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These formulas are derived from work done by Yucas. We show that the number of polynomials
of a given constant term depends only on whether the constant term is a q1-residue and/or a
q2-residue in the underlying field. We further show that as k becomes large, the proportion of
irreducible polynomials having each constant term is asymptotically equal. This paper continues
work done in [1].
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1 Introduction

In [1], we looked at the distribution of constant terms of monic irreducible polynomials over Zp

whose degree was a power of an odd prime q, and we found that the number of monic irreducible
polynomials with a given constant term a is related to whether a is a residue in the underlying
field. As the degree grows larger, however, the proportion of such polynomials ending in each
possible constant term is asymptotically equal. In this paper, we will determine the number of
monic irreducible polynomials with a given constant term a for polynomials whose degree is a
product of two distinct odd primes, and we will use these values to show that the proportion of
such polynomials remains asymptotically equal as the degree grows larger.

Throughout this paper, p, q1 and q2 are assumed to be distinct odd primes and ϕ denotes the
Euler phi function. Let n ∈ N, then N(n, p) denotes the number of monic irreducible polynomials
over Zp of degree n, and N(n, a, p) denotes the number of monic irreducible polynomials over
Zp of degree n with constant term (−1)na.

The next theorem from [3] is a well known result providing the number of monic irreducible
polynomials in Zp[x] of degree n.

Theorem 1.1. The number N(n, p) of monic irreducible polynomials in Zp[x] of degree n is
given by

N(n, p) =
1

n

∑
d|n

µ
(n
d

)
pd.

As we investigate polynomials over Zp with prescribed constant term, we will follow the
notation laid out in Yucas [5]. To establish a formula for N(n, a, p), Yucas considers the possible
orders of irreducible polynomials. For n ∈ N, define a set

Dn = {r : r|pn − 1 but r ∤ pm − 1 for 1 ≤ m < n}

then Dn is the set of possible orders of polynomials in N(n, p). Let r ∈ Dn, and let a ∈ Z∗
p be

an element of order mr, then we can write r = drmr where dr = gcd(r, p
n−1
p−1

). The following
theorem from Yucas (Theorem 3.5 of [5]) will form the basis of most of the calculations in this
paper.

Theorem 1.2. The number N(n, a, p) if monic irreducible polynomials over Zp of degree n with
constant term (−1)na is

N(n, a, p) =
1

nϕ(m)

∑
r∈Dn
mr=m

ϕ(r).
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As we consider the possible values of N(n, a, p) specifically when n = q1q2, this value will
depend on whether or not a is an n-residue. Just as an element of c ∈ Zp is a quadratic residue
if c = d2 for some d ∈ Zp, c ∈ Zp is an n-residue if c = dn for some d ∈ Zp. The following
theorem will be used several times in this paper and is based on Lemma 2 from [4].

Theorem 1.3. Let n ∈ N with n > 1, and assume c, d ∈ Z∗
p are both n-residues. Then

N(n, c, p) = N(n, d, p).

Proof. Let P (n, a, p) denote the set of monic irreducible polynomials of degree n in Z∗
p with

constant term a, so that the cardinality of P (n, a, p) is N(n, a, p). We will prove the theorem by
defining a bijection between P (n, c, p) and P (n, d, p).

Let g = dc−1. Since g is the product of two n-residues, g must be an n-residue. Therefore
there is some element h ∈ Z∗

p such that hn = g.
Define a function φ : P (n, c, p) → P (n, d, p) by

φ(f(x)) = gf(h−1x).

To show that if f(x) ∈ P (n, c, p), then φ(f(x)) ∈ P (n, d, p), we must show that φ(f(x))
is monic, irreducible, of degree n, and has constant term d. Let f(x) ∈ P (n, c, p) with

f(x) =
n∑

i=0

aix
i. Note that a0 = c and an = 1. Then

φ(f(x)) = gf(h−1x)

= g
n∑

i=0

ai(h
−1x)i

=
n∑

i=0

gaih
−ixi.

The leading term of φ(f(x)) is gh−nxn = gg−1xn = xn, demonstrating that φ(f(x)) is monic
and of degree n.

The constant term of φ(f(x)) is ga0 = gc = d, showing that φ(f(x)) has constant term d.
To show that φ(f(x)) is irreducible, we proceed by contraposition. Suppose that φ(f(x)) is

reducible, so that φ(f(x)) = f1(x)f2(x) for some f1, f2 ∈ Zp[x]. It follows that

gf(h−1x) = f1(x)f2(x)

f(h−1x) = g−1f1(x)f2(x)

f(hh−1x) = g−1f1(hx)f2(hx)

f(x) = g−1f1(hx)f2(hx)

showing that f is reducible.
Therefore φ(f(x)) ∈ P (n, d, p). It remains to show that φ is a bijection.
Let f1, f2 ∈ P (n, c, p) with φ(f1(x)) = φ(f2(x)). Then gf1(h

