The generalized order (k, t)-Mersenne sequences in groups

E. Mehraban ${ }^{1,2,3}$, Ö. Deveci ${ }^{4}$ and E. Hincal ${ }^{1,2,3}$
${ }^{1}$ Mathematics Research Center, Near East University TRNC
Mersin 10, 99138 Nicosia, Türkiye
${ }^{2}$ Department of Mathematics, Near East University TRNC
Mersin 10, 99138 Nicosia, Türkiye
${ }^{3}$ Faculty of Art and Science, University of Kyrenia TRNC
Mersin 10, 99320 Kyrenia, Türkiye
e-mails: elahe.mehraban@neu.edu.tr, evren.hincal@neu.edu.tr
${ }^{4}$ Department of Mathematics, Faculty of Science and Letters
Kafkas University, 36100, Türkiye
e-mail: odeveci36@hotmail.com

Received: 22 February 2024
Accepted: 15 May 2024

Revised: 11 May 2024
Online First: 17 May 2024

Abstract

The purpose of this paper is to determine the algebraic properties of finite groups via a Mersenne-like sequence. Firstly, we introduce the generalized order (k, t)-Mersenne number sequences and study the periods of these sequences modulo m. Then, we get some interesting structural results. Furthermore, we expand the generalized order (k, t)-Mersenne number sequences to groups and we give the definition of the generalized order (k, t)-Mersenne sequences, $M Q_{k}^{t}(G, X)$, in the j-generator groups and also, investigate these sequences in the non-Abelian finite groups in detail. At last, we obtain the periods of the generalized order (k, t)-Mersenne sequences in some special groups as applications of the results produced.

Keywords: Period, Mersenne number, The generalized order (k, t)-Mersenne number sequences p-group.
2020 Mathematics Subject Classification: 20F05, 11B39, 20D60.

	Copyright © 2024 by the Authors. This is an Open Access paper distributed under the
(c) ©	
terms and conditions of the Creative Commons Attribution 4.0 International License	
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/	

1 Introduction

In mathematics and other sciences, sequences play a crucial role. There are numerous scientific applications for sequences in fields such as coding and encryption (see [5,7, 15, 17]). Fibonacci and Pell are two of the most important sequences. The sequences have been studied in many works for example $[1,3,6,9,10,16,18]$. Another one of the sequence is Mersenne.

A number of the form $M_{n}=2^{n}-1, n \geq 2$ is said to be a Mersenne number [11]. In 2013, T. Koshy and Z. Gao investigated some divisibility properties of Catalan numbers with Mersenne numbers as their subscripts (see [12]).

In 2016, studied some properties Mersenne, Jacobsthal and Jacobsthal-Lucas sequence and obtained some results with matrices involving Mersenne numbers such as the generating matrix (see [2]). T. Goy [8], calculated determinats the Toeplitz-Hessenberg matrices whose entries are Mersenne numbers. In [13], definded the generalized Mersenne number as follows

Definition 1.1. For an integer $k \geq 3$, the generalized Mersenne number, denoted by $\{M(k, n)\}_{n=0}^{\infty}$, is defined by

$$
M(k, n)=k M(k, n-1)-(k-1) M(k, n-2), \quad n \geq 0
$$

and we seed the sequence with $M(k, 0)=0$ and $M(k, 1)=1$.
Then, studied generalized Mersenne numbers, their properties, matrix generators and some combinatorial interpretations.

Definition 1.2. After a certain point, a sequence is periodic if it is only composed of repeating subsequences. Period is the number of elements in shortest repeating subsequence. For example, we cosider the sequence $a_{1}, a_{2}, a_{3}, a_{4}, a_{2}, a_{3}, a_{4}, \ldots$ is periodic after the initial element a and has period 3 . A sequence is simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the sequence $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots$ is simply periodic with period 5 .

For $m, u, l \in \mathbb{N}$, we consider the finitely presented group H_{m} and $H_{(u, l, m)}$ as follows:

$$
\begin{aligned}
& H_{m}=\left\langle a, b \mid a^{m^{2}}=b^{m}=1, b^{-1} a b=a^{1+m}\right\rangle, m \geq 2 \\
& H_{(u, l, m)}=\left\langle a, b, c \mid a^{u}=b^{l}=c^{m}=1,[a, b]=c,[a, c]=[b, c]=1\right\rangle .
\end{aligned}
$$

Lemma 1.1. Every element of H_{m} can be written uniquely in the form $b^{u} a^{w}$, where $0 \leq u \leq m-1$ and $0 \leq w \leq m^{2}-1$. Also, $\left|H_{m}\right|=m^{2}$ (see [4]).

Lemma 1.2. [14] Element $H(u, l, m)$ of the Heisenberg group can be written uniquely in the form $a^{i} b^{j} c^{k}$ where $1 \leq i \leq u, 1 \leq j \leq l$ and $1 \leq k \leq m$.

In this paper, we introduce the generalized order (k, t)-Mersenne number sequences and define them on groups. Then, as a result of our analysis, we show that these sequences are simply periodic, and we study them in some finite groups.

It is the purpose of Section 2 to define the generalized order (k, t)-Mersenne number sequences and to discuss some results related to them. Section 3 introduces the generalized order (k, t) Mersenne sequences in a finite group and discusses perodic sequences.

2 The generalized order (k, t)-Mersenne number sequences

In this section, we introduce the generalized order (k, t)-Mersenne number sequences and get some properties of them that we use later.

Definition 2.1. For $k, t \geq 3$, the generalized order (k, t)-Mersenne number sequences, $\left\{M_{n}(k, t)\right\}_{n=0}^{\infty}$, defined as follows

$$
\begin{equation*}
M_{n}(k, t)=k M_{n-1}(k, t)-(k-1) M_{n-2}(k, t)+M_{n-3}(k, t)+\cdots+M_{n-t}(k, t), \quad n \geq t \tag{1}
\end{equation*}
$$

with initial conditions $M_{0}(k, t)=M_{1}(k, t)=\cdots=M_{t-2}(k, t)=0$ and $M_{t-1}(k, t)=1$.
Example 2.1. For $t=3$ and $k=3$, we have $M_{n}(3,3)=3 M_{n-1}(3,3)-2 M_{n-2}(3,3)+$ $M_{n-3}(3,3)$. So that, $\left\{M_{n}(3,3)\right\}_{n=0}^{\infty}=\{0,0,1,3,7,16,37, \ldots\}$.

