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1 Introduction

The classical Pell’s equation is
x2 −Dy2 = 1, (1)

where D is a square-free positive integer. Solving a Pell’s equation for integers x and y is one
of the classical problems in number theory. In 1768, Lagrange proved that the equation (1) has
infinitely many solutions ([15, vol. XXIII, p. 272], [16, vol. XXIV, p. 236]). In fact, a classical
result says that there exists a non-trivial solution (x0, y0) is called a fundamental solution such
that any other solution takes the form (x0 + y0

√
D)n, n ∈ Z.

On the other hand, the problem of solving a negative Pell’s equation has not been understood
satisfactorily. It is an equation of the form

x2 −Dy2 = −1, (2)

where D is a square-free integer and x, y are integer solutions. There is no solution for equation
(2) if D is a negative integer and the length of the period in the continued fraction expansion
of

√
D is even. However, if the length of the period in the continued fraction expansion of√

D is odd, then (2) has infinitely many integer solutions [26, Theorem 7.26]. Furthermore, the
negative Pell’s equation is not solvable for D with prime divisor congruent to 3 mod 4 or D

is divisible by 4. Moreover, Fouvry and Klüners [5] gave the upper and lower bounds for the
long-lasting conjecture on the asymptotic formulae for the number of square-free integers D for
which fundamental solution of the equation (2) has norm −1. Recently, the bound was further
improved by Koymans and Pagano [14].

Similarly, we can consider the polynomial Pell’s equation

P 2(X)−D(X)Q2(X) = ±1, (3)

where D(X) is a given fixed, square-free polynomial with integer coefficients and P (X), Q(X)

are its integer polynomial solutions.
In 1976, Nathanson [20] proved that when D(X) = X2 + d ∈ Z[X], the equation

P 2(X) − D(X)Q2(X) = 1 is solvable in Z[X] if and only if d = ±1,±2. Moreover, such
a polynomial solutions can be expressed in terms of Chebyshev polynomials [22].

In 2004, Dubickas and Steuding [4] extended Nathanson’s result for polynomials of the
form D(X) = X2k + d ∈ Z[X], k ∈ N. More precisely, they proved that the equation
P 2(X)− (X2k + d)Q2(X) = 1 is solvable in Z[X] if and only if d ∈ {±1, ±2}.

There are many results in positive polynomial Pell’s equations, we slightly open its counterpart
the negative polynomial Pell’s equation,

P 2(X)−D(X)Q2(X) = −1, (4)

where D(X) is a fixed, even degree, square-free polynomial with integer coefficients and P (X),

Q(X) are its integer polynomial solutions. More precisely, we prove the following theorems:
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Theorem 1.1. Let d be an integer with d ̸= ±1, ±2. Then the negative polynomial Pell’s equation

P 2(X)− (X2 + d)Q2(X) = −1 (5)

has no non-trivial solutions over Z[i].

Theorem 1.2. The equation (5) has non-trivial polynomial solutions over Z if and only if d = 1.

The proof of Theorem 1.2 is very similar to the proof of the following theorem. Thus, the
generalization of the above theorem is as follows:

Theorem 1.3. The negative polynomial Pell’s equation

P 2(X)− (X2k + d)Q2(X) = −1, (6)

where d ∈ Z and k ∈ N, has non-trivial solutions in Z[X] if and only if d = 1.

1.1 The ABC conjecture for polynomials (Stothers and Mason)

Stothers [28] and Mason [19] independently proved the ABC conjecture for polynomials.

Let n0(P (X)) denote the number of distinct complex zeros of a polynomial P (X) (which does
not vanish identically). If A,B,C are coprime polynomials over C, not all constant polynomials
satisfy A+B = C, then

max{degA, degB, degC} < n0(ABC). (7)

In 1984, Silverman [24] gave a different proof with the help of Riemann–Hurwitz formula.
Then Snyder [25] provided a slightly different proof of the Stothers–Mason theorem in 2000. The
connection between the inequality (7) and the Fermat’s last theorem for polynomials can be found
in Lang’s survey article [17]. The ABC conjecture for polynomials has notable applications to
the polynomial Pell’s equation.

2 Results

2.1 Proof of Theorem 1.1

We prove the theorem by contradiction. We first consider the equation (5) as a polynomial over
Z[i]. We suppose that the equation (5) has non-trivial solutions over Z[i]. We choose a solution
P (X), Q(X) of (5) with degP (X) > 0 is minimal and we take a non-zero d with |d | ≥ 3. We
split the proof into two cases.