−1x) = gf2(h
−1x) and

therefore f1(h
−1x) = f2(h

−1x). Since h−1Zp = Zp, this demonstrates that f1(x) = f2(x)

for every x ∈ Zp. It follows that φ is injective. To see that φ is surjective, let f̂ ∈ P (n, d, p).
Then g−1f̂(hx) ∈ P (n, c, p) and φ(g−1f̂(hx)) = f̂(x).
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As we begin to calculate N(q1q2, a, p), there are three possibilities we will consider:

Case 1: p ≡ 1 (mod q1) and p ≡ 1 (mod q2)

Case 2: p ̸≡ 1 (mod q1) and p ̸≡ 1 (mod q2)

Case 3: p ̸≡ 1 (mod q1) and p ≡ 1 (mod q2)

Case 1 will be addressed in Section 2, and Cases 2 and 3 will be addressed in Section 3.

2 The case p ≡ 1 (mod q1) and p ≡ 1 (mod q2)

First, if p ≡ 1 (mod q1) and p ≡ 1 (mod q2), then the following theorems provide the possible
values of N(q1q2, a, p), and we will devote this section to proving the theorems:

Theorem 2.2 If a ∈ Z∗
p is neither a q1-residue nor a q2-residue, then

N(q1q2, a, p) =
pq1q2 − 1

q1q2(p− 1)
.

Theorem 2.3 If a ∈ Z∗
p is a q2-residue but not a q1-residue, then

N(q1q2, a, p) =
pq1q2 − 1

q1q2(p− 1)
− pq1 − 1

q1(p− 1)
.

Theorem 2.4 If a ∈ Z∗
p is both q1-residue and a q2-residue, then

N(q1q2, a, p) =
pq1q2 − 1

q1q2(p− 1)
− pq1 − 1

q1(p− 1)
− pq2 − 1

q2(p− 1)
+ 1.

Because of the way the values of N(q1q2, a, p) are created by subtracting from the value
pq1q2−1
q1q2(p−1)

, we can represent the values in the following lattice. Observe that if α is a generator of
Z∗

p, then α is neither a q1-residue nor a q2-residue. On the sides of the lattice, αq1 is a q1-residue
that is not a q2-residue, and αq2 is a q2-reside that is not a q1-residue. Finally, on the bottom,
αq1q2 = 1 is both a q1-residue and a q2-residue. We will revisit this lattice in Section 4 when
we compare the values along each edge of the lattice. The value from Theorem 2.2 provides the
value at the top of the lattice, the value from Theorem 2.3 provides the values on the sides of the
lattice, and the value from Theorem 2.4 provides the value at the bottom of the lattice.

N(q1q2, α, p)

N(q1q2, α
q2 , p) N(q1q2, α

q1 , p)

N(q1q2, α
q1q2 , p)
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Our proof of Lemma 2.2 will require the following result regarding the p-adic valuation.
Recall that the p-adic valuation νp : Z → N is defined by νp(n) = max{ν ∈ N : pν |n} if n ̸= 0

and νp(0) = ∞.

Lemma 2.1. Let a, b ∈ Z≥0. If t is a prime with t|(pa−1) and t ∤ b, then νt(p
a−1) = νt(p

ab−1).

Proof. Note that pab − 1 can be factored as

pab − 1 = (pa − 1)
b∑

i=1

pa(b−i)

Since t|(pa − 1), there is some integer u such that pa = tu+ 1. This allows us to write

b∑
i=1

pa(b−i) =
b∑

i=1

(tu+ 1)(b−i)

When the expression on the right is expanded, the only terms not divisible by t are the powers
of 1. Therefore the expression gives a multiple of t plus

b∑
i=1

1(b−i) = b

Therefore there is some integer w such that

b∑
i=1

pa(b−i) = tw + b.

We know t does not divide b, thus t does not divide
∑b

i=1 p
a(b−i) and so νt

(∑b
i=1 p

a(b−i)
)

equals

zero. Hence νt(p
ab − 1) = νt(p

a − 1) + νt

(∑b
i=1 p

a(b−i)
)
= νt(p

a − 1).

Yucas’s formula requires calculations involving r ∈ Dq1q2 , and these values rely heavily on
the values of p− 1, pq1 − 1, pq2 − 1, and pq1q2 − 1. The information in the next lemma will aid us
in those calculations.

Lemma 2.2. For primes p, q1, and q2, we may write

p− 1 = qk11 qk22 s1

pq1 − 1 = qk1+j1
1 qk22 s1sq1

pq2 − 1 = qk11 qk2+j2
2 s1sq2

pq1q2 − 1 = qk1+j1
1 qk2+j2

2 s1sq1sq2sq1q2

where all variables represent positive integers and s1, sq1 , sq2 , sq1q2 , q1, and q2 are pairwise relatively
prime.