For $k=4$ and $t=3$, we have $M_{n}(4,3)=4 M_{n-1}(4,3)-3 M_{n-2}(4,3)+M_{n-3}(4,3)$. So that, $\left\{M_{n}(4,3)\right\}_{n=0}^{\infty}=\{0,0,1,4,13,41,129, \ldots\}$.

In Table 1, we calculate $M_{n}(3, t)$, for $0 \leq n \leq 8$ and $3 \leq t \leq 8$.
Table 1. $M_{n}(3, t)$, for $0 \leq n \leq 8$ and $3 \leq t \leq 8$

\boldsymbol{n}	$\boldsymbol{M}_{\mathbf{0}} \mathbf{(3 , \boldsymbol { t })}$	$\boldsymbol{M}_{\mathbf{1}} \mathbf{(3 , t)}$	$\boldsymbol{M}_{\mathbf{2}} \mathbf{(3 , t)}$	$\boldsymbol{M}_{\mathbf{3}} \mathbf{(3 , \boldsymbol { t })}$	$\boldsymbol{M}_{\mathbf{4}}(\mathbf{3}, \boldsymbol{t})$	$\boldsymbol{M}_{\mathbf{5}} \mathbf{(3 , t)}$	$\boldsymbol{M}_{\mathbf{6}}(\mathbf{3}, \boldsymbol{t})$	$\boldsymbol{M}_{\mathbf{7}} \mathbf{(3 , t)}$	$\boldsymbol{M}_{\mathbf{8}} \mathbf{(3 , t)}$
$t=3$	0	0	1	3	7	16	37	86	200
$t=4$	0	0	0	1	3	7	16	38	92
$t=5$	0	0	0	0	1	3	7	16	38
$t=6$	0	0	0	0	0	1	3	7	16
$t=7$	0	0	0	0	0	0	1	3	7
$t=8$	0	0	0	0	0	0	0	1	3

The generalized order (k, t)-Mersenne number sequences modulo α, $\left\{M_{n}^{\alpha}(k, t)\right\}=$ $\left\{M_{0}^{\alpha}(k, t), M_{1}^{\alpha}(k, t), \ldots, M_{i}^{\alpha}(k, t), \ldots\right\}$ where $M_{i}^{\alpha}(k, t)=M_{i}(k, t)(\bmod \alpha)$.
Theorem 2.1. For $k, t \geq 3$, the sequence $\left\{M_{n}^{\alpha}(k, t)\right\}$ is simply periodic.
Proof. Suppose that $X_{t}=\left\{\left(x_{1}, x_{2}, \cdots, x_{t}\right) \mid x_{i} \in \mathbb{N}\right.$ and $\left.1 \leq x_{t} \leq \alpha\right\}$. So that we have $\left|X_{t}\right|=\alpha^{t}$. Since there are α^{t} distinct t-tuples of elements of Z_{α}, at least one of the t-tuples appears twice in the sequence $\left\{M_{n}^{\alpha}(k, t)\right\}$. Then the subsequence follows this t-tuple. Thus, it is obvious that the sequence $\left\{M_{n}^{\alpha}(k, t)\right\}$ is periodic.
Hence, it is cearly for $w \geq 0$, there exist $w \geq v$ such that

$$
M_{w}^{\alpha}(k, t) \equiv M_{v}^{\alpha}(k, t), M_{w+1}^{\alpha}(k, t) \equiv M_{v+1}^{\alpha}(k, t), \ldots, M_{w+t}^{\alpha}(k, t) \equiv M_{v+t}^{\alpha}(k, t) .
$$

By definition of the generalized order (k, t)-Mersenne number sequences, we have

$$
M_{n}(k, t)=k M_{n-1}(k, t)-(k-1) M_{n-2}(k, t)+M_{n-3}(k, t)+\cdots+M_{n-t}(k, t),
$$

Thus we can easily derive that

$$
M_{w-v}^{\alpha}(k, t) \equiv M_{0}^{\alpha}(k, t), M_{w-v+1}^{\alpha}(k, t) \equiv M_{1}^{\alpha}(k, t), \ldots, M_{w-v+t}^{\alpha}(k, t) \equiv M_{t}^{\alpha}(k, t)
$$

which indicates that the generalized order (k, t)-Mersenne number sequences is simply periodic.

We use $h M_{r}(k, t)$ to denoted the minimal period of the generalized order (k, t)-Mersenne number sequences modulo r. In Table 2, we calculate $h M_{r}(k, 3)$, for $2 \leq r \leq 10$ and $3 \leq k \leq 8$.

Table 2. $h M_{r}(k, 3)$, for $2 \leq r \leq 10$ and $3 \leq k \leq 8$

r	$h M_{r}(3,3)$	$h M_{r}(4,3)$	$h M_{r}(5,3)$	$h M_{r}(6,3)$	$h M_{r}(7,3)$	$h M_{r}(8,3)$
2	7	7	7	7	7	7
3	13	8	13	13	8	13
4	14	14	14	14	14	14
5	8	31	24	31	12	8
6	91	56	91	91	56	91
7	16	38	16	21	16	57
8	28	28	28	28	28	28
9	39	24	39	39	24	39
10	56	217	168	217	84	56

From the recurrence relation (2.1), we have

$$
\left[\begin{array}{c}
M_{n}(k, t) \\
M_{n-1}(k, t) \\
\vdots \\
M_{n-t+2}(k, t) \\
M_{n-t+1}(k, t)
\end{array}\right]=\left[\begin{array}{cccccccc}
k & -(k-1) & 1 & 1 & \cdots & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
M_{n-1}(k, t) \\
M_{n-2}(k, t) \\
\vdots \\
M_{n-t+1}(k, t) \\
M_{n-t}(k, t)
\end{array}\right] .
$$

