ∣∣∣∣βkr

∣∣∣∣} < 1,

which is a necessary criterion for the two theorems used in this proof.
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When α ̸= β, we apply Theorem 3.1. Then for u0 = 0 and u1 = 1, we have

∞∑
n=1

unk
rn+1

=

αk−βk

α−β

(r − αk)(r − βk)

=
uk

(r − αk)(r − βk)
=

uk
r2 − (αk + βk)r + (αβ)k

=
uk

r2 − (αk + βk)r + (−q)k
.

On the other hand, if α = β, we have by Theorem 3.2,
∞∑
n=1

unk
rn+1

=
kαk−1

(r − αk)2
=

uk
r2 − 2rαk + α2k

.

Theorem 4.2. Let {un} be the Lucas sequence of the first kind. Then
∞∑
n=0

ukn−1

rn+1
=

1

q(α− β)

[
α(r − αk)− β(r − βk)

(r − αk)(r − βk)

]
, k <

⌈
log r

log(max{|α|, |β|})

⌉
,

where α, β are roots to the characteristic equation x2 − px− q = 0.

Proof. Let wn = un−1, then wkn = ukn−1 with w0 =
1
q

and w1 = 0. Then

∞∑
n=0

ukn−1

rn
= r

∞∑
n=0

wkn
rn+1

= r

[
w0r − w0 · α

k+1−βk+1

α−β + w1 · α
k−βk

α−β

(r − αk)(r − βk)

]

= r

[
r
q
− 1

q
· αk+1−βk+1

α−β

(r − αk)(r − βk)

]

=
r

q(α− β)

[
r(α− β)− (αk+1 − βk+1)

(r − αk)(r − βk)

]
=

r

q(α− β)

[
α(r − αk)− β(r − βk)

(r − αk)(r − βk)

]
.

Theorem 4.3. Let {un} be the Lucas sequence of the first kind. Then
∞∑
n=0

ukn+1

rn
=

1

α− β

(
α(r − βk)− β(r − αk)

(r − αk)(r − βk)

)
, k <

⌈
log r

log(max{|α|, |β|})

⌉
,

where α, β are roots to the characteristic equation x2 − px− q = 0.

Proof. Let wn = un+1 for n ≥ 0, then wkn = ukn+1 for n, k ≥ 0 with w0 = u1 = 1 and
w1 = u2 = pu1 + qu0 = p = α + β. Then using Theorem 3.1, we have

∞∑
n=0

ukn+1

rn+1
=

∞∑
n=0

wkn
rn+1

=
r − αk+1−βk+1

α−β + (α + β)α
k−βk

α−β

(r − αk)(r − βk)

=
r(α− β)− (αk+1 − βk+1) + (α + β)(αk − βk)

(α− β)(r − αk)(r − βk)

=
1

α− β

(
α(r − βk)− β(r − αk)

(r − αk)(r − βk)

)
.
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A generalization of Theorem 4.3 can be found in [12].

Example 4.1. [11] Let {Fn} be the Fibonacci sequence, i.e.,

Fn = Fn−1 + Fn−2,

with F0 = 0 and F1 = 1. The characteristic equation is x2 − x− 1 = 0. The roots are α = 1+
√
5

2

and β = 1−
√
5

2
. By Theorem 4.1, we have

∞∑
n=0

Fnk
rn+1

=

(
1+

√
5

2

)k
−
(

1−
√
5

2

)k
√
5

(
r −

(
1+

√
5

2

)k)(
r −

(
1−

√
5

2

)k) , k <
 log r

log
(

1+
√
5

2

)
 . (7)

Let r = 10, then only k = 1, 2, 3, 4 satisfy the condition for convergence. We have

∞∑
n=0

Fn
10n+1

=

√
5

√
5
(
10− 1+

√
5

2

)(
10− 1−

√
5

2

) =
1

89
, (8)

∞∑
n=0

F2n

10n+1
=

√
5

√
5

(
10−

(
1+

√
5

2

)2)(
10−

(
1−

√
5

2

)2) =
1

71
, (9)

∞∑
n=0

F3n

10n+1
=

2
√
5

√
5

(
10−

(
1+

√
5

2

)3)(
10−

(
1−

√
5

2

)3) =
2

59
, (10)

∞∑
n=0

F4n

10n+1
=

3
√
5

√
5

(
10−

(
1+

√
5

2

)4)(
10−

(
1−

√
5

2

)4) =
3

31
. (11)

Corollary 4.1. Let {Fn} be the Fibonacci sequence. Then by Theorem 4.3,

∞∑
n=0

Fkn+1

rn+1
=

1√
5

(
ϕ(r − ψk)− ψ(r − ϕk)

(r − ϕk)(r − ψk)

)
, (12)

where ϕ= 1+
√
5

2
, ψ= 1−

√
5

2
, and k<

⌈
log r
log ϕ

⌉
. Furthermore, if r=10 in (12), then only k=1, 2, 3, 4

satisfy the condition for convergence. Thus,

∞∑
n=0

Fn+1

10n+1
=

1√
5

(
ϕ(r − ψ)− ψ(r − ϕ)

(r − ϕ)(r − ψ)

)
=

10

89
, (13)

∞∑
n=0

F2n+1

10n+1
=

1√
5

(
ϕ(r − ψ2)− ψ(r − ϕ2)