It is worth noting a few things about the factorizations above. Clearly p− 1 divides the other
three expressions, and pq1 − 1 and pq2 − 1 both divide pq1q2 − 1. The significant claims here are
that q1 and q2 are the only prime factors that appear with potentially different exponents in the
factorizations of the four expressions and that those exponents increase only when p is raised to
a power divisible by that prime.
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Proof. The following statements together suffice for the proof:

(i) For any prime t dividing s1, νt(p− 1) = νt(p
q1 − 1) = νt(p

q2 − 1) = νt(p
q1q2 − 1)

(ii) For any prime t dividing sq1 , νt(pq1 − 1) = νt(p
q1q2 − 1)

(iii) For any prime t dividing sq2 , νt(pq2 − 1) = νt(p
q1q2 − 1)

(iv) gcd(sq1 , sq2) = 1

(v) νq1(p− 1) = νq1(p
q2 − 1)

(vi) νq2(p− 1) = νq2(p
q1 − 1)

(vii) νq1(p
q1 − 1) = νq1(p

q1q2 − 1)

(viii) νq2(p
q2 − 1) = νq2(p

q1q2 − 1)

The first four statements establish that s1, sq1 , sq2 , and sq1q2 are pairwise relatively prime. The
next four show that the exponents of q1 and q2 vary only depending on whether the prime in
question is a factor of the exponent of p. With the exception of (iv), each of these statements
follows directly from Lemma 2.1. Statement (iv) follows from the fact that

gcd(pq1 − 1, pq2 − 1) = pgcd(q1,q2) − 1 = p− 1

(see Lemma 12.6 in [2]).

For example, consider Z31 with q1 = 3 and q2 = 5. Then, as in the previous lemma, we can
write p− 1, pq1 − 1, pq2 − 1, and pq1q2 − 1 accordingly:

power of q1 = 3 power of q2 = 5 s1 sq1 sq2 sq1q2

p− 1 31 51 2

p3 − 1 32 51 2 331

p5 − 1 31 52 2 11 · 17351
p15 − 1 32 52 2 331 11 · 17351 2521 · 327412201

Observe that the values of sq2 and sq1q2 are composite in this example, and note that 3 and 5 are
the only values whose powers change.

The proof of the next proposition uses properties of the Euler phi function and is omitted.

Proposition 2.1. Let q, a, b ∈ N with q being prime. Then ϕ(qa+b)
qϕ(qa)

= qb−1.

Theorem 2.2 (Top of Lattice). Let c ∈ Z∗
p, where c is neither a q1-residue nor a q2-residue. Then

N(q1q2, c, p) =
pq1q2 − 1

q1q2(p− 1)
.

Proof. Let α be a generator of Z∗
p and c ∈ Z∗

p such that c is neither a q1-residue nor a q2-residue.
Then c = αk for some integer k with 0 < k ≤ p − 1. Since c is neither a q1 nor a q2 residue,
neither q1 nor q2 divides k. Let m denote the order of c in Z∗

p. Since |αk| = |α|
gcd(|α|,k) =

p−1
gcd(p−1,k)

,

we have m = qk11 qk22 s′1 for some s′1 dividing s1.
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Let r ∈ Dq1q2 with mr = m, recalling that r = mrdr where dr = gcd(r, p
q1q2−1
p−1

). Since qk11 qk22
divides mr and qj11 qj22 divides pq1q2−1

p−1
, it must be the case that qk1+j1

1 qk2+j2
2 divides r. Moreover,

any divisor of pq1q2 − 1 that is divisible by qk1+j1
1 qk2+j2

2 is an element of Dq1q2 , since qk1+j1
1 qk2+j2

2

is not a divisor of pa − 1 for any a < q1q2. Therefore the subset of Dq1q2 with mr = m is exactly
the set of divisors r of pq1q2 − 1 with qk1+j1

1 qk2+j2
2 |r.

It follows from [5] that

N(q1q2, c, p) =
1

q1q2ϕ(m)

∑
r∈Dn
mr=m

ϕ(r)

=
1

q1q2ϕ(m)

∑
s′q1 |sq1 ,s

′
q2

|sq2 ,s
′
q1q2

|sq1q2

ϕ(qk1+j1
1 qk2+j2

2 s′1s
′
q1
s′q2s

′
q1q2

)

=
1

q1q2ϕ(m)

∑
u|sq1sq2sq1q2

ϕ(qk1+j1
1 qk2+j2

2 s′1u).

Since the values of qk1+j1
1 , qk2+j2

2 , s′1, and u are pairwise relatively prime, we can write

N(q1q2, c, p) =
1

q1q2ϕ(q
k1
1 qk22 s′1)

∑
u|sq1sq2sq1q2

ϕ(qk1+j1
1 )ϕ(qk2+j2

2 )ϕ(s′1)ϕ(u)

=
ϕ(qk1+j1

1 )ϕ(qk2+j2
2 )ϕ(s′1)

q1q2ϕ(q
k1
1 )ϕ(qk22 )ϕ(s′1)

∑
u|sq1sq2sq1q2

ϕ(u).