The generalized order (k, t)-Mersenne number sequences have the following companion matrix

$$
M_{t}(k)=\left[\begin{array}{ccccccc}
k & -(k-1) & 1 & \cdots & 1 & 1 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right]_{t \times t}
$$

and is called the generalized order (k, t)-Mersenne matrix.
Lemma 2.1. For $k=3, t=3$ and $n \geq t$, we have

$$
\left(M_{3}(3)\right)^{n}=\left[\begin{array}{ccc}
M_{n+2}(3,3) & -\left(2 M_{n+1}(3,3)-M_{n}(3,3)\right) & M_{n+1}(3,3) \\
M_{n+1}(3,3) & -\left(2 M_{n}(3,3)-M_{n-1}(3,3)\right) & M_{n}(3,3) \\
M_{n}(3,3) & -\left(2 M_{n-1}(3,3)-M_{n-2}(3,3)\right) & M_{n-1}(3,3)
\end{array}\right] .
$$

Proof. We use induction method on n. The result is clear if $n=3$. We have

$$
\left(M_{3}(3)\right)^{3}=\left[\begin{array}{ccc}
16 & -11 & 7 \\
7 & -5 & 3 \\
3 & -2 & 1
\end{array}\right]=\left[\begin{array}{lll}
M_{5}(3,3) & -\left(2 M_{4}(3,3)-M_{3}(3,3)\right) & M_{4}(3,3) \\
M_{4}(3,3) & -\left(2 M_{3}(3,3)-M_{2}(3,3)\right) & M_{4}(3,3) \\
M_{3}(3,3) & -\left(2 M_{2}(3,3)-M_{1}(3,3)\right) & M_{2}(3,3)
\end{array}\right] .
$$

Assume that Lemma holds for n such that $3 \leq n \leq s$. Let us show that it holds for $n=s+1$.

$$
\begin{aligned}
\left(M_{3}(3)\right)^{s+1} & =\left[\begin{array}{ccc}
3 & -2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
M_{s+2}(3,3) & -\left(2 M_{s+1}(3,3)-M_{s}(3,3)\right) & M_{s+1}(3,3) \\
M_{s+1}(3,3) & -\left(2 M_{s}(3,3)-M_{s-1}(3,3)\right) & M_{s}(3,3) \\
M_{s}(3,3) & -\left(2 M_{s-1}(3,3)-M_{s-2}(3,3)\right) & M_{s-1}(3,3)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
M_{s+3}(3,3) & -\left(2 M_{s+2}(3,3)-M_{s+1}(3,3)\right) & M_{s+2}(3,3) \\
M_{s+2}(3,3) & -\left(2 M_{s+1}(3,3)-M_{s}(3,3)\right) & M_{s+1}(3,3) \\
M_{s+1}(3,3) & -\left(2 M_{s}(3,3)-M_{s-1}(3,3)\right) & M_{s}(3,3)
\end{array}\right] .
\end{aligned}
$$

Lemma is proved.
Corollary 2.1. For $k \geq 4, t=3$ and $n \geq t$, we have

$$
\left(M_{3}(k)\right)^{n}=\left[\begin{array}{ccc}
M_{n+2}(k, 3) & -\left((k-1) M_{n+1}(k, 3)-M_{n}(k, 3)\right) & M_{n+1}(k, 3) \\
M_{n+1}(k, 3) & -\left((k-1) M_{n}(k, 3)-M_{n-1}(k, 3)\right) & M_{n}(k, 3) \\
M_{n}(k, 3) & -\left((k-1) M_{n-1}(k, 3)-M_{n-2}(k, 3)\right) & M_{n-1}(k, 3)
\end{array}\right] .
$$

Example 2.2. If $k=4$ and $t=3$, we have

$$
\left(M_{3}(4)\right)^{3}=\left[\begin{array}{ccc}
41 & -35 & 13 \\
13 & -11 & 4 \\
4 & -3 & 1
\end{array}\right] .
$$

In general by induction on n, for $k \geq 3, t \geq 4$ and $n \geq t$, we have

$$
\begin{gathered}
\left(M_{t}(k)\right)^{n}\left[\begin{array}{cc}
M_{n+t-1}(k, t) & -\left((k-1) M_{n+t-2}(k, t)-\left(M_{n+t-3}(k, t)+M_{n+t-4}(k, t)+\ldots+M_{n}(k, t)\right)\right) \\
M_{n+t-2}(k, t) & -\left((k-1) M_{n+t-3}(k, t)-\left(M_{n+t-4}(k, t)+M_{n+t-5}(k, t)+\ldots+M_{n-1}(k, t)\right)\right) \\
\vdots & \vdots \\
M_{n+1}(k, t) & -\left((k-1) M_{n}(k, t)-\left(M_{n-1}(k, t)+M_{n-2}(k, t)+\ldots+M_{n-t}(k, t)\right)\right) \\
M_{n}(k, t) & -\left((k-1) M_{n-1}(k, t)-\left(M_{n-2}(k, t)+M_{n-3}(k, t)+\ldots+M_{n-t-1}(k, t)\right)\right) \\
M_{n+t-2}(k, t) \\
M_{n+t-3}(k, t) \\
\vdots \\
M_{k}^{*} \\
M_{n}(k, t) \\
M_{n-1}(k, t)
\end{array}\right], \\
M_{k}^{*}=\left[\begin{array}{cccc}
\sum_{i=0}^{t-3} M_{n+t-(2+i)}(k, t) & \sum_{i=0}^{t-4} M_{n+t-(2+i)}(k, t) & \ldots & \sum_{i=0}^{1} M_{n+t-(2+i)}(k, t) \\
\sum_{i=0}^{t-3} M_{n+t-(2+i-1)}(k, t) & \sum_{i=0}^{t-4} M_{n+t-(2+i-1)}(k, t) & \ldots & \sum_{i=0}^{1} M_{n+t-(2+i-1)}(k, t) \\
\vdots & \vdots & \vdots & \vdots \\
\sum_{i=0}^{t-3} M_{n-i}(k, t) & \sum_{i=0}^{t-4} M_{n-i}(k, t) & \ldots & \sum_{i=0}^{1} M_{n-i}(k, t) \\
\sum_{i=0}^{t-3} M_{n-(i+1)}(k, t) & \sum_{i=0}^{t-4} M_{n-(i+1)}(k, t) & \ldots & \sum_{i=0}^{1} M_{n-(i+1)}(k, t)
\end{array}\right],
\end{gathered}
$$

where M_{k}^{*} is a $(t-3) \times(t-3)$ matrix.
Lemma 2.2. Let $g_{M_{n}(k, t)}$ be the generating function of the generalized order (k, t)-Mersenne number sequences. Then,

$$
\begin{equation*}
g_{M_{n}(k, t)}=\frac{x^{t-1}}{1-k x+(k-1) x^{2}-\cdots-x^{t}} . \tag{2}
\end{equation*}
$$