(r − ϕ2)(r − ψ2)

)
=

9

71
, (14)

∞∑
n=0

F3n+1

10n+1
=

1√
5

(
ϕ(r − ψ3)− ψ(r − ϕ3)

(r − ϕ3)(r − ψ3)

)
=

9

59
, (15)

∞∑
n=0

F4n+1

10n+1
=

1√
5

(
ϕ(r − ψ4)− ψ(r − ϕ4)

(r − ϕ4)(r − ψ4)

)
=

8

31
. (16)
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Example 4.2. [18] Let a0 = 0, a1 = 1, and an = 4an−1 − an−2, n ≥ 2, i.e., {an} =

{0, 1, 4, 15, 56, . . .}. The two roots of the characteristic equation x2−4x+1 = 0 are α = 2+
√
3

and β = 2−
√
3, and satisfy α + β = 4 and αβ = 1. Hence, from Theorem 4.1, we have

∞∑
n=1

ank
rn+1

=
ak

r2 − (αk + βk)r + 1
, (17)

with the condition for convergence k < log r

log(2+
√
3)

, r > 1 ∈ R. With some calculations, we obtain

α2 + β2 = (α + β)2 − 2αβ = 14,

α3 + β3 = (α2 + β2)(α + β)− αβ(α + β) = 52,

α4 + β4 = (α3 + β3)(α + β)− αβ(α2 + β2) = 194.

In fact, using Girard–Waring formulas ([3], [9]), we can directly compute αk + βk for larger
values of k:

αk + βk =

⌊ k
2⌋∑

m=0

(k −m− 1)!k

(k − 2m)!m!
(−1)m(α + β)k−2m(αβ)m

=

⌊ k
2⌋∑

m=0

k

k −m

(
k −m

m

)
(−1)m4k−2m.

For k = 1, 2, 3, 4, we can express (17) more clearly:
∞∑
n=1

un
rn+1

=
1

r2 − 4r + 1
, if k = 1,

∞∑
n=1

u2n
rn+1

=
1

r2 − 14r + 1
, if k = 2,

∞∑
n=1

u3n
rn+1

=
1

r2 − 52r + 1
, if k = 3,

∞∑
n=1

u4n
rn+1

=
1

r2 − 194r + 1
, if k = 4.

Example 4.3. Let {Bn} be the sequence of balancing numbers satisfying

Bn = 6Bn−1 −Bn−2, n ≥ 2,

with B0 = 0 and B1 = 1. The characteristic equation for (18) is x2 − 6x+ 1 = 0. The roots are
α = 3 + 2

√
2 and β = 3− 2

√
2.

By Theorem 4.1, we have
∞∑
n=1

Bnk

rn+1
=

Bk

r2 − r
(
(3 + 2

√
2)k + (3− 2

√
2)k
)
+ 1

, k <

⌈
log r

log(3 + 2
√
2)

⌉
. (18)

Let r = 10, then only k = 1 satisfies the condition for convergence. Thus,
∞∑
n=1

Bn

10n+1
=

1

100− 10(6) + 1
=

1

41
.
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Example 4.4. Let {Pn} be the sequence of Pell numbers satisfying

Pn = 2Pn−1 + Pn−2, n ≥ 2,

with P0 = 0 and P1 = 1. The characteristic equation for (19) is x2 − 2x− 1 = 0. The roots are
α = 1 +

√
2 and β = 1−

√
2. By Theorem 4.1, we have

∞∑
n=1

Pnk
rn+1

=
Pk

r2 − r
(
(1 +

√
2)k + (1−

√
2)k
)
+ (−1)k

, k <

⌈
log r

log(1 +
√
2)

⌉
. (19)

Let r = 10, then only k = 1, 2 satisfy the condition for convergence. Thus,

∞∑
n=1

Pn
10n+1

=
1

100− 10(2)− 1
=

1

79
, (20)

∞∑
n=1

P2n

10n+1
=

2

100− 10(6) + 1
=

2

41
. (21)

By Theorem 4.2, we have

∞∑
n=0

Pkn−1

rn+1
=

1

2
√
2

[
(1 +

√
2)(r − (1 +

√
2)k)− (1−

√
2)(r − (1−

√
2)k)

(r − (1 +
√
2)k)(r − (1−

√
2)k)

]
. (22)

Let r = 10, then for k = 2, we have

∞∑
n=0

P2n−1

10n+1
=

1

2
√
2

[
10
√
2

41

]
=

5

41
. (23)

By Theorem 4.3, we have

∞∑
n=0

Pkn+1

rn+1
=

1

2
√
2

[
(1 +

√
2)(r − (1−

√
2)k)− (1−

√
2)(r − (1 +

√
2)k)

(r − (1 +
√
2)k)(r − (1−

√
2)k)

]
. (24)

Let r = 10, then for k = 2, we have

∞∑
n=0

P2n+1

10n+1
=

1

2
√
2

[
18
√
2

41

]
=

9

41
. (25)

Remark 4.1. It is known that Bn = P2n

2
([14]). We have

∞∑
n=1

P2n

2

10n+1
=

∞∑
n=1

Bn

10n+1
=

1

41
.