Note that the summation above is over all divisors of sq1sq2sq1q2 , which gives us

N(q1q2, c, p) =
ϕ(qk1+j1

1 )

q1ϕ(q
k1
1 )

· ϕ(q
k2+j2
2 )

q2ϕ(q
k2
2 )

· sq1sq2sq1q2

=
qk1+j1
1 qk2+j2

2 s1sq1sq2sq1q2
q1q2(q

k1
1 qk22 s1)

=
pq1q2 − 1

q1q2(p− 1)
.

The next lemma follows from the fact that the only prime divisor of gcd(p
qk−1
p−1

, p−1) is q (see
Corollary 2.4 of [1]), so the proof is omitted.

Lemma 2.3. For k ∈ N, if gcd(q, p− 1) = q, then gcd(p
qk−1
p−1

, p− 1) = q.

Theorem 2.3 (Sides of Lattice). If a ∈ Z∗
p is a q2-residue but not a q1-residue, then

N(q1q2, a, p) =
pq1q2 − 1

q1q2(p− 1)
− pq1 − 1

q1(p− 1)
.

Proof. Let α be a generator of Z∗
p and c ∈ Z∗

p such that c is a q1-residue but not a q2-residue. Then
c = αk for some integer k with 0 < k ≤ p − 1. Since c is a q1-residue but not a q2-residue, we
have q1|k and q2 ̸ |k. Let m denote the order of c in Z∗

p. Since |αk| = |α|
gcd(|α|,k) = p−1

gcd(p−1,k)
, we

have m = qu1 q
k2
2 s′1 for some s′1 dividing s1 and 0 ≤ u < k1.
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Let r ∈ Dq1q2 with mr = m, recalling that r = mrdr where dr = gcd(r, p
q1q2−1
p−1

). Since qk22
divides mr and qj22 divides pq1q2−1

p−1
, it must be the case that qk2+j2

2 divides r. We may therefore
write r = qt1q

k2+j2
2 s′1s

′
q1
s′q2s

′
q1q2

for some s′q1 , s
′
q2
, s′q1q2 dividing sq1 , sq2 , and sq1q2 respectively and

u ≤ t < k1 + j1. Note that u and s′1 depend only on m, whereas t, sq1 , sq2 , and sq1q2 also depend
on r.

Since qk2+j2
2 divides r, it is clear that r ∤ p − 1 and r ∤ pq1 − 1. In order for r to be in the set

Dq1q2 , we also need r ∤ pq2 − 1. Therefore one of the following must be true: s′q1 ̸= 1, s′q1q2 ̸= 1,
or t > k1.

We will consider two cases: first the case with q1 ∤ m and then q1|m.
Suppose first that q1 ∤ m. In this case, u = 0 and m = qk22 s′1. Moreover, since the value of

νq1

(
pq1q2−1
p−1

)
is j1, we have νq1(r) ≤ j1. By Theorem 1.2,

N(q1q2, c, p) =
1

q1q2ϕ(m)

∑
r∈Dn
mr=m

ϕ(r)

=
1

q1q2ϕ(q
k2
2 s′1)

∑
0≤t≤j1

s′q1 |sq1 ,s
′
q2

|sq2 ,s
′
q1q2

|sq1q2
s′q1s

′
q1q2

̸=1 or t>k1

ϕ(qt1)ϕ(q
k2+j2
2 )ϕ(s′1)ϕ(s

′
q1
)ϕ(s′q2)ϕ(s

′
q1q2

)

=
ϕ(qk2+j2

2 )ϕ(s′1)

q1q2ϕ(q
k2
2 )ϕ(s′1)

∑
0≤t≤j1

s′q1 |sq1 ,s
′
q2

|sq2 ,s
′
q1q2

|sq1q2
s′q1s

′
q1q2

̸=1 or t>k1

ϕ(qt1)ϕ(s
′
q1
)ϕ(s′q2)ϕ(s

′
q1q2

).

Again we apply properties of the Euler phi function to get

N(q1q2, c, p) =
qj22
q1q2


∑

x|qj11 sq1sq2sq1q2

ϕ(x)−
∑

0≤t≤j1
s′q1 |sq1 ,s

′
q2

|sq2 ,s
′
q1q2

|sq1q2
s′q1s

′
q1q2

=1 and t≤k1

ϕ(qt1)ϕ(s
′
q1
)ϕ(s′q2)ϕ(s

′
q1q2

)



=
qj22
q1q2

qj11 sq1sq2sq1q2 −
∑

0≤t≤j1
t≤k1

s′q1 |sq1

ϕ(qt1)ϕ(s
′
q2
)

 .

By Lemma 2.3, we know that either j1 = 1 or k1 = 1. Therefore if t ≤ j1 and t ≤ k1, it
follows that t ≤ 1. This allows us to write:

N(q1q2, c, p) =
qj22
q1q2

qj11 sq1sq2sq1q2 −
∑

t∈{0,1}
s′q2 |sq2

ϕ(qt1)ϕ(s
′
q2
)


=

qj22
q1q2

qj11 sq1sq2sq1q2 −
∑

x|q1sq2

ϕ(x)

 .
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Applying the property of the Euler phi regarding the sum of ϕ(x) for divisors x of n ∈ N
allows us to rewrite the summation as:

=
qj22
q1q2

(
qj11 sq1sq2sq1q2 − q1sq2

)
=

qj11 qj22 sq1sq2sq1q2
q1q2

− q1q
j2
2 sq2

q1q2

=
pq1q2 − 1

q1q2(p− 1)
− pq2 − 1

q2(p− 1)
.