Proof. Let $g_{M_{n}(k, t)}$ be the generating function of the generating function of the generalized order (k, t)-Mersenne number sequences. We have

$$
\begin{aligned}
g_{M_{n}(k, t)} & =\sum_{n=1}^{\infty} M_{n}(k, t) x^{n} \\
& =M_{1}(k, t) x+M_{2}(k, t) x^{2}+\cdots+M_{t-1}(k, t) x^{t-1}+\sum_{n=t}^{\infty} M_{n}(k, t) x^{n} \\
& =x^{t-1}+\sum_{n=t}^{\infty} k M_{n-1}(k, t)-(k-1) M_{n-2}(k, t)+M_{n-3}(k, t)+\cdots+M_{n-t}(k, t) x^{n} \\
& =x^{t-1}+k \sum_{n=t}^{\infty} M_{n-1}(k, t) x^{n}-(k-1) \sum_{n=t}^{\infty} M_{n-2}(k, t) x^{n}+\cdots+\sum_{n=t}^{\infty} M_{n-t}(k, t) x^{n} \\
& =x^{t-1}+k x \sum_{n=1}^{\infty} M_{n}(k, t) x^{n}-(k-1) x^{2} \sum_{n=1}^{\infty} M_{n}(k, t) x^{n}+\cdots+x^{t} \sum_{n=1}^{\infty} M_{n}(k, t) x^{n} \\
& =x^{t-1}+k x g_{M_{n}(k, t)}-(k-1) x^{2} g_{M_{n}(k, t)}+\cdots+x^{t} g_{M_{n}(k, t) .}
\end{aligned}
$$

Thus,

$$
g_{M_{n}(k, t)}=\frac{x^{t-1}}{1-k x+(k-1) x^{2}-\cdots-x^{t}} .
$$

Lemma 2.3. The generating function of the generalized order (k, t)-Mersenne number sequences has the following exponential representation

$$
g_{M_{n}(k, t)}=x^{t-1} \exp \sum_{i=1}^{\infty} \frac{x^{i}}{i}\left(k-(k-1) x+\cdots+x^{t-1}\right)^{i},
$$

where $t \geq 3$.
Proof. Using (2.2), we have

$$
\begin{gathered}
\ln \frac{g_{M_{n}(k, t)}}{x^{t-1}}=-\ln \left(1-k x+(k-1) x^{2}-\cdots-x^{t}\right) \\
-\ln \left(1-k x+(k+1) x^{2}-\cdots-x^{t}\right)=-\left[-x\left(k-(k-1)+\cdots+x^{t-1}\right)\right. \\
\left.-\frac{1}{2} x^{2}\left(k-(k-1)+\cdots+x^{t-1}\right)^{2}-\cdots-\frac{1}{i} x^{i}\left(k-(k-1)+\cdots+x^{t-1}\right)^{i}-\cdots\right],
\end{gathered}
$$

result has been achieved.
Lemma 2.4. For integers s, n and $m \geq 2$, we have
(i) $M_{h M_{m}(k, t)+n}(k, t) \equiv M_{n}(k, t)(\bmod m)$,
(ii) $M_{s \times\left(h M_{m}(k, t)\right)+n}(k, t) \equiv M_{n}(k, t)(\bmod m)$.

Proof. (i) The result follows by using the definition of the period of the (k, t)-Mersenne number sequences modulo m.
(ii) We have

$$
\begin{aligned}
M_{s \times\left(h M_{m}(k, t)\right)+n}(k, t) & \equiv M_{\left(h M_{m}(k, t)\right)+(s-1) \times\left(h M_{m}(k, t)\right)+n}(k, t) \equiv M_{(s-1)\left(h M_{m}(k, t)\right)+n}(k, t) \\
& \equiv \cdots \equiv M_{n}(k, t)(\bmod m) .
\end{aligned}
$$

The result is obtained.
Lemma 2.5. Let n be an integer and $m \geq 2$ is a positive number. If

$$
\begin{cases}M_{n}(k, t) \equiv 0 & (\bmod m) \\ M_{n+1}(k, t) \equiv 0 & (\bmod m) \\ \vdots & \\ M_{n+t-2}(k, t) \equiv 0 & (\bmod m) \\ M_{n+t-1}(k, t) \equiv 1 & (\bmod m) \\ M_{n+t}(k, t) \equiv k & (\bmod m)\end{cases}
$$

then $h M_{m}(k, t) \mid n$.
Proof. There exists $0 \leq i \leq h M_{m}(k, t)$ such that $n=t \times\left(h M_{m}(k, t)\right)+i$. Also, $\forall 0 \leq j \leq t$, $M_{n+j}(t, k) \equiv M_{i+j}(t, k)(\bmod m)$, then we have the following equations

$$
\begin{cases}M_{i}(k, t) \equiv 0 & (\bmod m) \\ M_{i+1}(k, t) \equiv 0 & (\bmod m) \\ \vdots & \\ M_{i+t-2}(k, t) \equiv 0 & (\bmod m) \\ M_{i+t-1}(k, t) \equiv 1 & (\bmod m) \\ M_{i+t}(k, t) \equiv k & (\bmod m)\end{cases}
$$

So that i is a period of (k, t)-Mersenne number sequences modulo m, i.e., $h M_{m}(k, t) \mid i$. Since $0 \leq i<h M_{m}(k, t)$, we have $i=0$. Therefore, we get the results.