Example 4.5. Let {Mn} be the sequence of Mersenne numbers satisfying

Mn = 3Mn−1 − 2Mn−2, n ≥ 2,

with M0 = 0 and M1 = 1. The characteristic equation is x2 − 3x + 2 = 0. The roots are α = 2

and β = 1.
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By Theorem 4.1, we have
∞∑
n=1

Mnk

rn+1
=

Mk

r2 − r (2k + 1) + 2k
, k <

⌈
log r

log 2

⌉
. (26)

Let r = 10, then only k = 1, 2, 3 satisfy the condition for convergence. Thus,
∞∑
n=1

Mn

10n+1
=

1

100− 10(3) + 2
=

1

72
, (27)

∞∑
n=1

M2n

10n+1
=

3

100− 10(5) + 4
=

3

54
=

1

18
, (28)

∞∑
n=1

M3n

10n+1
=

7

100− 10(9) + 8
=

7

18
. (29)

Example 4.6. Let {Jn} be the sequence of Jacobsthal numbers satisfying

Jn = Jn−1 + 2Jn−2, n ≥ 2,

with J0 = 0 and J1 = 1. The characteristic equation is x2 − x− 2 = 0. The roots are α = 2 and
β = −1.

By Theorem 4.1,
∞∑
n=1

Jnk
rn+1

=
Jk

r2 − r (2k + (−1)k) + (−2)k
, k <

⌈
log r

log 2

⌉
. (30)

Let r = 10, then only k = 1, 2, 3 satisfy the condition for convergence. Thus,
∞∑
n=1

Jn
10n+1

=
1

100− 10− 2
=

1

88
, (31)

∞∑
n=1

J2n
10n+1

=
1

100− 10(5) + 4
=

1

54
, (32)

∞∑
n=1

J3n
10n+1

=
3

100− 10(7)− 8
=

3

22
. (33)

5 Lucas sequence of the second kind

Definition 5.1. [13] A second-order linear recursive sequence {vn} is called a Lucas sequence
of the second kind if it satisfies

vn = pvn−1 + qvn−2, (34)

for some constants p, q ̸= 0 and initial conditions v0 = 2, v1 = p.

Theorem 5.1. Let {vn} be the Lucas sequence of the second kind. Let α and β be two roots of
the characteristic equation x2 − px− q = 0 and satisfy

k <

⌈
log r

log(max{|α|, |β|})

⌉
.
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Then
∞∑
n=0

vnk
rn+1

=
2r − (αk + βk)

r2 − (αk + βk)r + (−q)k
. (35)

Proof. By Theorem 3.1, we have

∞∑
n=0

vnk
rn+1

=
v0r − v0 · α

k+1−βk+1

α−β + v1 · α
k−βk

α−β

(r − αk)(r − βk)

=
1

(α− β)(r − αk)(r − βk)

(
2r(α− β)− 2(αk+1 − βk+1) + p(αk − βk)

)
=

1

(α− β)(r − αk)(r − βk)

(
2r(α− β)− (α− β)(αk + βk)

)
=

2r − (αk + βk)

(r − αk)(r − βk)
=

2r − (αk + βk)

r2 − (αk + βk)r + (−q)k
.

Example 5.1. Let {Ln} be the sequence of Lucas numbers satisfying

Ln = Ln−1 + Ln−2, n ≥ 2,

with L0 = 2 and L1 = 1. The characteristic equation is x2 − x− 1 = 0. The roots are α = 1+
√
5

2

and β = 1−
√
5

2
.

By Theorem 5.1, we have

∞∑
n=0

Lnk
rn+1

=

2r −
[(

1+
√
5

2

)k
+
(

1−
√
5

2

)k]
r2 −

[(
1+

√
5

2

)k
+
(

1−
√
5

2

)k]
r + (−1)k

, k <

⌈
log r

log(1+
√
5

2
)

⌉
. (36)

Let r = 10, then only k = 1, 2, 3, 4 satisfy the condition for convergence. Thus,

∞∑
n=0

Ln
10n+1

=
20− 1

100− 10− 1
=

19

89
, (37)

∞∑
n=0

L2n

10n+1
=

20− 3

100− 30 + 1
=

17

71
, (38)

∞∑
n=0

L3n

10n+1
=

20− 4

100− 40− 1
=

16

59
, (39)

∞∑
n=0

L4n

10n+1
=

20− 7

100− 70 + 1
=

13

31
. (40)

Example 5.2. Let {Sn} be the Fermat sequence of numbers of the second kind satisfying

Sn = 3Sn−1 − 2Sn−2, n ≥ 2,

with S0 = 2 and S1 = 3. The characteristic equation is x2 − 3x + 2 = 0. The roots are α = 2

and β = 1.
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By Theorem 5.1, we have
∞∑
n=0

Snk
rn+1

=
2r −

(
2k + 1

)
r2 − (2k + 1) r + 2k

, k <

⌈
log r

log 2

⌉
. (41)

Let r = 10, then only k = 1, 2, 3 satisfy the condition for convergence. Thus,
∞∑
n=0

Sn
10n+1

=
20− 3

100− 30 + 2
=

17

72
, (42)

∞∑
n=0

S2n

10n+1
=

20− 5

100− 50 + 4
=

15

54
, (43)

∞∑
n=0

S3n

10n+1
=

20− 9

100− 90 + 8
=

11

18
. (44)

Example 5.3. Let {Qn} be the Pell sequence of numbers of the second kind satisfying

Qn = 2Qn−1 +Qn−2, n ≥ 2,

with Q0 = 2 and Q1 = 2. The characteristic equation is x2 − 2x − 1 = 0. The roots are
α = 1 +

√
2 and β = 1−

√
2.