Case (i): If d ̸= −α2, α ∈ Z[i], then X2 + d is irreducible over Z[i]. We now rewrite (5) as,

(P (X) + i)(P (X)− i) = (X2 + d)Q2(X). (8)

Since (X2 + d) is irreducible over Z[i] and Z[i] is a unique factorization domain, it divides one
of the (P (X) + i) or (P (X)− i). We assume that (X2 + d) divides P (X)− i . Therefore,

P (X)− i = (X2 + d)P1(X),

where P1(X) is a polynomial over Z[i].
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Then
P (X)− i+ 2i = P (X) + i = (X2 + d)P1(X) + 2i.

On substituting into the equation (8), we have

P1(X)((X2 + d)P1(X) + 2i) = Q2(X).

Since the greatest common divisor of P1(X) and (X2 + d)P1(X) + 2i is 1 or 2, we must obtain
at least one of the following conditions:

1. (X2 + d)P1(X) + 2i = P 2
2 (X), P1(X) = Q2

2(X);

2. (X2 + d)P1(X) + 2i = −P 2
2 (X), P1(X) = −Q2

2(X);

3. (X2 + d)P1(X) + 2i = −iP 2
2 (X), P1(X) = iQ2

2(X);

4. (X2 + d)P1(X) + 2i = iP 2
2 (X), P1(X) = −iQ2

2(X);

5. (X2 + d)P1(X) + 2i = 2P 2
2 (X), P1(X) = 2Q2

2(X);

6. (X2 + d)P1(X) + 2i = −2P 2
2 (X), P1(X) = −2Q2

2(X);

7. (X2 + d)P1(X) + 2i = −2iP 2
2 (X), P1(X) = 2iQ2

2(X);

8. (X2 + d)P1(X) + 2i = 2iP 2
2 (X), P1(X) = −2iQ2

2(X).

As P2(X) is a polynomial over Z[i]. We substitute X =
√
−d in conditions (1)–(8) and we

see that the following possibilities are admissible: (r+ s
√
−d)2 = ±2i or (r+ s

√
−d)2 = ±2 or

(r+s
√
−d)2 = ±i or (r+s

√
−d)2 = ±1 for some r, s ∈ Z[i]. We need the following arguments

to sort out the impossible conditions.

We first consider that (r + s
√
−d)2 = ±2i and (r + s

√
−d)2 = ±i. Substituting r = x+ iy,

s = u+ iv, where x, y, u, v ∈ Z, we have

(x+ iy)2 − (u+ iv)2d+ 2i((x+ iy)(u+ iv))
√
d = ±2i, ±i.

On equating real and imaginary parts, we get

x2 − y2 − (u2 − v2)d− 2
√
d(xv + yu) = 0, (9)

xy − uvd+ (xu− vy)
√
d = ±1, ±1/2. (10)

By our choice of d, equation (9) can be separated as rational and irrational parts,

x2 − y2 − (u2 − v2)d = 0.

This could be possible only when d is a perfect square or d = ±1. This ends in a contradiction.
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We now explore the equation (r + s
√
−d)2 = ±2. As we proceeded before, we equate real

and imaginary parts and we obtain

x2 − y2 − (u2 − v2)d− 2
√
d(xv + yu) = ±2, (11)

xy − uvd+ (xu− vy)
√
d = 0. (12)

Again we repeat the same procedure as separating rational and irrational parts,

x2 − y2 − (u2 − v2)d = ±2, (13)

xv + yu = 0, (14)

xy − uvd = 0, (15)

xu− vy = 0. (16)

By solving the simultaneous equations (14) and (16), we get either y = 0 or u2 + v2 = 0.
We first assume that y = 0 and x ̸= 0, then u = v = 0. Therefore x = ±

√
2 or ±i

√
2. Since x is

an integer, both can not be possible. On the other hand, if we assume both x and y are zero, then
uv = 0 (by using (15)). Again a contradiction. Hence we conclude that y should be a non-zero
and u2 + v2 = 0. Here the only possibility is u = v = 0. Thus we end with x = 0 (by using (12))
and the values of y are ±

√
2 or ±i

√
2. This is again a contradiction.

Now we take (r+ s
√
−d)2 = ±1. As we did in the previous arguments, we first deal with the

equation
x2 − y2 − (u2 − v2)d = 1. (17)

There are two cases either y = 0 or u2 + v2 = 0 (by using (14) and (16)). At first, we suppose
to consider both x and y are zero. Then we obtain uv = 0 (by using (15)). So we omit it. If we
assume y = 0 and x ̸= 0, then u = v. Thus x = ±1 and the value of r is ±1. On the other side,
if u2 + v2 = 0, then u = v = 0. Therefore value of s = 0.