3 The generalized order (k, t)-Mersenne sequences in finite groups

In this section, we define the generalized order (k, t)-Mersenne sequences in finite groups and prove that generalized order (k, t)-Mersenne sequences in finite groups are simply periodic. Also, we study these sequences on H_{m} and $H_{(u, l, m)}$. First, we define the generalized order ($k, t)$-Mersenne sequence in a finite group as follows.

Definition 3.1. The generalized order (k, t)-Mersenne sequence in a finite group is a sequence of group elements $x_{0}, x_{1}, \ldots, x_{n}, \ldots$ for which, given an initail (seed) set in $X=\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}$, each element is defined by

$$
x_{n}= \begin{cases}a_{n}, & \text { for } n \leq j \tag{3}\\ x_{0} x_{1} \cdots x_{n-3}\left(x_{n-2}\right)^{-(k-1)} x_{n-1}^{k}, & \text { for } j<n \leq t \\ x_{n-t} \cdots x_{n-3}\left(x_{n-2}\right)^{-(k-1)} x_{n-1}^{k}, & \text { for } n>t\end{cases}
$$

The element of the generalized order (k, t)-Mersenne sequences in group are denoted by $Q_{k}^{t}(G, X)$ and its period is denoted by $M Q_{k}^{t}(G, X)$.

Theorem 3.1. The generalized order (k, t)-Mersenne sequences in group is simply peroidic.
Proof. Let G be an i-generator group and let $\left(a_{0}, a_{1}, \ldots, a_{i-1}\right)$ be a generating $i-$ tuple for G. If $|G|=m$, then there are m^{i} distinict i-tuple of elements of G. Thus, at least one of the $i-$ tuple appers twice in $Q_{k}^{t}(G, X)$. Because of the repetition, the sequence $Q_{k}^{t}(G, X)$ is periodic. Now, we show simply periodic. It is clear that there are r and s in \mathbb{N}, with $s>r$, such that $x_{s+1}=x_{r+1}, x_{s+2}=x_{r+2}, \ldots, x_{s+t}=x_{r+t}$. From Definition 3.1, we write $x_{s-1}=x_{r-1}, x_{s-2}=$ $x_{r-2}, \ldots, x_{s-r}=a_{0}=x_{0}=x_{r-s}$. Thus, $Q_{k}^{t}(G, X)$ is simply periodic.

For $m \in \mathbb{N}$, we consider the finitely presented group H_{m} as follows:

$$
H_{m}=\left\langle a, b \mid a^{m^{2}}=b^{m}=1, b^{-1} a b=a^{1+m}\right\rangle, m \geq 2 .
$$

Now, we obtain sequence $T_{n}(k)$ as follows:

$$
\begin{aligned}
T_{0}(k)= & 1, T_{1}(k)=0, T_{2}(k)=-(k-1)-m k(k-1), \\
T_{n}(k)= & T_{n-3}(k)-(k-1) T_{n-2}(k)+k T_{n-1}(k)-m\left(\left(T_{n-3}(k)-T_{n-2}(k)\right) M_{n-1}(k, 3)\right. \\
& +\cdots+\left(T_{n-3}(k)-(k-1) T_{n-2}(k)\right) M_{n-1}(k, 3)-\left(T_{n-3}(k)-(k-1) T_{n-2}(k)\right. \\
& \left.+T_{n-1}(k)\right) M_{n}(k, 3)-\cdots-\left(T_{n-3}(k)-(k-1) T_{n-2}(k)+(k-1) T_{n-1}(k)\right) M_{n}(k, 3),
\end{aligned}
$$

$$
n \geq 3
$$

Lemma 3.1. Every element of $Q_{k}^{3}\left(H_{m}, X\right)$ may be persented by $x_{n}=b^{M_{n+1}(k, 3)} a^{T_{n}(k)}, k \geq 3$.
Proof. For $n=2$ and $n=3$, we have $x_{2}=a^{-(k-1)}(b)^{k}=b^{k} a^{-(k-1)-m k(k-1)}$ and $x_{3}=a b^{-(k-1)}\left(b^{k} a^{-(k-1)-m k(k-1)}\right)^{k}=b^{-(k-1)} a^{1-m(k-1)}\left(b^{k} a^{-(k-1)-m k(k-1)}\right)^{k}$ $=b^{-(k-1)+k^{2}} a^{1-(k-1)-m\left(1-k^{3}-k^{2}-2 k\right)}$.

Now, by induction on n, we have

$$
\begin{aligned}
x_{n}= & x_{n-3}\left(x_{n-2}\right)^{-(k-1)}\left(x_{n-1}\right)^{k} \\
= & b^{M_{n-2}(k, 3)} a^{T_{n-3}(k)}\left(b^{M_{n-1}(k, 3)} a^{T_{n-2}(k)}\right)^{-(k-1)}\left(b^{M_{n}(k, 3)} a^{T_{n-1}(k)}\right)^{k} \\
= & b^{M_{n-2}(k, 3)} a^{T_{n-3}(k)}\left(b^{M_{n-1}(k, 3)} a^{T_{n-2}(k)}\right)^{-1}\left(a^{T_{n-3}(k)} b^{M_{n-1}(k, 3)} a^{T_{n-2}(k)}\right)^{-(k-2)}\left(b^{M_{n}(k, 3)} a^{T_{n-1}(k)}\right)^{k} \\
= & b^{M_{n-2}(k, 3)} a^{T_{n-3}(k)} a^{-T_{n-2}(k)} b^{-M_{n-1}(k, 3)}\left(b^{M_{n-1}(k, 3)} a^{T_{n-2}(k)}\right)^{-(k-2)}\left(b^{M_{n}(k, 3)} a^{T_{n-1}(k)}\right)^{k} \\
= & b^{M_{n-2}(k, 3)-M_{n-1}(k, 3)} a^{T_{n-3}(k)-T_{n-2}(k)-m\left(T_{n-3}(k)-T_{n-2}(k)\right) M_{n-1}(k, 3)}\left(b^{M_{n-1}(k, 3)} a^{T_{n-2}(k)}\right)^{-(k-2)} \\
& \left(b^{M_{n}(k, 3)} a^{T_{n-1}(k)}\right)^{k} \\
= & \cdots \\
= & b^{M_{n-2}(k, 3)-(k-1) M_{n-1}(k, 3)} \\
& a^{T_{n-3}(k)-(k-1) T_{n-2}(k)-m\left(\left(T_{n-3}(k)-T_{n-2}(k)\right) M_{n-1}(k, 3)+\cdots+\left(T_{n-3}(k)-(k-1) T_{n-2}(k)\right) M_{n-1}(k, 3)\right.} \\
& b^{M_{n}(k, 3)} a^{T_{n-1}(k)}\left(b^{M_{n}(k, 3)} a^{T_{n-1}(k)}\right)^{k-1} \\
= & b^{M_{n-2}(k, 3)-(k-1) M_{n-1}(k, 3)+M_{n}(k, 3)} a^{T_{n-3}(k)-(k-1) T_{n-2}(k)} \\
& a^{-m\left(\left(T_{n-3}(k)-T_{n-2}(k)\right) M_{n-1}(k, 3)+\cdots+\left(T_{n-3}(k)-(k-1) T_{n-2}(k)\right) M_{n-1}(k, 3)-\left(T_{n-3}(k)-(k-1) T_{n-2}(k)+T_{n-1}(k)\right) M_{n}(k, 3)\right.} \\
= & b^{M_{n}(k, 3)} a^{T_{n-1}(k)}\left(b^{M_{n}(k, 3)} a^{T_{n-1}(k)}\right)^{k-2} \\
= & b^{M_{n+1}(k, 3)} a^{T_{n}(k)} .
\end{aligned}
$$