By Theorem 5.1, we have
∞∑
n=0

Qnk

rn+1
=

2r −
(
(1 +

√
2)k + (1−

√
2)k
)

r2 −
(
(1 +

√
2)k + (1−

√
2)k
)
r + (−1)k

, k <

⌈
log r

log(1 +
√
2)

⌉
. (45)

Let r = 10, then only k = 1, 2 satisfy the condition for convergence. Thus,
∞∑
n=0

Qn

10n+1
=

20− 2

100− 20− 1
=

18

79
, (46)

∞∑
n=0

Q2n

10n+1
=

20− 6

100− 60 + 1
=

14

41
. (47)

Example 5.4. Let {Jn} be the Jacobsthal–Lucas sequence of numbers satisfying

Jn = Jn−1 + 2Jn−2, n ≥ 2,

with J0 = 2 and J1 = 1. The characteristic equation is x2 − x− 2 = 0. The roots are α = 2 and
β = −1.

By Theorem 5.1, we have
∞∑
n=0

Jnk
rn+1

=
2r −

(
2k + (−1)k

)
r2 − (2k + (−1)k) r + (−2)k

, k <

⌈
log r

log 2

⌉
. (48)

Let r = 10, then only k = 1, 2, 3 satisfy the condition for convergence. Thus,
∞∑
n=0

Jn
10n+1

=
20− 1

100− 10− 2
=

19

88
, (49)

∞∑
n=0

J2n

10n+1
=

20− 5

100− 50 + 4
=

15

54
, (50)

∞∑
n=0

J3n

10n+1
=

20− 7

100− 70− 8
=

13

22
. (51)
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6 Leonardo sequence and generalized Leonardo sequence

Definition 6.1. [2] A second-order linear recursive sequence {Len} is called the Leonardo
sequence if it satisfies

Len = Len−1 + Len−2 + 1, (52)

with Le0 = 1 and Le1 = 1.

Next, we will us the generalized Leonardo sequence {Lm,n} as follows:

Definition 6.2. [8] The generalized Leonardo sequence {Lm,n}, with a fixed positive integer m,
is defined by

Lm,n = Lm,n−1 + Lm,n−2 +m, n ≥ 2, (53)

with the initial conditions Lm,0 = Lm,1 = 1.

Theorem 6.1. [8] The closed formula for the generalized Leonardo sequence {Lm,n} is

Lm,n = (1 +m)Fn+1 −m. (54)

Corollary 6.1. [2] Let {Len} be the classical Leonardo sequence be defined by Len = Len−1 +

Len−2 + 1, n ≥ 2 with initial conditions Le0 = Le1 = 1. Then

Len = 2Fn+1 − 1.

Theorem 6.2. Let {Lm,n} be the generalized Leonardo sequence defined in Definition 6.2. Let
ϕ = 1+

√
5

2
and ψ = 1−

√
5

2
be two roots of the characteristic equation x2 − x− 1 = 0 and satisfy

k <

⌈
log r

log(1+
√
5

2
)

⌉
.

Then
∞∑
n=0

Lm,kn
rn+1

=
(1 +m)√

5

(
ϕ(r − ψk)− ψ(r − ϕk)

(r − ϕk)(r − ψk)

)
− m

r − 1
. (55)

Proof. Using (54) and Theorem 4.3 yields

∞∑
n=0

Lm,kn
rn+1

=
∞∑
n=0

(
(1 +m)Fkn+1

rn+1
− m

rn+1

)
= (1 +m)

∞∑
n=0

Fkn+1

rn+1
− m

r

∞∑
n=0

(
1

r

)n
=

(1 +m)√
5

(
ϕ(r − ψk)− ψ(r − ϕk)

(r − ϕk)(r − ψk)

)
− m

r − 1
.
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Corollary 6.2. Let m = 1 in Theorem 6.2, i.e., L1,kn = Lekn. Then

∞∑
n=0

Lekn
rn+1

=
2√
5

(
ϕ(r − ψk)− ψ(r − ϕk)

(r − ϕk)(r − ψk)

)
− 1

r − 1
, (56)

where ϕ = 1+
√
5

2
, ψ = 1−

√
5

2
, and k <

⌈
log r
log ϕ

⌉
.

Proof. Let m = 1 in (55), we have

∞∑
n=0

L1,kn

rn+1
=

∞∑
n=0

Lekn
rn+1

=
2√
5

(
ϕ(r − ψk)− ψ(r − ϕk)

(r − ϕk)(r − ψk)

)
− 1

r − 1
,

where ϕ = 1+
√
5

2
, ψ = 1−

√
5

2
, and k <

⌈
log r
log ϕ

⌉
.

