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Abstract: Two new arithmetic functions are introduced. In some sense, they are modifications of
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1 Introduction

Euler’s and Dedekind’s functions are two from the most important arithmetic functions (see,
e.g. [4,5,7]). They have different modifications (see, e.g., [6]). Here, two new of their modifications
are introduced.

Let the natural number

n =
k∏

i=1

pαi
i (1)
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be given, where k, α1, . . . , αk, k ≥ 1 are natural numbers and p1, . . . , pk are different primes.
For the above n, Euler’s and Dedekind’s functions are defined as follows (see, e.g., [4, 5, 7]:

φ(n) =
k∏

i=1

pαi−1
i (pi − 1), φ(1) = 1,

ψ(n) =
k∏

i=1

pαi−1
i (pi + 1), ψ(1) = 1.

Below, we will use also functions (see [1, 2, 6]):

set(n) = {p1, . . . , pk},

mult(n) =
k∏

i=1

pi.

2 Main results

Let us define for the above n:

φ(n) =
k∏

i=1

(pαi
i − 1), φ(1) = 1,

ψ(n) =
k∏

i=1

(pαi
i + 1), ψ(1) = 1.

Obviously, for each natural number n:

φ(n) ≤ φ(n) ≤ n− 1 < n < n+ 1 ≤ ψ(n) ≤ ψ(n). (2)

Theorem 2.1. For each natural number n:

ψ(n)− ψ(n) + φ(n)− φ(n) ≥ 0. (3)

Proof. When n = 1, (3) is obvious. When n ≥ 2 is a prime number, then we obtain directly that

ψ(n)− ψ(n) + φ(n)− φ(n) = 0.

Let us assume that (3) is valid for some natural number n and let 2 ≤ p ̸∈ set(n) is a prime
number. Then by the induction assumption

ψ(np)− ψ(np) + φ(np)− φ(np) = (p+ 1)(ψ(n)− ψ(n)) + (p− 1)(φ(n)− φ(n))

≥ (p− 1)(ψ(n)− ψ(n) + φ(n)− φ(n)) ≥ 0.

Let p ∈ set(n). Therefore, n = mpa for some natural numbers a,m ≥ 1 and prime p, and

ψ(np)− ψ(np) + φ(np)− φ(np)

= ψ(m)(pa+1 + pa)− ψ(m)(pa+1 + 1) + φ(m)(pa+1 − pa)− φ(n)(pa+1 − 1)

= pa+1(ψ(m)− ψ(m) + φ(m)− φ(m)) + pa(ψ(m)− φ(m))− ψ(m) + φ(m)

≥ (pa − 1)(ψ(m)− φ(m)) ≥ 0.

that proves the Theorem.
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Theorem 2.2. For each natural number n:

φ(n) + ψ(n) ≥ 2n. (4)

Proof. When n = 1, (4) is obvious. When n ≥ 2 is a prime number, then we obtain directly that

φ(n) + ψ(n) = 2n.

Let us assume that (4) is valid for some natural number n and let 2 ≤ p ̸∈ set(n) is a prime
number. Then, by the induction assumption we obtain

φ(np) + ψ(np)− 2np = φ(n)(p− 1) + ψ(n)(p+ 1)− 2np

≥ p(φ(n) + ψ(n)− 2n) + ψ(n)− φ(n) ≥ 0.

Let p ∈ set(n). Therefore, as above, n = mpa, where a,m ≥ 1 are natural numbers, and

φ(np) + ψ(np)− 2np = φ(m)(pa+1 − 1) + ψ(m)(pa+1 + 1)− 2mpa+1

= (φ(m) + ψ(m)− 2m)pa+1 + ψ(m)− φ(m) ≥ 0.

In [3], the author introduced the arithmetic function (for n given by (1)):

RF (n) =
k∏

i=1

pαi−1
i .

For it is valid:

Theorem 2.3. For each natural number n ≥ 2:

φ(n)ψ(n) ≤ n2 −RF (n). (5)

Proof. When n ≥ 2 is a prime number, then we obtain directly that

φ(n)ψ(n) = n2 − 1 = n2 −RF (n).

Let us assume that (5) is valid for some natural number n and let 2 ≤ p ̸∈ set(n) is a prime
number. Then, from p ≥ 2,

RF (np) = RF (n)

and by the induction assumption we obtain

(np)2 −RF (np)− φ(np)ψ(np) = n2p2 −RF (n)− φ(n)ψ(n)(p2 − 1)

≥ n2p2 −RF (n)− (n2 −RF (n))(p2 − 1)

= (p2 − 2)RF (n) + n2 > 0.

Let p ∈ set(n). Therefore, as above n = mpa, where a,m ≥ 1 are natural numbers,

RF (np) = RF (m)pa
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and

(np)2 −RF (np)− φ(np)ψ(np)

= m2p2a+2 −RF (m)pa − φ(m)ψ(m)(pa+1 − 1)(pa+1 + 1)

= m2p2a+2 −RF (m)pa − φ(m)ψ(m)(p2a+2 − 1)

= (m2 −RF (m)− φ(m)ψ(m))p2a+2 +RF (m)(p2a+2 − pa) + φ(m)ψ(m)

> 0.

that proves the Theorem.

From (2) it follows that for each natural number n:

φ(n)ψ(n) ≥ φ(n)ψ(n)

and
φ(n)

ψ(n)
≥ φ(n)

ψ(n)
.

The following assertion is more interesting:

Theorem 2.4. For each natural number n:

φ(n)ψ(n) ≥ φ(n)ψ(n). (6)

Proof. When n = 1, (6) is obvious. When n ≥ 2 is a prime number, then we obtain directly that

φ(n)ψ(n) = n2 − 1 = φ(n)ψ(n).

When n has the form of (1), then

φ(n)ψ(n) =
k∏

i=1

(p2αi
i − 1) ≥

k∏
i=1

p2αi−2
i (p2i − 1) = φ(n)ψ(n).

It is well-known that for each natural number n ≥ 2:

φ(n)ψ(n) ≤ n2 − 1,

but (2) and (6) yield
φ(n)ψ(n) ≤ n2 −RF (n), (7)

i.e., a reinforcement of this inequality.

3 Conclusion

Two new arithmetic functions were introduced and some of their properties were discussed. In
the future, other properties of theirs will be studied and relations between the new and existing
arithmetic functions will be explored.
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