Therefore, the assertion holds.

Lemma 3.2. If $M Q_{k}^{3}\left(H_{m}, X\right)=s$, then s is the least integer such that all of the equations

$$
\begin{cases}M_{s+1}(k, t) \equiv 0 & (\bmod m), \\ M_{s+2}(k, t) \equiv 1 & (\bmod m), \\ M_{s+3}(k, t) \equiv k & (\bmod m), \\ T_{s}(k) \equiv 1 & \left(\bmod m^{2}\right), \\ T_{s+1}(k) \equiv 0 & \left(\bmod m^{2}\right), \\ T_{s+2}(k) \equiv-(k-1)-m\left(k^{2}-k\right) & \left(\bmod m^{2}\right),\end{cases}
$$

holds. Moreover, $h M_{m}(k, 3)$ divides $M Q_{k}^{3}\left(H_{m}, X\right)$.
Proof. By Lemma 3.1, we obtain $x_{n}=b^{M_{n+1}(k, 3)} a^{T_{n}(k)}$. Since $x_{s}=a, x_{s+1}=b$ and $x_{s+2}=$ $b^{k} a^{-(k-1)-m k(k-1)}$, by Lemma 1.1 we have

$$
\begin{cases}M_{s+1}(k, t) \equiv 0 & (\bmod m) \\ M_{s+2}(k, t) \equiv 1 & (\bmod m) \\ M_{s+3}(k, t) \equiv k & (\bmod m) \\ T_{s}(k) \equiv 1 & \left(\bmod m^{2}\right) \\ T_{s+1}(k) \equiv 0 & \left(\bmod m^{2}\right) \\ T_{s+2}(k) \equiv-(k-1)-m\left(k^{2}-k\right) & \left(\bmod m^{2}\right)\end{cases}
$$

So, Lemma 2.5 proved that $h M_{m}(k, 3) \mid M Q_{k}^{3}\left(H_{m}, X\right)$.
Here, we consider Heisenberg group $H_{(u, l, m)}=\langle a, b, c| a^{u}=b^{l}=c^{m}=1,[a, b]=c,[a, c]=$ $[b, c]=1\rangle$ and define sequences $g_{n}(3,4)$ and $S_{n}(3,4)$ as follows:

$$
\begin{aligned}
g_{0}(3,4)= & 0, g_{1}(3,4)=1, g_{2}(3,4)=0, g_{3}(3,4)=-2, \\
g_{n}(3,4)= & g_{n-4}(3,4)+g_{n-3}(3,4)-2 g_{n-2}(3,4)+3 g_{n-1}(3,4), n \geq 4 . \\
S_{0}(3,4)= & 0, S_{1}(3,4)=0, S_{2}(3,4)=1, S_{3}(3,4)=3, \\
S_{n}(3,4) & =S_{n-4}(3,4)+S_{n-3}(3,4)-2 S_{n-2}(3,4)+3 S_{n-1}(3,4)-g_{n-4}(3,4) M_{n-3}(3,4) \\
& +\left(g_{n-4}(3,4)+g_{n-3}(3,4)-g_{n-2}(3,4)\right) M_{n-2}(3,4)+\left(g_{n-4}(3,4)+g_{n-3}(3,4)\right. \\
& \left.-2 g_{n-2}(3,4)\right) M_{n-2}(3,4)-\left(g_{n-4}(3,4)+g_{n-3}(3,4)-2 g_{n-2}(3,4)\right) M_{n-1}(3,4) \\
& -\left(g_{n-4}(3,4)+g_{n-3}(3,4)-2 g_{n-2}(3,4)+g_{n-1}(3,4)\right) M_{n-1}(3,4) \\
& -\left(g_{n-4}(3,4)+g_{n-3}(3,4)-2 g_{n-2}(3,4)+2 g_{n-1}(3,4)\right) M_{n-1}(3,4), n \geq 4 .
\end{aligned}
$$

Lemma 3.3. Every element of $Q_{3}^{4}\left(H_{(u, l, m)}, X\right)$ may be presented by $x_{n}=a^{M_{n}(3,4)} b^{g_{n}(3,4)} c^{S_{n}(3,4)}$, $n \geq 3$.