It remains to examine the case where q1|m. Recall that m = qu1 q
k2
2 s′1 for some s′1 dividing s1

and 0 ≤ u < k1 and r = qt1q
k2+j2
2 s′1s

′
q1
s′q2s

′
q1q2

for some s′q1 , s
′
q2
, s′q1q2 dividing sq1 , sq2 , and sq1q2

respectively and u ≤ t < k1 + j1, with u and s′1 depending only on m, whereas t, sq1 , sq2 , and
sq1q2 also depend on r.

Note as above that either j1 or k1 must be 1. Suppose by way of contradiction that k1 = 1.
Then we have 0 ≤ t < 1 + j1 and therefore t ≤ j1. In this case, qt1 is a divisor of both r and
pq1q2−1
p−1

and therefore of dr. This implies that qt1 ∤ m, contradicting our assumption in this case.
We therefore have j1 = 1. This allows us to compute

dr = gcd

(
r,
pq1q1 − 1

p− 1

)
= gcd

(
qt1q

k2+j2
2 s′1s

′
q1
s′q2s

′
q1q2

, qj11 qj12 sq1sq2sq1q2

)
= qj11 qj22 s′q1s

′
q2
s′q1q2

= q1q
j2
2 s′q1s

′
q2
s′q1q2 .

Since r = mrdr, we have mr = qt−1
1 qk22 s′1, implying that t = u + 1. This is significant since

u depends only on m and not on r. As in the first case, in order for r to be in the set Dr, we also
need either s′q1 ̸= 1, s′q1q2 ̸= 1, or t > k. Since t < k1 + j1 and j1 = 1, it is not possible to have
t > k1. Thus we have either s′q1 ̸= 1 or s′q1q2 ̸= 1. Again by Theorem 1.2,

N(q1q2, c, p) =
1

q1q2ϕ(m)

∑
r∈Dn
mr=m

ϕ(r)

=
1

q1q2ϕ(qu1 q
k2
2 s′1)

∑
s′q1 |sq1 ,s

′
q2

|sq2 ,s
′
q1q2

|sq1q2
s′q1s

′
q1q2

̸=1

ϕ(qu+1
1 )ϕ(qk2+j2

2 )ϕ(s′1)ϕ(s
′
q1
)ϕ(s′q2)ϕ(s

′
q1q2

)

=
ϕ(qu+1

1 )ϕ(qk2+j2
2 )ϕ(s′1)

q1q2ϕ(qu1 )ϕ(q
k2
2 )ϕ(s′1)

∑
s′q1 |sq1 ,s

′
q2

|sq2 ,s
′
q1q2

|sq1q2
s′q1s

′
q1q2

̸=1

ϕ(s′q1s
′
q2
s′q1q2).

Again applying the property of the Euler phi regarding the sum of ϕ(x) for divisors x of
n ∈ N, we have
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N(q1q2, c, p) =
q1q

j2
2

q1q2

 ∑
x|sq1sq2sq1q2

ϕ(x)−
∑
x|sq2

ϕ(x)


=

q1q
j2
2

q1q2
(sq1sq2sq1q2 − sq2)

=
qj11 qj22 sq1sq2sq1q2

q1q2
− q1q

j2
2 sq2

q1q2

=
pq1q2 − 1

q1q2(p− 1)
− pq2 − 1

q2(p− 1)
.

Now we are ready to prove the following theorem.

Theorem 2.4 (Bottom of lattice). If a ∈ Z∗
p is both q1-residue and a q2-residue, then

N(q1q2, a, p) =
pq1q2 − 1

q1q2(p− 1)
− pq1 − 1

q1(p− 1)
− pq2 − 1

q2(p− 1)
+ 1

Proof. Since every irreducible polynomial has nonzero constant term, N(q1q2, p) can be expressed
as the sum

N(q1q2, p) =
∑
a∈Z∗

p

N(q1q2, a, p)

By Theorem 1.1, the left side of the equation is

N(q1q2, p) =
1

q1q2
(pq1q2 − pq1 − pq2 + p)

In order to rewrite the right side of the equation, we begin by classifying the elements of Z∗
p

according to whether they are q1-residues, q2-residues, both, or neither. Let α be a generator of
Z∗

p. If a ∈ Z∗
p is both a q1- and a q2-residue, then a = αkq1q2 for some 0 ≤ k < p−1

q1q2
. Therefore

there are p−1
q1q2

elements of Z∗
p that are both q1-residues and q2-residues.

If a ∈ Z∗
p is a q1-residue but not a q2-residue, then a = αkq1 for some 0 ≤ k < p−1

q1
with q2 ∤ k.