Finally, we consider the equation

x2 − y2 − (u2 − v2)d = −1.

Again by the same procedure as we deal with the equation (17), we end with y = ±1 and
u = v = x = 0. Thus r = ±i, s = 0. Among eight conditions, only (7) and (8) are possible. We
now rewrite the condition (7) as

P 2
2 (X)− (X2 + d)(iQ2(X))2 = −1, (18)

and condition (8) as
(iP2(X))2 − (X2 + d)Q2

2(X) = −1. (19)

But in both equations (18) and (19), 2 deg(P2(X)) = 2 + deg(P1(X)) = deg(P (X)). It leads
to a contradiction on the minimality of deg(P (X)). Therefore, equation (5) has no non-trivial
solutions if d (̸= ±1, ±2) ̸= −α2, α ∈ Z[i].
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Case (ii): Let d = −α2, α be a non-unit in Z[i] and N(α) > 2. The constant term of the
solution polynomials P (X) and Q(X) are ±i, 0, respectively. Suppose that P (0) = i. Then
P (X) = i+XP1(X) and Q(X) = XQ1(X). We substitute P (X), Q(X) into equation (5) and
we obtain

P1(X)(XP1(X) + 2i) = X(X2 − α2)Q2
1(X). (20)

Since P1(X) is a polynomial without a constant term, we write P1(X) = XP2(X). We now
rewrite (20) as

P2(X)(X2P2(X) + 2i) = (X2 − α2)Q2
1(X). (21)

We suppose that X ± α divides X2P2(X) + 2i. Then we put X = ∓α and we get
α2P2(∓α) = −2i. Thus α2 divides 2i. Since N(α) > 2, this is not possible. Therefore, both X+

α

and X − α should divide P2(X). We can say P2(X) = (X2 − α2)P3(X). On substituting
in (21), we obtain

P3(X)(X2(X2 − α2)P3(X) + 2i) = Q2
1(X).

The greatest common divisor of P3(X) and X2(X2 − α2)P3(X) + 2i is 1 or 2. Again we repeat
the same procedure as in Case (i).

This completes the proof of Theorem 1.1. □

2.2 Continued fraction expansion of
√
D(X)

We here adopt the same method used for irrationals
√
D in [21].

The continued fraction expansion of
√

D(X) is of the form

[a0(X), a1(X), a2(X), . . . , ar−1(X), 2a0(X)]

with convergents Hn(X)/Kn(X) and ai(X) being a non-constant polynomial in Z[X]. Let r be
the length of the shortest period in the continued fraction expansion of

√
D(X).

We define

ζ0(X) =
M0(X) +

√
D(X)

N0(X)

with N0(X) = 1 and M0(X) = 0.
In general, we define

ai(X) = [ζi(X)],

ζi(X) =
Mi(X) +

√
D(X)

Ni(X)
,

Mi+1(X) = ai(X)Ni(X)−Mi(X),

Ni+1(X) =
D(X)−M2

i+1(X)

Ni(X)
,

where [.] denotes the rational part of the polynomial in terms of X . Since r is the length of the
period, we write ζ0 = ζr = ζ2r = · · · . Thus for all j ≥ 0 we write

Mjr(X) +
√

D(X)

Njr(X)
= ζjr(X) = ζ0(X) =

M0(X) +
√
D(X)

N0(X)
.
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Theorem 2.1. If D(X) is a square-free polynomial in Z[X] with a period length of r, then
H2

n(X)−D(X)K2
n(X) = (−1)n−1Nn+1(X).

Proof. The well-known classical result [21, Theorem 7.3] says that

ζ0(X) = [a0(X), a1(X), a2(X), . . . , an(X), ζn+1(X)]

=
ζn+1(X)Hn(X) +Hn−1(X)

ζn+1(X)Kn(X) +Kn−1(X)

=

(
Mn+1(X)+

√
D(X)

Nn+1(X)

)
Hn(X) +Hn−1(X)(

Mn+1(X)+
√

D(X)

Nn+1(X)

)
Kn(X) +Kn−1(X)

√
D(X) =

(
Mn+1(X) +

√
D(X)

)
Hn(X) +Hn−1(X)Nn+1(X)(

Mn+1(X) +
√

D(X)

)
Kn(X) +Kn−1(X)Nn+1(X)

.

We separate it as a rational and an irrational part, and equate each part to zero.