Example 6.1. Let r = 10 in (56), then only k = 1, 2, 3, 4 satisfy the condition for convergence.
Thus,

∞∑
n=0

Len
10n+1

=
2√
5

(
ϕ(10− ψ)− ψ(10− ϕ)

(10− ϕ)(10− ψ)

)
− 1

10− 1
=

91

801
, (57)

∞∑
n=0

Le2n
10n+1

=
2√
5

(
ϕ(10− ψ2)− ψ(10− ϕ2)

(10− ϕ2)(10− ψ2)

)
− 1

10− 1
=

91

639
, (58)

∞∑
n=0

Le3n
10n+1

=
2√
5

(
ϕ(10− ψ3)− ψ(10− ϕ3)

(10− ϕ3)(10− ψ3)

)
− 1

10− 1
=

103

531
, (59)

∞∑
n=0

Le4n
10n+1

=
2√
5

(
ϕ(10− ψ4)− ψ(10− ϕ4)

(10− ϕ4)(10− ψ4)

)
− 1

10− 1
=

113

279
. (60)

Next, we will consider a version of the Leonardo-like sequence {Cn(a, b,m)} defined by

Cn(a, b,m) = Cn−1(a, b,m) + Cn−2(a, b,m) +m, (61)

with C0(a, b,m) = b − a − m, C1(a, b,m) = a, and m is a constant ([1]). The generalized
Leonardo sequence arises as a special case of Cn :

Lm,n = Cn(1, 2 +m,m).

Lemma 6.1. [1] Consider the Leonardo-like sequence {Cn(a, b,m)} as defined in (61). Then

Cn(a, b,m) = aFn−2 + bFn−1 +m(Fn − 1).

The proof of this lemma can be found in [1].

Theorem 6.3. Let {Cn(a, b,m)} be the Leonardo-like sequence. Then

∞∑
n=0

Ckn(a, b,m)

rn+1
=

(r − ϕk)((b− a)ϕ−m− a)− (r − ψk)((b− a)ψ −m− a)√
5(r − ϕk)(r − ψk)

− m

r − 1
.
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Proof. Using Lemma 6.1, we have

∞∑
n=0

Ckn(a, b,m)

rn+1
= a

∞∑
n=0

Fkn−2

rn+1
+ b

∞∑
n=0

Fkn−1

rn+1
+m

∞∑
n=0

Fkn
rn+1

−m
∞∑
n=0

1

rn+1
.

We will deal with the series involving the Fibonacci sequence separately. Denote ϕ = 1+
√
5

2
and

ψ = 1−
√
5

2
. Then

∞∑
n=0

Fkn−2

rn+1
=

∞∑
n=0

1√
5

(
ϕkn−2 − ψkn−2

rn+1

)
=

1

rϕ2
√
5

∞∑
n=0

(
ϕk

r

)n
− 1

rψ2
√
5

∞∑
n=0

(
ψk

r

)n
=

1

rϕ2
√
5

(
1

1− ϕk

r

)
− 1

rψ2
√
5

(
1

1− ψk

r

)

=
1√
5

(
ϕ−2(r − ψk)− ψ−2(r − ϕk)

(r − ϕk)(r − ψk)

)
.

Next, by Theorem 4.2, we have

∞∑
n=0

Fkn−1

rn+1
=

1√
5

(
ϕ(r − ϕk)− ψ(r − ψk)

(r − ϕk)(r − ψk)

)
.

Next, by Theorem 3.1, we have

∞∑
n=0

Fkn
rn+1

=
1√
5

(
ϕk − ψk

(r − ϕk)(r − ψk)

)
.

Putting the above together, we obtain

∞∑
n=0

Ckn(a, b,m)

rn+1
= a

∞∑
n=0

Fkn−2

rn+1
+ b

∞∑
n=0

Fkn−1

rn+1
+m

∞∑
n=0

Fkn
rn+1

−m
∞∑
n=0

1

rn+1

=
a√
5

(
ϕ−2(r − ψk)− ψ−2(r − ϕk)

(r − ϕk)(r − ψk)

)
+

b√
5

(
ϕ(r − ϕk)− ψ(r − ψk)

(r − ϕk)(r − ψk)

)
+

m√
5

(
ϕk − ψk

(r − ϕk)(r − ψk)

)
− m

r − 1

=
(r − ϕk)(−aψ−2 + bϕ−m) + (r − ψk)(aϕ

−2 − bψ +m)√
5(r − ϕk)(r − ψk)

− m

r − 1

=
(r − ϕk)((b− a)ϕ−m− a)− (r − ψk)((b− a)ψ −m− a)√

5(r − ϕk)(r − ψk)
− m

r − 1
.

We can generalize further by letting {wn(w0, w1, p, q, t, j)} be a sequence of order 2 satisfying
the non-homogeneous linear relation in the following form, [16]:

wn = pwn−1 + qwn−2 + (p+ q − 1)(tn+ j), n ≥ 2, t, j ∈ Z, S (62)

where w0, w1, p, q are given constants such that p+ q ̸= 1.
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Lemma 6.2. [16] Let {wn(w0, w1, p, q, t, j)} be the sequence as defined in (62). Then

wn = wn(w0, w1, p, q, 0, 0) +
(
j − t(p+2q)

1−p−q

)
(wn(1, 1, p, q, 0, 0)− 1) + t(wn(0, 1, p, q, 0, 0)− n).

Theorem 6.4. Let {wn(w0, w1, p, q, t, j)} be the sequence as defined in (62). Then

∞∑
n=0

wn
rn+1

=
(r − p)w0 + w1 + (p+ q − 1)

(
j
r−1

+ t
(r−1)2

)
r2 − pr − q

, (63)

with r > 1.