Thus there are p−1
q1

− p−1
q1q2

elements of Z∗
p that are q1-residues but not q2-residues. Similarly, there

are p−1
q2

− p−1
q1q2

elements of Z∗
p that are q1-residues but not q2-residues.

The remaining elements of Z∗
p are neither q1-residues nor q2 residues. Therefore the number

of elements in this collection is given by

(p− 1)−
(
p− 1

q2
− p− 1

q1q2

)
−
(
p− 1

q1
− p− 1

q1q2

)
− p− 1

q1q2

which simplifies to

(p− 1)− p− 1

q2
− p− 1

q1
+

p− 1

q1q1
.

Theorems 2.2 and 2.3 and 1.3 demonstrate that N(q1q2, a, p) depends only on whether a is a
q1-residue and/or q2-residue. It follows that
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N(q1q2, p) =
p− 1

q1q2
N(q1q2, α

q1q2 , p)

+

(
p− 1

q1
− p− 1

q1q2

)
N(q1q2, α

q1 , p)

+

(
p− 1

q2
− p− 1

q1q2

)
N(q1q2, α

q2 , p)

+

(
p− 1− p− 1

q1
− p− 1

q2
+

p− 1

q1q2

)
N(q1q2, α, p)

Using the results of Theorems 2.2, 2.3, and 1.1, we obtain
1

q1q2
(pq1q2 − pq1 − pq2 + p) =

p− 1

q1q2
N(q1q2, α

q1q2 , p)

+

(
p− 1

q1
− p− 1

q1q2

)(
pq1q2 − 1

q1q2(p− 1)
− pq2 − 1

q2(p− 1)

)
+

(
p− 1

q2
− p− 1

q1q2

)(
pq1q2 − 1

q1q2(p− 1)
− pq1 − 1

q1(p− 1)

)
+

(
p− 1− p− 1

q1
− p− 1

q2
+

p− 1

q1q2

)(
pq1q2 − 1

q1q2(p− 1)

)
.

which can be simplified to

pq1q2 − pq1 − pq2 + p

q1q2
=

p− 1

q1q2
N(q1q2, α

q1q2 , p) +

(
1

q1
− 1

q1q2

)(
pq1q2 − 1

q1q2
− pq2 − 1

q2

)
+

(
1

q2
− 1

q1q2

)(
pq1q2 − 1

q1q2
− pq1 − 1

q1

)
+

(
1− 1

q1
− 1

q2
+

1

q1q2

)(
pq1q2 − 1

q1q2

)
.

Multiplying by q1q2 gives

(pq1q2 − pq1 − pq2 + p) = (p− 1)N(q1q2, α
q1q2 , p) + (q2 − 1)

(
pq1q2 − 1

q1q2
− pq2 − 1

q2

)
+ (q1 − 1)

(
pq1q2 − 1

q1q2
− pq1 − 1

q1

)
+ (q1q2 − q1 − q2 + 1)

(
pq1q2 − 1

q1q2

)
.

This can in turn be simplified to give

p− 1 = (p− 1)N(q1q2, α
q1q2 , p) +

pq2 − 1

q2
+

pq1 − 1

q1
− pq1q2 − 1

q1q2
.

Dividing both sides by (p− 1) leaves

1 = N(q1q2, α
q1q2 , p) +

pq2 − 1

q2(p− 1)
+

pq1 − 1

q1(p− 1)
− pq1q2 − 1

q1q2(p− 1)
.

This is equivalent to
pq1q2 − 1

q1q2(p− 1)
− pq1 − 1

q1(p− 1)
− pq2 − 1

q2(p− 1)
+ 1 = N(q1q2, α

q1q2 , p),

which completes the proof.
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Let us consider again Z31 with q1 = 3 and q2 = 5. Theorems 2.2, 2.3, and 2.4 show that the
set

D15 = {r : r|3115 − 1, r ∤ 313 − 1, r ∤ 315 − 1}

can be partitioned into the following sets:

Dtop = {r ∈ D15 : q
k1+j1
1 |r and qk2+j2

2 |r} = {r ∈ D15 : 3
2|r and 52|r}

Dside3 = {r ∈ D15 : q
k1+j1
1 |r and qk2+j2

2 ∤ r} = {r ∈ D15 : 3
2|r and 52 ∤ r}

Dside5 = {r ∈ D15 : q
k1+j1
1 ∤ r and qk2+j2

2 |r} = {r ∈ D15 : 3
2 ∤ r and 52|r}

Dbottom = {r ∈ D15 : q
k1+j1
1 ∤ r and qk2+j2

2 ∤ r} = {r ∈ D15 : 3
2 ∤ r and 52 ∤ r}

The sums computed in the proofs of Theorems 2.2, 2.3, and 2.4 are sums over these subsets of
D15.

3 The case p ̸≡ 1 (mod q1)

Let us consider when p ̸≡ 1 (mod q1) and p ̸≡ 1 (mod q2), In fact, we have the following more
general result, which follows directly from Theorem 1.3.

