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Abstract: In this paper, we give a characterization of primes and composite natural numbers using 

the notion of the sum of successive natural numbers. We prove essentially that an odd natural 

number N 3 is prime if and only if the unique decomposition of N as a sum of successive natural 

numbers is the trivial decomposition N= a + (a + 1) with a = (N – 1) / 2. 
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1 Introduction 

The first idea of this work is due to the first author of this paper in giving some numerical 

observations about primes and composite numbers: these observations noted by the author can be 

resumed as follows: every odd prime number N admits a single representation as sum of two 

successive natural numbers N = a + (a + 1) with a = (N – 1) / 2, called the trivial representation. 

For example, 

 5 2 3,   

 7 3 4,   

 101 50 51,   

 331 165 166, ...etc.   

While, a composite number admits other representations than the trivial representation, at least 

one representation of the form N = a + (a + 1) + ⋯ + (a + k) with k  2. For example, 

 9 4 5 2 3 4,      

 15 7 8 1 2 3 4 5 4 5 6,           

 77 38 39 8 9 10 11 12 13 14 2 3 4 5 6 7 8 9 10 11 12.                     

The theoretical confirmations of these results were made by the other authors of this paper. 

It is well known that an integer N is said to be prime number, if it admits only two divisors: 

the integer 1 and the number N itself. In this paper, we use an alternative characterization of a 

prime number, as established in such works as [3, 5, 7], using the previous notion of the sum of 

successive natural numbers and we prove that: An odd natural number N  3 is prime if and only 

if the unique decomposition of N as a sum of successive natural numbers is the trivial 

decomposition N = a + (a + 1) with a = (N – 1) / 2. 

2 Preliminaries 

The set of natural numbers ℕ := {1, 2, …, n, …} is well ordered using the usual ordering relation 

denoted by  . For the natural numbers a, b, we say that a divides b, denoted a | b, if there is a 

natural number q such that b = aq. The proper divisors (d | N, with d  1 and d  N) of the natural 

number N cannot exceed (N / 2), i.e., d  (N / 2), if d | N. A natural number p > 1 is called prime 

if it is not divisible by any natural number other than 1 and itself, in other words, if p = nm, then 

n = 1 or m = 1. A natural number that is not prime is called composite. 

Euclid's Theorem ensures that there are infinitely many primes. The Fundamental Theorem 

of Arithmetic confirms that any natural number n > 1 can be written, in a unique way up to 

reordering, as the product of primes:  

 1 2

1 2 ,
  h

hN p p p  

where pi are unique and αi  1  are positive integers. 

The natural numbers a and a + 1 are called successive natural numbers.  

All necessary notions of elementary number theory are from [2, 4] and those of computational 

number theory are from [1, 6].     
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3 The main result of the paper  

In this paper, we give an alternative characterization of prime and composite numbers using the 

concept of the sum of successive natural numbers, as mentioned in the following theorem. 

Theorem 1. An odd natural number N  3 is prime number if and only if the unique decomposition 

of  N as a sum of successive natural numbers is the trivial decomposition 

 N = a + (a + 1)  

with a = (N – 1) / 2. 

Proof. It is clear that every odd natural number N = 2a + 1 can be written in the form N = a + (a + 1) 

as the sum of two successive natural numbers with a = (N – 1) / 2.  

Suppose that N is prime and can be written as 

        1 2 ,          with  1 and 1         N a a a a k k a     (⋆) 

We will prove in this case, that k must be equal to 1, i.e., N = a + (a + 1).  

Suppose that, on the contrary, we have 2k . We have from (⋆) 

       1 1 / 2 1 / 2      N k a k k k a k . 

Two cases can be considered depending on whether the integer k is even or odd. 

The first case: If k is odd, then N = ((k + 1) / 2)(2a + k). Thus (k + 1) / 2 is a divisor of N.  Since 

N is a prime, then (k + 1) / 2 must equal to 1 or 2a + k = 1.  

If (k + 1) / 2 = 1, then k  = 1 and we have N = 2a + 1 = a + (a + 1), which confirms the 

assertion. If 2a + k = 1, then k = 1 – 2a, and this case is excluded because the integers a and k 

must be positive integers with respect to the representation (⋆). 

For the second case, if k is even, then N = (k + 1)(2a + k) / 2.  Hence k + 1 = 1 or (2a + k) / 2 = 1 

(since N is prime). The case (k + 1) = 1 gives k = 0, which is in contradiction with the fact that  

k  1. The case (2a + k) / 2 = 1 implies 2a + k = 2, then k = 2 – 2a, which is negative or null 

because a  1, and this case is excluded. Then k must be equal to 1, the only decomposition of the 

prime N is the trivial representation  

 1 .  N a a  

Conversely, we will show that, if the natural number N is not prime, then N admits several 

representations as the sum of consecutive natural numbers other than the trivial representation. 

Suppose that the natural number N is not prime. Let N = n  m be a decomposition of the number 

N in product of natural numbers with n  1 and m  1. Since N is odd, then the numbers n and m 

must be odd natural numbers. The number N can be written as 

 times  times

     
n m

N m m n n . 

As n is an odd natural number, (n – 1) / 2 is a natural number and we have 

   1 / 2 1 1 / 2.    n n n  
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The number N can be decomposed as 

        m m m m m . 

From this remark, we can write N as follows: 

              1 / 2 1 / 2 1 1 1 1 / 2                N m n m n m m m m n  

and these numbers are consecutive numbers from the number a = m – (n – 1) / 2 to the number 

m + (n – 1) / 2 with k = n and the difference is 1 between any two consecutive numbers. The 

second representation can be obtained in considering N = n + ⋯ + n to obtain: 

                1 / 2 1 / 2 1 1 1 1 / 2                N n m n m n n n n m . 