Proof. Let S be the desired series, i.e.,

S =
∞∑
n=0

wn
rn+1

.

Consider the straightforward calculations

∞∑
n=0

wn+1

rn+1
= r

∞∑
n=1

wn
rn+1

= r

(
∞∑
n=0

wn
rn+1

− w0

r

)
= r

∞∑
n=0

wn
rn+1

− w0,

∞∑
n=0

wn+2

rn+1
= r2

∞∑
n=2

wn
rn+1

= r2

(
∞∑
n=0

wn
rn+1

− w1

r2
− w0

r

)
= r2

∞∑
n=0

wn
rn+1

− w1 − rw0.

(64)

From (62), it is clear that

∞∑
n=0

wn+2

rn+1
=

∞∑
n=0

pwn+1 + qwn + (p+ q − 1)(tn+ j)

rn+1

= p
∞∑
n=0

wn+1

rn+1
+ q

∞∑
n=0

wn
rn+1

+ t(p+ q − 1)
∞∑
n=0

n

rn+1
+ j(p+ q − 1)

∞∑
n=0

1

rn+1
.

Then by (64), we get

qS =
∞∑
n=0

wn+2

rn+1
− p

∞∑
n=0

wn+1

rn+1
− t(p+ q − 1)

r

∞∑
n=0

n

(
1

r

)n
− j(p+ q − 1)

r

∞∑
n=0

(
1

r

)n
= (Sr2 − w0r − w1)− p(Sr − w0)−

t(p+ q − 1)

r
·

1
r(

1− 1
r

)2 − j(p+ q − 1)

r
· 1

1− 1
r

= S(r2 − pr)− w0r − pw0 − w1 −
t(p+ q − 1)

(r − 1)2
− j(p+ q − 1)

r − 1
.

Solving this equation for S yields the desired equality.

7 Linear recurrence sequences of order three

We now analyze the natural corresponding results for sequences of order three. First and foremost,
we derive a closed form expression for third order linear recurrence sequences. A matrix
representation for the closed form can be found in [5].

303



Theorem 7.1. Let {an} be a sequence satisfying the third order recurrence relation

an = pan−1 + qan−2 + tan−3, n ≥ 3, (65)

for some constants p, q, t ̸= 0 and initial conditions a0, a1, and a2. Let α, β, γ be roots of the
characteristic equation x3 − px2 − qx− t = 0. Then we have the following third order analogue
of Theorem 2.1:

an =


a1(β+γ)−a0βγ−a2

(α−β)(γ−α) αn + a1(α+γ)−a0αγ−a2
(α−β)(β−γ) βn + a1(α+β)−a0αβ−a2

(β−γ)(γ−α) γn, if α ̸= β ̸= γ,

2a1−2a0γ
(γ−α)2 α

n+1 + a0γ2−a2
(γ−α)2 α

n + a1(γ+α)−a0αγ−a2
γ−α nαn−1 + a0α2−2a1α+a2

(γ−α)2 γn, if α = β ̸= γ,

1
2
[a0(n− 1)(n− 2)αn − 2a1n(n− 2)αn−1 + a2n(n− 1)αn−2] , if α = β = γ.

(66)

Proof. First, suppose that α, β, γ are all distinct. By Vieta’s formula, we have

p = α + β + γ

q = −(αβ + βγ + γα)

r = αβγ.

Substituting these into (65) yields

an = (α + β + γ)an−1 − (αβ + βγ + γα)an−2 + αβγan−3.

This is equivalent to

an − (α + β)an−1 + αβan−2 = γ(an−1 − (α + β)an−2 + αβan−3),

which implies that the sequence {an − (α + β)an−1 + αβan−2} is geometric, with γ being its
common ratio. Thus,

an − (α + β)an−1 + αβan−2 = (a2 − (α + β)a1 + αβa0)γ
n−2,

which implies

an
γn

=
α + β

γ
· an−1

γn−1
− αβ

γ2
· an−2

γn−2
+
a2 − (α + β)a1 + αβa0

γ2
.

We can make the substitutionAn := an/γ
n to yield the second-order nonhomogeneous recurrence

relation

An =
α + β

γ
An−1 −

αβ

γ2
An−2 +

a2 − (α + β)a1 + αβa0
γ2

, (67)

where A0 = a0 and A1 = a1/γ.
Solving the corresponding characteristic equation

x2 − α + β

γ
x+

αβ

γ2
=
a2 − (α + β)a1 + αβa0

γ2
,
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we get the roots x =
α

γ
,
β

γ
. This implies that the closed form for {an} is of the form

An = c1

(
α

γ

)n
+ c2

(
β

γ

)n
+ C, (68)

with undetermined coefficients c1, c2, and C.
With C being a particular solution of An, it satisfies (67), and so

C =
α + β

γ
· C − αβ

γ2
· C +

a2 − (α + β)a1 + αβa0
γ2

,

which implies

C =
a1(α + β)− a0αβ − a2

(β − γ)(γ − α)
.