Theorem 3.1. Assume n ∈ N and gcd(n, p− 1) = 1. Then for any a ∈ Z∗
p,

N(n, a, p) =
1

p− 1
N(n, p) =

1

n(p− 1)

∑
d|n

µ
(n
d

)
pd.

Corollary 3.1. Assume n = q1q2 and gcd(n, p) = 1. Then N(n, a, p) = pq1q2−pq1−pq2+p
q1q2(p−1)

for any
a ∈ Z∗

p.

Finally we will consider when p ̸≡ 1 (mod q1) and p ≡ 1 (mod q2). Then we will have
two possibilities, depending on whether or not the constant term is a q2-residue. In other words,
a constant term a is either a q1-residue and not a q2-residue, or a is both a q1-residue and a
q2-residue.

Theorem 3.2. Assume p ̸≡ 1 (mod q1) and p ≡ 1 (mod q2).

1. If a ∈ Z∗
p is not a q2-residue, then

N(q1q2, a, p) =
pq1q2 − 1

q1q2(p− 1)
− pq2 − 1

q1q2(p− 1)
=

pq1q2 − pq2

q1q2(p− 1)
.

2. If a ∈ Z∗
p is a q2-residue, then

N(q1q2, a, p) =
pq1q2 − 1

q1q2(p− 1)
− pq2 − 1

q1q2(p− 1)
− pq1 − p

q2(p− 1)
.

Before we begin this proof, we need a modification of Lemma 2.2.

206



Lemma 3.1. For primes p, q1, and q2 with p ̸≡ 1 (mod q1) and p ≡ 1 (mod q2), we may write

p− 1 = qk22 s1

pq2 − 1 = qk2+j2
2 s1sq2

pq1q2 − 1 = qk2+j2
2 s1sq2sq1q2

where all variables represent positive integers, the integers s1, sq2 , sq1q2 , q1,and q2 are pairwise
relatively prime, and gcd(q1, s1) = 1.

Note that q1 cannot be a factor of s1 but it can potentially be a factor of sq2 or sq1q2 The
proof of this lemma follows from that of Lemma 2.2 and is omitted. Now we are ready to prove
Theorem 3.2.

Proof. To prove (1), assume a ∈ Z∗
p is not a q2-residue. We will use Lemma 3.1 to write

p− 1 = qk22 s1

pq2 − 1 = qk2+j2
2 s1sq2

pq1q2 − 1 = qk2+j2
2 s1sq2sq1q2 .

Let c ∈ Z∗
p where c is not a q2-residue, and let m be the order of c. Then, as argued in the

proof of Theorem 2.2, m = qk22 s′1 for some s′1 dividing s1.
Let r ∈ Dq1q2 with mr = m, where r = mrdr and dr = gcd(r, p

q1q2−1
p−1

). Since qk22 divides mr

and qj22 divides pq1q2−1
p−1

, it must be the case that qk2+j2
2 divides r. Since qk2+j2

2 divides pq2 − 1, the
only way to ensure r|pq1q2 − 1 and not p − 1 or pq2 − 1 is the presence of a prime from sq1q2 . It
follows from Theorem 1.2 that

N(q1q2, c, p) =
1

q1q2ϕ(m)

∑
r∈Dn
mr=m

ϕ(r)

=
1

q1q2ϕ(m)

∑
s′q2 |sq2 ,s

′
q1q2

|sq1q2 ,s
′
q1q2

̸=1

ϕ(qk2+j2
2 s′1s

′
q2
s′q1q2)

=
1

q1q2ϕ(q
k2
2 s′1)

∑
s′1|s1,s′q2 |sq2 ,s

′
q1q2

|sq1q2 ,s′q1q2 ̸=1

ϕ(qk2+j2
2 )ϕ(s′1)ϕ(s

′
q2
s′q1q2)

=
ϕ(qk2+j2

2 )

q1q2ϕ(q
k2
2 )

∑
s′q2 |sq2 ,s

′
q1q2

|sq1q2 ,s′q1q2 ̸=1

ϕ(s′q2s
′
q1q2

)

Again using properties of the Euler phi function, we can rewrite this summation as follows:

N(q1q2, c, p) =
qj22
q1q2

(sq2sq1q2 − sq2) =
pq1q2 − 1

q1q2(p− 1)
− pq2 − 1

q1q2(p− 1)

which proves (1).
To prove (2), first note that by Theorem 3.1, for any two elements a, b ∈ Z∗

p which are
both q2-residues, N(n, a, p) = N(n, b, p). Theorem 1.1, tells us N(q1q2, p) = pq1q2−pq1−pq2+p

q1q2
.