In this case, a = n – (m – 1) / 2 and k = m. 

Example 2. Take N = 35 = 5  7 = 7 + 7 + (7) + 7 + 7. Then  N can be written as a sum of 

consecutive natural numbers as follows: 

          7 2 7 2 1 7 7 1 7 2 5 6 7 8 9 35                

and we also have 

    35 5 7 5 5 5 5 5 5 5 2 3 4 5 6 7 8.                N  

The other representation is the trivial decomposition as 35 = a + (a + 1) = 17 + 18, with  

a = (35 – 1) / 2 = 17.  

Since the number 5 is prime, the only decomposition of 5 as sum of consecutive numbers is 

5 = 2 + (2 + 1). 

The same case is true for the number 7 = 3 + (3 + 1), and for any prime number p we have 

the only decomposition as the sum of the two consecutive natural numbers  

     1 / 2 1 / 2 1 .    p p p  

Remark 3. The number of the decompositions of the natural N as a sum of consecutive numbers 

depends on the number of the representations of the number N as a product of two factors. 

Corollary 4. If N = n1m1  = n2m2  = ⋯ = n tm t  are the different decompositions of N as a product 

of two factors, then the number of representations of N as sum of consecutive numbers is equal to 

2t + 1. 

Proof. From the above theorem, for each decomposition of N = nm there are two different 

representations of N as a sum of consecutive numbers. Consequently, for t different decom-positions 

in the product there are 2t representations as sums of consecutive numbers plus the trivial 

representation N = (N – 1) / 2 + ((N – 1) / 2 + 1).  

Remark 5. The trivial decompositions  
1 timestimes

1 1 1 1       
N

N N N N are excluded in 

Theorem 1 because they cannot be written as sums of natural consecutive numbers.  
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If the number N is prime, then it admits the trivial representation 

N = (N – 1) / 2 + ((N – 1) / 2 + 1). 

If the number N is a perfect square, i.e., N = n2 = n  n, then the number N admits two 

representations in a sum of natural consecutive numbers: 

 the trivial representation  

    1 / 2 1 / 2 1  ,    N n n  

 and the representation 

         1 / 2 1 / 2 1 1 / 2          N n n n n n n . 

When N = p2 = p  p, with p prime, this case is a particular one of the case N = n2 = n  n. 

Example 6. The number 63 can be decomposed in product of two factors as 63 = 7  9 = 21  3, 

then the number 63 admits 2 + 2 + 1 = 5 representations as a sum of consecutive numbers which 

are:  

63 6 7 8 9 10 11 12       , 

63 3 4 5 6 7 8 9 10 11,          

63 20 21 22,    

63 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13                       

   8 9 10 11 12 13,       

    63 63 1 / 2 63 1 / 2 1 31 32.        

The number 25 = 5  5 admits only the trivial representation 25 = 12 + 13 and the representation 

25 = 3 + 4 + 5 + 6 + 7.  

Since the statement of Corollary 4 is based on the number t of different decompositions of  

N = n  m as a product of two factors, the following theorem shows how to compute t as a function 

of the prime factors of the natural number 1 2

1 2 .
  h

hN p p p    

Theorem 7. If 1 2

1 2

  h

hN p p p  is the decomposition of N on prime factors with 3N , then 

the number t of non-trivial different decompositions of N as a product of two factors is 

 
1

2


 

N
t  

with       1 21 1 1      hN  being the number of positive divisors of N and x being the 

least positive integer greater than or equal to the real number x  ℝ.  

Proof. Let 1 2

1 2

  h

hN p p p  be the decomposition of N on prime factors with N  3. To each 

decomposition of N into a product of two factors N = A  B there corresponds a couple of divisors 

(A, B) with 1 2

1 2   haa a

hA p p p  and 1 2

1 2 hbb b

hB p p p  such that 0 ,    i i ia b with , i i ia b

for  1  i  h.   
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Let X be the set of pairs (A, B)  ℕ2 verifying N = A  B, i.e.,      

  2,     ,   X A B N A B  

and let D(N) be the set of all divisors of N. 

Consider the following mapping     

  :    X D N with   , A B A , 

which is one to one and onto. In fact, if  (A, B) =  (C, D), then A = C, which yields B = D. Thus, 

(A, B) = (C, D) and   is injective. And for each d  D(N), the pair ,
 
 
 

N
d

d
 is in X with 

  ,
 

 
 

N
d d

d
, 

which asserts that   is surjective.     

Hence     X D N N .  

Since A  B = B  A, the decompositions N = A  B and N = B  A of N with A  B are the 

same, the number of different decompositions of N as a product of two factors (including the 

trivial case when N = N  1 = 1  N) is equal to  
2 2




NX
. Consequently, the number t of the  

non-trivial different decompositions of N as a product of two factors is 

 
1 .

2


 

N
t  

Example 8. 

1. For N = 36 = 2 22 3  we have: 

                 1,36 , 36,1 , 2,18 , 18,2 3,12 , 12,3 4,9 , 9,4 , 6,6  X  

and then 1 36 2 18 3 12 4 9 6 6         N , which gives us 

    2 1 2 1 9    X N  and  
9

1 4
2

  t . 

2. For N = 4 = 22  we have :       1,4 , 4,1 , 2,2X  and then 1 4 2 2   N , which gives 

us    2 1 3   X N  and then 
3

1 1
2

  t . 

4 Conclusion     

In this paper, an alternative characterization of primality for an odd natural number greater than 

or equal to 3 is obtained using the notion of representation in sum of consecutive natural numbers. 

This notion allowed us to derive an algorithm of complexity in O(√n) slower than the classical 

sieve of Eratosthenes which is of complexity in O(n loglog n).  
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