−Mn+1(X)Hn(X) +Kn(X)D(X)−Hn−1(X)Nn+1(X) = 0, (22)

Mn+1(X)Kn(X) +Nn+1(X)Kn−1(X)−Hn(X) = 0. (23)

We eliminate Mn+1(X) from the above equations (22) and (23). Then we write

H2
n(X)−D(X)K2

n(X) = (Hn(X)Kn−1(X)−Kn(X)Hn−1(X))Nn+1(X).

Then by using the result Hn(X)Kn−1(X)−Kn(X)Hn−1(X) = (−1)n−1 [21, Theorem 7.5], we
now obtain

H2
n(X)−D(X)K2

n(X) = (−1)n−1Nn+1(X). (24)

This completes the proof.

Corollary 2.1. Let r be the length of the period in the continued fraction expansion of
√
D(X).

Then for n ≥ 0, the equation (24) becomes

H2
nr−1(X)−D(X)K2

nr−1(X) = (−1)nrNnr(X) = (−1)nr.

Proof. We replace n by nr − 1 in equation (24).

H2
nr−1(X)−D(X)K2

nr−1(X) = (−1)nrNnr(X)

= (−1)nrN0(X)

= (−1)nr.

The following lemma is an analogous result of [4, Theorem 1] for the negative polynomial
Pell’s equation.
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Lemma 2.1. If n0(D(X)), where D(X) ∈ C[X] is less than or equal to 1/2 degD(X), then the
negative polynomial Pell’s equation (4) has no non-trivial solutions in C[X].

Proof. We consider A = P 2(X), B = −D(X)Q2(X), C = −1.
We note that max{degA, degB, degC} = degB and n0(P (X)) ≤ degP (X), n0(Q(X)) ≤
degQ(X).
By using the ABC conjecture for polynomials, we write

degD(X)Q2(X) < n0(P
2(X)D(X)Q2(X))

= n0(P (X)D(X)Q(X)),

degD(X) < n0(P (X)) + n0(D(X)) + n0(Q(X))− 2 degQ(X),

degD(X) < degP (X)− degQ(X) + n0(D(X)),

1/2 degD(X) < n0(D(X)).

This completes the proof.

We need the following lemma to prove Theorem 1.3.

Lemma 2.2. Let D(X) be a polynomial in C[X] with a degree of 2k. Then the fundamental
solutions (U(X), V (X)) in C[X] of equation (4) satisfying degU(X) = 1/2 degD(X) and
deg V (X) = 0 is minimal.

Proof. Firstly, let us consider D(X) be a quadratic polynomial in C[X]. We observe that the
non-trivial solutions of (4) exists only if D(X) has distinct roots. Let γ, δ be the roots of D(X).
Then we write D(X) = c(X − γ)(X − δ), c ∈ C, γ ̸= δ.
We set

U(X) =
2X − (γ + δ)√

−1(γ − δ)
; V (X) =

2√
−c(γ − δ)

.

For the general case, we assume the contrary. Suppose that degU(X) < 1/2 degD(X) and
deg V (X) > 0. Since degD(X) = 2 degP (X) − 2 degQ(X) and degP (X) must be at least
1 greater than the degQ(X).

Thus
degD(X) = 2 degU(X)− 2 deg V (X) < degD(X)− 2t,

for some positive integer t. This completes the proof.

2.3 Proof of Theorem 1.3

We use the method of continued fraction expansion of
√
X2k + d, d ∈ Z, i.e.,√

X2k + d = [Xk, 2Xk/d, 2Xk].

By using Lemma 2.2, the fundamental solution over C is
(
Xk
√
d
, 1√

d

)
, d ∈ Z. The integer

polynomial solution is possible only for odd periodic lengths.
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Thus (
Xk +

√
X2k + d√
d

)2n−1

=
1

d(2n−1)/2

(
Xk +

√
X2k + d

)2n−1

= P2n−1(X) +
√
X2k + dQ2n−1(X), n ∈ N.

We now expand the powers. Thus, to show the existence of non-trivial solutions in Z[X] for
the negative polynomial Pell’s equation (6), it is enough to show that the leading coefficient of
P2n−1(X) is an integer.

Hence, the coefficient of Xk(2n−1) in P2n−1(X) is

1

d(2n−1)/2

(
1 +

(
2n− 1

2

)
+

(
2n− 1

4

)
+ · · ·

)
=

2(2n−2)

d(2n−1)/2
.

The integer solutions exist if and only if d = 1. This completes the proof of the theorem. □

The following theorems are some of other negative polynomial Pell’s equations.