Evaluating (67) at n = 0 and n = 1 yields

a0 = A0 = c1 + c2 + C,

a1
γ

= A1 = c1
α

γ
+ c2

β

γ
+ C,

respectively. This system of two equations with two unknowns c1 and c2 can be solved to get

c1 =
a1(β + γ)− a0βγ − a2

(α− β)(γ − α)
,

c2 =
a1(α + γ)− a0αγ − a2

(α− β)(β − γ)
.

Thus, multiplying both sides of (67) by γn gifts us with

an =
a1(β + γ)− a0βγ − a2

(α− β)(γ − α)
αn +

a1(α + γ)− a0αγ − a2
(α− β)(β − γ)

βn +
a1(α + β)− a0αβ − a2

(β − γ)(γ − α)
γn.

(69)

Now, supposing α = β ̸= γ, we can simply let β approach α in (69). Starting with the third term
of the right-hand side of (69), we get

lim
β→α

a1(α + β)− a0αβ − a2
(β − γ)(γ − α)

γn =
a0α

2 − 2a1α + a2
(γ − α)2

γn. (70)

Treating the first two terms of the the right-hand side of (69) carefully,

lim
β→α

[
a1(β + γ)− a0βγ − a2

(α− β)(γ − α)
αn +

a1(α + γ)− a0αγ − a2
(α− β)(β − γ)

βn
]

= lim
β→α

[
a1(β

2−γ2)−a0βγ(β−γ)−a2(β−γ)
(α−β)(β−γ)(γ−α)

αn+
a1(γ

2−α2)−a0αγ(γ−α)−a2(γ−α)
(α−β)(β−γ)(γ−α)

βn
]
,

we employ L’Hôpital rule to continue to

= lim
β→α

[
2a1β − 2a0βγ + a0γ

2 − a2
(α− 2β + γ)(γ − α)

αn +
na1(γ

2 − α2)− a0αγ(γ − α)− a2(γ − α)

(α− 2β + γ)(γ − α)
βn−1

]
=

2a1 − 2a0
(γ − α)2

αn+1 +
a0γ

2 − a2
(γ − α)2

αn +
nαn−1 (a1(γ + α)− a0αγ − a2)

γ − α
. (71)
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Combining (70) and (71), we obtain the formula for an when α = β ̸= γ:

an=
2a1 − 2a0γ

(γ − α)2
αn+1+

a0γ
2 − a2

(γ − α)2
αn+

a1(γ + α)− a0αγ − a2
γ − α

nαn−1+
a0α

2 − 2a1α + a2
(γ − α)2

γn

(72)

Finally, to get the case α = β = γ, we let γ approach α in (72). Indeed,

an = lim
γ→α

1

(γ − α)2

[
(2a1 − 2a0γ)α

n+1 + (a0γ
2 − a2)α

n

+ nαn−1(a1γ + a1α− a0αγ − a2)(γ − α) + (a0α
2 − 2a1α + a2)γ

n

]
Applying L’Hôpital rule once, we have

an = lim
γ→α

1

2(γ − α)

[
− 2a0α

n+1 + 2a0γα
n + nγn−1(a0α

2 − 2a1α + a2)

+ nαn−1(2a1γ − 2a0αγ − a2 + a0α
2)

]
.

Applying L’Hôpital rule again and rearranging terms, we have the result for α = β = γ:

an =
1

2

[
a0(n− 1)(n− 2)αn − 2a1n(n− 2)αn−1 + a2n(n− 1)αn−2

]
.

Next, we consider criteria for convergence of the usual series. To do so, we introduce the
following lemma.

Lemma 7.1. Suppose |t| < 1. Then

∞∑
n=0

n2tn =
t2 + t

(1− t)3
.

Proof. Differentiating the series in Lemma 3.2 with respect to t, we have

∞∑
n=1

n2tn−1 =
1− t2

(1− t)4
=

t+ 1

(1− t)3
.

Multiplying by t yields the desired result.

Lemma 7.1 serves as the final stepping stone needed for the following result on convergence.

Lemma 7.2. Let {an} be a sequence as defined in Theorem 7.1. Let α, β, γ be the roots of its
characteristic equation that may or may not be distinct. Then the series

∞∑
n=0

an
rn+1

converges if r > max{|α|, |β|, |γ|}.
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Proof. Considering the first branch of (66), i.e., when α, β, γ are distinct, we get

∞∑
n=0

an
rn+1

=
∞∑
n=0

a1(β + γ)− a0βγ − a2
(α− β)(γ − α)

αn

rn+1
+

∞∑
n=0

a1(α + γ)− a0αγ − a2
(α− β)(β − γ)

βn

rn+1

+
a1(α + β)− a0αβ − a2

(β − γ)(γ − α)

γn

rn+1

=
a1(β + γ)− a0βγ − a2

r(α− β)(γ − α)

∞∑
n=0

(α
r

)n
+
a1(α + γ)− a0αγ − a2

r(α− β)(β − γ)

∞∑
n=0

(
β

r

)n
+
a1(α + γ)− a0αγ − a2

r(α− β)(β − γ)

∞∑
n=0

(γ
r

)n
,

where the geometric series in the above line converge when |α|
r
,
|β|
r
,
|γ|
r
< 1. Or, equivalently,

when r > max{|α|, |β|, |γ|}.
As for the second branch of (66), another direct computation foretells