Proof. For $n=3, n=4$ and $n=5$, we have $x_{3}=a(b)^{-2} c^{3}, x_{4}=a b c^{-2}\left(a b^{-2} c^{3}\right)^{3}=a^{4} b^{-5} c^{11}$ and $x_{5}=b c\left(a b^{-2} c^{3}\right)^{-2}\left(a^{4} b^{-5} c^{11}\right)^{3}=a^{7} b^{-10} c^{37}$. Now, by induction on n, we have:

$$
\begin{aligned}
& x_{n}= x_{n-4} x_{n-3}\left(x_{n-2}\right)^{-2}\left(x_{n-1}\right)^{3} \\
&= a^{M_{n-4}(3,4)} b^{g_{n-4}(3,4)} c^{S_{n-4}(3,4)} a^{M_{n-3}(3,4)} b^{g_{n-3}(3,4)} c^{S_{n-3}(3,4)}\left(a^{M_{n-2}(3,4)} b^{g_{n-2}(3,4)} c^{S_{n-2}(3,4)}\right)^{-2} \\
&\left(a^{M_{n-1}(3,4)} b^{g_{n-1}(3,4)} c^{S_{n-1}(3,4)}\right)^{3} \\
&= a^{M_{n-4}(3,4)+M_{n-3}(3,4)} b^{g_{n-4}(3,4)+g_{n-3}(3,4)} c^{S_{n-3}(3,4)-g_{n-4}(3,4) M_{n-3}(3,4)}\left(a^{M_{n-2}(3,4)} b^{g_{n-2}(3,4)} c^{S_{n-2}(3,4)}\right)^{-2} \\
&\left(a^{M_{n-1}(3,4)} b^{g_{n-1}(3,4)} c^{S_{n-1}(3,4)}\right)^{3} \\
&= a^{M_{n-4}(3,4)+M_{n-3}(3,4)} b^{g_{n-4}(3,4)+g_{n-3}(3,4)} c^{S_{n-4}(3,4)+S_{n-3}(3,4)-g_{n-4}(3,4) M_{n-3}(3,4)} \\
&\left(a^{M_{n-2}(3,4)} b^{g_{n-2}(3,4)} c^{S_{n-2}(3,4)}\right)^{-1}\left(a^{M_{n-2}(3,4)} b^{g_{n-2}(3,4)} c^{S_{n-2}(3,4)}\right)^{-1}\left(a^{M_{n-1}(3,4)} b^{g_{n-1}(3,4)} c^{S_{n-1}(3,4)}\right)^{3} \\
&= a^{M_{n-4}(3,4)+M_{n-3}(3,4)-M_{n-2}(3,4)} b^{g_{n-4}(3,4)+g_{n-3}(3,4)-g_{n-2}(3,4)} \\
& c^{S_{n-4}(3,4)+S_{n-3}(3,4)-g_{n-4}(3,4) M_{n-3}(3,4)+\left(g_{n-4}(3,4)+g_{n-3}(3,4)-g_{n-2}(3,4)\right) M_{n-2}(3,4)} \\
&\left(a^{M_{n-2}(3,4)} b^{g_{n-2}(3,4)} c^{S_{n-2}(3,4)}\right)^{-1}\left(a^{M_{n-1}(3,4)} b^{g_{n-1}(3,4)} c^{S_{n-1}(3,4)}\right)^{3} \\
&= \cdots \\
&= a^{M_{n-4}(3,4)+M_{n-3}(3,4)-2 M_{n-2}(3,4)+3 M_{n-1}(3,4)} b^{g_{n-4}(3,4)+g_{n-3}(3,4)-2 g_{n-2}(3,4)+3 g_{n-1}(3,4)} \\
& c^{S_{n-4}(3,4)+S_{n-3}(3,4)-2 S_{n-2}(3,4)+3 S_{n-1}(3,4)-g_{n-4}(3,4) M_{n-3}(3,4)+\left(g_{n-4}(3,4)+g_{n-3}(3,4)-g_{n-2}(3,4)\right) M_{n-2}(3,4)} \\
& c^{+\left(g_{n-4}(3,4)+g_{n-3}(3,4)-2 g_{n-2}(3,4)\right) M_{n-2}(3,4)-\left(g_{n-4}(3,4)+g_{n-3}(3,4)-2 g_{n-2}(3,4)\right) M_{n-1}(3,4)-\left(g_{n-4}(3,4)+g_{n-3}(3,4)\right.} \\
& c^{\left.-2 g_{n-2}(3,4)+g_{n-1}(3,4)\right) M_{n-1}(3,4)-\left(g_{n-4}(3,4)+g_{n-3}(3,4)-2 g_{n-2}(3,4)+2 g_{n-1}(3,4)\right) M_{n-1}(3,4)} \\
&= a^{M_{n}(3,4)} b^{g_{n}(3,4)} c^{S_{n}(3,4)},
\end{aligned}
$$

Lemma is proved.

Theorem 3.2. For $u \geq 1$, we have $h M_{u}(3,4) \mid M Q_{3}^{4}\left(H_{(u, l, m)}, X\right)$.
Proof. By Lemma 3.3,we obtain $x_{n}=a^{M_{n}(3,4)} b^{g_{n}(3,4)} c^{S_{n}(3,4)}$. Suppose that $M Q_{3}^{4}\left(H_{(u, l, m)}, X\right)=i$. Since $x_{i}=a, x_{i+1}=b, x_{i+2}=c$ and $x_{i+3}=a b^{-2} c^{3}$, by Lemma 1.2, we have

$$
\begin{cases}M_{i}(3,4) \equiv 1 & (\bmod u), \\ M_{i+1}(3,4) \equiv 0 & (\bmod u), \\ M_{i+2}(3,4) \equiv 0 & (\bmod u), \\ M_{i+3}(3,4) \equiv 1 & (\bmod u), \\ g_{i}(3,4) \equiv 0 & (\bmod l), \\ g_{i+1}(3,4) \equiv 1 & (\bmod l), \\ g_{i+2}(3,4) \equiv 0 & (\bmod l), \\ g_{i+3}(3,4) \equiv-2 & (\bmod l), \\ S_{i}(3,4) \equiv 0 & (\bmod m), \\ S_{i+1}(3,4) \equiv 0 & (\bmod m), \\ S_{i+2}(3,4) \equiv 1 & (\bmod m), \\ S_{i+3}(3,4) \equiv 3 & (\bmod m)\end{cases}
$$

So, Lemma 2.5 proved that $h M_{u}(3,4) \mid M Q_{3}^{4}\left(H_{(u, l, m)}, X\right)$.