Theorem 2.2. The negative polynomial Pell’s equation

P 2(X)− (X2k + aX + b)Q2(X) = −1, (25)

where a, b ∈ Z has no non-trivial solutions in Z[X].

Theorem 2.3. The negative polynomial Pell’s equation

P 2(X)− (X2k + aXk + b)Q2(X) = −1, (26)

where a, b ∈ Z and k ∈ N has no non-trivial solutions in Z[X] except for b = a2/4 + 1.

Since the length of the period in the continued fraction expansions of both
√
X2k + aX + b

and
√
X2k + aXk + b (except for b = a2/4 + 1) are 2, then by Corollary 2.1 the negative

polynomial Pell’s equations (25) and (26) have no non-trivial solutions in Z[X].

3 Continued fraction expansions of some other polynomials

Mathematicians have recently focused on degenerate special numbers and polynomials, including
Bernoulli, Euler, Stirling numbers, Bell polynomials, harmonic numbers, and hyperharmonic
numbers [7–12]. We specifically focused on harmonic numbers.

The harmonic numbers are defined by

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
, (n ∈ N)

with H0 = 0 (see [3]). The generating function of the harmonic numbers is given by

− log(1− t)

1− t
=

∞∑
n=0

Hnt
n.
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Recently, the degenerate harmonic numbers were defined by

− logλ(1− t)

1− t
=

∞∑
n=0

Hn,λt
n,

where logλ is the degenerate logarithm, which is the compositional inverse of eλ (see [12, 13]).
Now we write

Hn,λ =
n∑

k=1

(1)k,1/λλ
k−1(−1)k−1

k!
, H0,λ = 0,

where (x)0,λ = 1; (x)n,λ = x(x − λ)(x − 2λ) · · · (x − (n − 1)λ), n ≥ 1. We note that
lim
λ→0

Hn,λ = Hn, n ≥ 1. The continued fraction expansion of any number is as follows [6]:

Definition 3.1. An expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + . . .

is called a continued fraction expansion. The values ai (i = 0, 1, . . .) are called partial quotients
which are integers, real or complex numbers or functions of variables.

Let α = α0 be any real number and we define ak = ⌊αk⌋ for k = 0, 1, 2, . . .

αk+1 =
1

αk − ak
if αk is not an integer.

Moreover, the k-th convergent of α0 is a rational number. i.e., let pk
qk

is the k-th convergent

with gcd(pk, qk) = 1. We write

pk
qk

= a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . . +
1

ak

The convergents pk
qk

of α are defined as follows:

p−1 = 1, p0 = a0, pk = akpk−1 + pk−2,
(27)

q−1 = 0, q0 = 1, qk = akqk−1 + qk−2.

for k ≥ 1 [6, p. 250].

The following theorem is due to Seidel and Stern [23, 27].

Theorem 3.1. [1, 18] If an > 0, then [a0, a1, a2, . . . ] converges if and only if
∑

an diverges.
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We note that the harmonic series
∑

1/n diverges. Then by the Seidel–Stern Theorem 3.1, the
infinite continued fraction [ t

1
, t
2
, t
3
, . . . ] converges for any positive real number t.

Definition 3.2. The harmonic continued fractions are denoted by

HCF (t) =
t

1
+

1

t

2
+

1

t

3
+

1

t

4
+

1

. . .

When t = 1, HCF (1) =
2

π − 2
, when t = 2, HCF (2) =

1

2 ln 2− 1
(see [2]).

We now rewrite the degenerate harmonic numbers as

Hn,λ = 1 +
∞∑
n=2

(−1)n−1

(
n∏

i=2

λ− (i− 1)

i

)
.

Thus, we define the degenerate harmonic continued fractions are as follows:

1

1−
− λ−1

2

1 + (−λ−1
2
)−

− λ−2
3

1 + (−λ−2
3
)−

− λ−3
4

1 + (−λ−3
4
)−

− λ−4
5

. . .

Hence the degenerate harmonic continued fractions can be written as [1,−λ−1
2
,−λ−2

3
,−λ−3

4
, . . . ].

Similarly, we shall attempt to define continuous fraction expansions of more degenerate poly-
nomials in the future.

4 Conclusion

In this paper, we considered the negative polynomial Pell’s equation and proved a necessary and
sufficient condition for it to have a solution. Moreover, we have discussed the existence of integer
polynomial solutions with the help of continued fraction expansions and the ABC conjecture for
polynomials. Finally, as an application we defined the degenerate harmonic continued fractions.
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