∞∑
n=0

an
rn+1

=
∞∑
n=0

2a1 − 2a0γ

(γ − α)2
αn+1

rn+1
+

∞∑
n=0

a0γ
2 − a2

(γ − α)2
αn

rn+1
+

∞∑
n=0

a1(γ + α)− a0αγ − a2
γ − α

· nα
n−1

rn+1

+
∞∑
n=0

a0α
2 − 2a1α + a2
(γ − α)2

γn

rn+1

=
2a1 − 2a0γ

(γ − α)2
· α
r

∞∑
n=0

(α
r

)n
+
a0γ

2 − a2
r(γ − α)2

∞∑
n=0

(α
r

)n
+
a1(γ + α)− a0αγ − a2

αr(γ − α)

∞∑
n=0

n
(α
r

)n
+
a0α

2 − 2a1α + a2
r(γ − α)2

∞∑
n=0

(γ
r

)n
where the same condition elicits convergence of the above series.

Finally, the last branch results in

∞∑
n=0

an
rn+1

=
1

2

[ ∞∑
n=0

a0(n− 1)(n− 2)
αn

rn+1
−

∞∑
n=0

2a1n(n− 2)
αn−1

rn+1
+

∞∑
n=0

a2n(n− 1)
αn−2

rn+1

]
=
a0
2r

[ ∞∑
n=0

n2
(α
r

)n
−3

∞∑
n=0

n
(α
r

)n
+2

∞∑
n=0

(α
r

)n]
− a1
αr

[ ∞∑
n=0

n2
(α
r

)n
−2

∞∑
n=0

n
(α
r

)n]
+

a2
2α2r

[ ∞∑
n=0

n2
(α
r

)n
−

∞∑
n=0

n
(α
r

)n ]
,

where a special appearance of Lemma 7.1 guarantees convergence with the same condition.

Behold, the main theorem of this section.

Theorem 7.2. Let {an} be a sequence satisfying the recurrence relation in (65) and let
r > max{|α|, |β|, |γ|, 1}. Then

∞∑
n=0

an
rn+1

=
a0r

2 + (a1 − pa0)r + (a2 − pa1 − qa0)

r3 − pr2 − qr − t
.
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Proof. Denote the series to be evaluated by S, i.e.,

S =
∞∑
n=0

an
rn+1

.

We first note that
∞∑
n=0

an+3

rn+1
=

∞∑
n=0

pan+2 + qan+1 + tan
rn+1

= p
∞∑
n=0

an+2

rn+1
+ q

∞∑
n=0

an+1

rn+1
+ t

∞∑
n=0

an
rn+1

. (73)

Since we know from Lemma 7.2 that S converges, we can use the usual process to yield the
equalities:

∞∑
n=0

an+1

rn+1
= r

∞∑
n=1

an
rn+1

= r

(
∞∑
n=0

an
rn+1

− a0
r

)
= Sr − a0,

∞∑
n=0

an+2

rn+1
= r2

∞∑
n=2

an
rn+1

= r2

(
∞∑
n=0

an
rn+1

− a0
r

− a1
r2

)
= Sr2 − a0r − a1,

∞∑
n=0

an+3

rn+1
= r3

∞∑
n=3

an
rn+1

= r3

(
∞∑
n=0

an
rn+1

− a0
r

− a1
r2

− a2
r3

)
= Sr3 − a0r

2 − a1r − a2.

Combining these in (73), we get

tS = (Sr3 − a0r
2 − a1r − a2)− p(Sr2 − a0r − a1)− q(Sr − a0)

= S(r3 − pr2 − qr)− a0r
2 + (pa0 − a1)r + (qa0 + pa1 − a2).

Upon solving for S, the desired result arises.

Example 7.1. The Padovan sequence {pn} is defined by the recurrence relation

pn = pn−2 + pn−3, n ≥ 3,

with p0 = p1 = p2 = 1. The real root to the characteristic equation x3−x−1 = 0 is α ≈ 1.3247

(Plastic ratio, [15]). Hence, for any r > 1.3247, we have
∞∑
n=0

pn
rn+1

=
r2 + r

r3 − r − 1
, (74)

and in particular,
∞∑
n=0

pn
10n+1

=
110

989
and

∞∑
n=0

pn
2n+1

=
24

5
. (75)

Example 7.2. The Perrin sequence {qn} is defined by the recurrence relation

qn = qn−2 + qn−3, n ≥ 3,

with the initial conditions q0 = 3, q1 = 0, q2 = 2. For r > 1.3247, we have
∞∑
n=0

qn
rn+1

=
3r2 − 1

(r − α)(r − β)(r − γ)
=

3r2 − 1

r3 − r − 1
.
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Example 7.3. A third-order linear recursive sequence {Tn} is called a Tribonacci sequence if it
satisfies

Tn = Tn−1 + Tn−2 + Tn−3, n ≥ 3,

with T0 = 0, T1 = 1, T2 = 1. The real root to the characteristic equation x3 − x2 − x− 1 = 0 is
α ≈ 1.8393 (Tribonacci constant, [7]). Hence, for any r > 1.8393, we have

∞∑
n=0

Tn
rn+1

=
r

r3 − r2 − 2
,

and particularly,

∞∑
n=0

Tn
10n+1

=
5

449
and

∞∑
n=0

Tn
2n+1

= 1. (76)

The series for the Tribonacci sequence was also discussed by [7].
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