Since there are p−1
q2

elements of Z∗
p which are q2-residues (with N(q1q2, c, p) = pn−pq2

n(p−1)
) and

p − 1 − p−1
q2

= (p − 1)(1 − 1
q2
) which are not, we can compute N(q1q2, a, p) by finding the

following.
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N(q1q2, a, p) =

pq1q2−pq1−pq2+p
q1q2

−
(

pq1q2−pq2

q1q2(p−1)

)
(p− 1)(1− 1

q2
)

p−1
q2

=
1

q1q2(p− 1)
[q2(p

q1q2 − pq1 − pq2 + p)− (pq1q2 − pq2)(q2 − 1)]

=
1

q1q2(p− 1)
[−q2p

q1 + q2p+ pq1q2 − pq2 ]

=
1

q1q2(p− 1)
[(pq1q2 − 1)− (pq2 − 1)− q2(p

q1 − p)]

=
pq1q2 − 1

q1q2(p− 1)
− pq2 − 1

q1q2(p− 1)
− pq1 − p

q1(p− 1)
.

4 Conclusion

Consider the case when q1 and q2 both divide p − 1. While considering values of N(q1q2, a, p)

when q1 and q2 both divide p − 1, we found it useful to visualize these values in the following
lattice. This is the same lattice from Section 1 with the edges labeled. The edges of the lattice are
labeled with values of N(q1, a, p) or N(q2, a, p) to represent the difference between the vertices
of that edge. For example, N(q1q2, α, p)−N(q1q2, α

q1 , p) = N(q2, α
q1 , p).

N(q1q2, α, p)

N(q1q2, α
q2 , p) N(q1q2, α

q1 , p)

N(q1q2, α
q1q2 , p)

N(q2, α
q1 , p)

N(q1, α
q1q2 , p)N(q2, α

q1q2 , p)

N(q1, α
q2 , p)

The values on the edges were computed in [1] and are summarized in the next theorem.

Theorem 4.1. Let k ∈ N.
1. (Theorem 2.5) Let gcd(q, p− 1) = 1, and a ∈ Z∗

p, then

N(qk, a, p) =
pq

k − pq
k−1

qk(p− 1)
.

2. (Theorem 3.2) Let gcd(q, p− 1) = q, and let a ∈ Z∗
p be a non q-residue, then

N(qk, a, p) =
pq

k − 1

qk(p− 1)
.

3. (Theorem 4.1 and 4.2) Let gcd(q, p− 1) = q, and let a ∈ Z∗
p be a q-residue, then

N(qk, a, p) =
pq

k − qpq
k−1

+ q − 1

qk(p− 1)
.
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Since the next two theorems are easy corollaries of Theorem 4.1, Theorem 2.2, Theorem 2.3,
and Theorem 2.4, we leave the proofs to the reader.

Theorem 4.2. N(q1q2, α, p)−N(q1q2, α
q1 , p) = N(q2, α

q1 , p)

Theorem 4.3. N(q1q2, α
q1 , p)−N(q1q2, α

q1q2 , p) = N(q1, α
q1q2 , p)

In the case where q1 divides p− 1, but q2 does not, we get a much simpler lattice. Notice that
the lattice representation of Case 2 is identical to the top right portion of the lattice representation
of the first case.

N(q1q2, α, p)

N(q1q2, α
q1 , p)

N(q2, α
q1 , p)

The proof of the next theorem is also a corollary of Theorem 4.1 and Theorem 3.2 and is left
to the reader.

Theorem 4.4. N(q1q2, α, p)−N(q1q2, α
q1 , p) = N(q2, α

q1 , p).

Now we are ready to consider the ratios of N(q1q2, a, p) for varying values of a. When p ≡ 1

(mod q1) and p ≡ 1 (mod q2), there are three possible values of N(q1q2, a, p) depending on
whether a is a q1-residue and/or a q2-residue. The largest possible value would be pq1q2−1

q1q2(p−1)
when

a is neither residue, and the smallest value would be pq1q2−1
q1q2(p−1)

− pq1−1
q1(p−1)

− pq2−1
q2(p−1)

+ 1 when a is
both residues. Observe that the ratio of these terms would be

N(q1q2, α
q1q2 , p)

N(q1q2, α, p)
= 1− q2(p

q1 − 1)

pq1q2 − 1
− q1(p

q2 − 1)

pq1q2 − 1
+

q1q2(p− 1)

pq1q2 − 1
.

As q1q2 → ∞, this ratio will approach one. Hence the other two possible ratios will also approach
one as q1q2 → ∞.

Next, when p ̸≡ 1 (mod q1) and p ≡ 1 (mod q2), we have the following ratio

N(q1q2, α, p)

N(q1q2, αq1 , p)
=

pq1q2 − pq2

pq1q2 − pq2 − pq1 + q1p

which also approaches one as q1q2 → ∞. Finally, the case when p ̸≡ 1 (mod q1) and p ̸≡ 1

(mod q2) automatically yields a ratio N(q1q2,a,p)
N(q1q2,b,p)

= 1 as these values N(q1q2, a, p) are identical for
any a ∈ Z∗

p.
Therefore the proportions of constant terms of these monic irreducible polynomials of degree

q1q2 are asymptotically equal, as their limits show a uniform distribution among the constant
terms.
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