Now, we define $g_{n}(k, 4)$ and $S_{n}(k, 4)$ as follows

$$
\begin{aligned}
g_{0}(k, 4) & =0, g_{1}(k, 4)=1, g_{2}(k, 4)=0, g_{3}(k, 4)=-2, \\
g_{n}(k, 4) & =g_{n-4}(k, 4)+g_{n-3}(k, 4)-(k-1) g_{n-2}(k, 4)+k g_{n-1}(k, 4), n \geq 4 . \\
S_{0}(k, 4) & =0, S_{1}(k, 4)=0, S_{2}(k, 4)=1, S_{3}(k, 4)=3, \\
S_{n}(k, 4) & =S_{n-4}(k, 4)+S_{n-3}(k, 4)-(k-1) S_{n-2}(k, 4)+k S_{n-1}(k, 4)-g_{n-4}(k, 4) M_{n-3}(k, 4) \\
& +\left(g_{n-4}(k, 4)+g_{n-3}(k, 4)-g_{n-2}(k, 4)\right) M_{n-2}(3,4)+\left(g_{n-4}(k, 4)+g_{n-3}(k, 4)\right. \\
& \left.-2 g_{n-2}(k, 4)\right) M_{n-2}(k, 4)-\left(g_{n-4}(k, 4)+g_{n-3}(k, 4)-2 g_{n-2}(k, 4)\right) M_{n-1}(3,4)+\cdots \\
& +\left(g_{n-4}(k, 4)+g_{n-3}(k, 4)-(k-1) g_{n-2}(k, 4)+g_{n-1}(k, 4)\right) M_{n-1}(k, 4)-\cdots \\
& -\left(g_{n-4}(k, 4)+g_{n-3}(k, 4)-(k-1) g_{n-2}(k, 4)+(k-1) g_{n-1}(k, 4)\right) M_{n-1}(k, 4),
\end{aligned}
$$

$n \geq 4$.
Lemma 3.4. Every element of $Q_{k}^{4}\left(H_{(u, l, m)}, X\right)$ may be presented by $x_{n}=a^{M_{n}(k, 4)} b^{g_{n}(k, 4)} c^{S_{n}(k, 4)}$, $n \geq 3$.

Proof. Similar to Lemma 3.3, the proof follows.
Similarly, Theorem 3.2 can be applied to the proof of the following Lemma.
Lemma 3.5. For $k \geq 4$ and $u \geq 1$, we have $h M_{u}(k, 4) \mid M Q_{k}^{4}\left(H_{(u, l, m)}, X\right)$.
In conclusion, we have two open questions.
Open question 1. Prove or disprove:
i. $M Q_{k}^{3}\left(H_{m}, X\right)=h M_{m}(k, 3)$.
ii. $M Q_{k}^{4}\left(H_{(u, l, m)}, X\right)=h M_{u}(k, 4)$.

Open question 2. Is it possible to prove that each finite group G divides the minimal period of the generalized order (k, t)-Mersenne number sequence?

References

[1] Bennett, M. A., Patel, V., \& Siksek, S. (2019). Shifted powers in Lucas-Lehmer sequences. Research in Number Theory, 5(1), Article ID 15.
[2] Catarino, P., Campos, H., \& Vasco, P. (2016). On the Mersenne sequence. Annales Mathematicae et Informaticae, 46, 37-53.
[3] Deveci, Ö., \& Shannon, A. G. (2018). The quaternion-Pell sequence. Communications in Algebra, 46(12), 5403-5409.
[4] Doostie, H. \& Hashemi, M. (2006). Fibonacci lengths involving the Wall number $k(n)$. Journal of Applied Mathematics and Computing, 20(1-2), 171-180.
[5] Esmaeili, M., Moosavi, M., \& Gulliver, T. A. (2017). A new class of Fibonacci sequence based error correcting codes. Cryptography and Communications, 9(3), 379-396.
[6] Falcon, S. (2013). On the generating matrices of the k-Fibonacci numbers. Proyecciones, 32(4), 347-357.
[7] Gautam, R. (2018). Balancing numbers and application. Journal of Advanced College of Engineering and Management, 4, 137-143.
[8] Goy, T. (2018). On new identities for Mersenne numbers. Applied Mathematics E-Notes, 18, 100-105.
[9] Hashemi, M., \& Mehraban, E. (2021). The generalized order k-Pell sequences in some special groups of nilpotency class 2. Communications in Algebra, 50(4), 1768-1784.
[10] Hashemi, M., \& Mehraban, E. (2023). Fibonacci length and the generalized order k-Pell sequences of the 2 -generator p-groups of nilpotency class 2. Journal of Algebra and Its Applications, 22(3), Article ID 2350061.
[11] Jaroma, J. H., \& Reddy, K. N. (2007). Classical and alternative approaches to the Mersenne and Fermat numbers. The American Mathematical Monthly, 114(8), 677-687.
[12] Koshy, T., \& Gao, Z. (2013). Catalan numbers with Mersenne subscripts. Mathematical Scientist, 38(2), 86-91.
[13] Ochalik, P., \& Wloch, A. (2018). On generalized Mersenne numbers, their interpretations and matrix generators. Annales Universitatis Mariae Curie-Skłodowska. Section A, 1, 69-76.
[14] Osipov, D. V. (2015). The discrete Heisenberg group and its automorphism group. Mathematical Notes, 98(1-2), 185-188.
[15] Prasad, K., \& Mahato, H. (2022). Cryptography using generalized Fibonacci matrices with Affine-Hill cipher. Journal of Discrete Mathematical Sciences and Cryptography, 25(8), 2341-2352.
[16] Shannon, A. G., Erdağ, Ö., \& Deveci, Ö. (2021). On the connections between Pell numbers and Fibonacci p-numbers. Notes on Number Theory and Discrete Mathematics, 21(1), 148-160.
[17] Stakhov, A. P. (2006). Fibonacci matrices, a generalization of the Cassini formula and new coding theory. Chaos, Solitions \& Fractals, 30(1), 56-66.
[18] Taşci, D., Tuğlu, N., \& Asci, M. (2011). On Fibo-Pascal matrix involving k-Fibonacci and k-Pell matrices. Arabian Journal for Science and Engineering, 36, 1031-1037.

