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1 Introduction

Fermat (1601–1665) considered a sequence of numbers of the form 2m+1,wherem is of the form
2n. Since the few initial terms of this sequence yielded prime numbers successively, Fermat was
under the impression that he had really obtained a formula for primes. It was Euler (1707–1783)
who detected a flaw in the concept of Fermat when he found the divisibility of the number 232+1

by 641. Numbers of the form 22
n
+ 1 (n ≥ 0) are called the Fermat numbers.

Numbers of the form 2n − 1 are referred to as Mersenne numbers and primes of this form are
called Mersenne primes, named after Fr.Martin Mersenne (1588–1648). A necessary condition
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for the number 2n−1 to be a prime is that n shall be a prime (see, for e.g., Hardy and Wright [3]).
Brillhart [1], Brillhart and Johnson [2], Kang [4], and Kravitz [5] have presented certain results
on the divisors of Mersenne numbers. There is another type of numbers of interest. Numbers of
the form 2n + 1 are named after Lehmer, as per a reference by Ribenboim in [9]. It turns out that
Fermat numbers are particular cases of Lehmer numbers. Leyendekkers and Shannon [6] have
brought out certain remarkable properties of Mersenne and Fermat numbers.

In the sequel, it is established that certain cyclic sequences in the finite fields Fρ, with ρ a
prime, yield the divisors of Mersenne, Fermat and Lehmer numbers. The main results of this
study are contained in Theorems 2.12, 2.14, 3.1, 3.4, 4.6, 5.5, Corollary 5.4, Theorems 6.1, 7.10,
8.2 and 8.3.

2 The sequences of polynomials over Z

Notations. Let N and Z denote the sets of natural numbers and integers, respectively.

Problem of motivation. To settle the question concerning the common solutions of two Pell’s
equations, the concept of the characteristic number of two simultaneous Pell’s equations was
introduced by Mohanty and the author in [7]. A generalized version of this method was presented
by the author in [8]. Two functions viz. a(t) and b(t) were introduced in [7] as follows:
Let t be a natural number. Define a(t) = A2t−1 and b(t) = B2t−1 , where Ar + Br

√
D denotes

a solution of the Pell’s equation A2 − DB2 = 1, D being a square-free natural number. The
properties possessed by these functions was the focus of attention in [8]. These functions satisfy
the relations a(t + 1) = 2(a(t))2 − 1 and b(t + 1) = 2a(t)b(t). The first relation implies
2a(t + 1) = (2a(t))2 − 2. This property was the motivating point for the present work. As a
consequence, certain polynomial sequences in Z[x] are introduced in this section.

Definition 2.1. (The polynomial sequence {Fk(x)} in Z[x]). Define the infinite sequence {Fk(x)}
(k ≥ 1) in Z[x] as follows:

F1(x) = x and Fk+1(x) = (Fk(x))
2 − 2,∀ k ∈ N. (2.1)

Then we have

F2(x) = x2 − 2,

F3(x) = x4 − 4x2 + 2,

F4(x) = x8 − 8x6 + 20x4 − 16x2 + 2,

F5(x) = x16 − 16x14 + 104x12 − 352x10 + 660x8 − 672x6 + 336x4 − 64x2 + 2, etc.

By Eisenstein’s criterion, it follows that the Fk(x)’s are irreducible over Z for k ≥ 2.

Definition 2.2. (The polynomial sequences {Gk(x)} and {Hk(x)} in Z[x]). Define the infinite
sequences {Gk(x)} and {Hk(x)} (k ≥ 0) over Z as follows:

G0(x) = 1, H0(x) = 1,

Gk+1(x) = 1
2
{xGk(x) + (x− 2)Hk(x)},

Hk+1(x) = 1
2
{(x+ 2)Gk(x) + xHk(x)} (k ≥ 0)

. (2.2)
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Equivalently we have

G0(x) = 1, G1(x) = x− 1, Gk+2(x) = xGk+1(x)−Gk(x) (k ≥ 0), (2.3)

H0(x) = 1, H1(x) = x+ 1, Hk+2(x) = xHk+1(x)−Hk(x) (k ≥ 0). (2.4)

Definition 2.3 (Matrix of polynomials). We define a matrix with two rows contributed by the
sequences {Gk(x)} and {Hk(x)} as follows:

a(x) =

(
G0(x) G1(x) G2(x) · · ·
H0(x) H1(x) H2(x) · · ·

)
. (2.5)

2.1 Properties of the polynomial sequences

Several properties of the sequences under consideration can be established by the method of
induction. We obtain some identities.

Theorem 2.1. The following relations hold:

Hk(x)−Gk(x) = Gk−1(x) +Hk−1(x), for all k ≥ 1. (2.6)

Gm+k(x) +Hm+k(x) = Gm(x)Hk(x) +Gk(x)Hm(x), for all m, k ≥ 0. (2.7)

G2k(x) +H2k(x) = 2 Gk(x)Hk(x), for all k ≥ 0. (2.8)

2.2 Determinants of sub-matrices of a(x)

We consider determinants of 2 × 2 sub-matrices of a(x). By induction, the following property
possessed by the elements in any two successive columns of a(x) is got, using (2.3) and (2.4):

Theorem 2.2. The following results hold:∣∣∣∣∣ Gk(x) Gk+1(x)

Hk(x) Hk+1(x)

∣∣∣∣∣ = 2, ∀ k ≥ 0, (2.9)

∣∣∣∣∣ Gk(x) Gk+r(x)

Hk(x) Hk+r(x)

∣∣∣∣∣ = Gr−1(x) +Hr−1(x), ∀ k ≥ 0, r ≥ 1. (2.10)

2.3 Inter relationships among the terms of the sequences

Theorem 2.3. For all integers k ≥ 1, we have:

{Gk−1(x)}2 + {Gk(x)}2 = xGk−1(x)Gk(x)− x+ 2, (2.11)

{Hk−1(x)}2 + {Hk(x)}2 = xHk−1(x)Hk(x) + x+ 2, (2.12)

x{Gk−1(x)Hk(x) + Gk(x)Hk−1(x)} = 2{Gk−1(x)Hk−1(x) + Gk(x)Hk(x)}, (2.13)

Gk+1(x)Hk+1(x) = (x2−1)Gk(x)Hk(x)−
1

2
xk{G2k−1(x) + H2k−1(x)}, (2.14)

G2k+1(x) +H2k+1(x) = 2 x Gk(x)Hk(x)− {G2k−1(x) +H2k−1(x)} . (2.15)
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Theorem 2.4. The following relationships hold for all integers k ≥ 0:

{Gk+1(x)}2 −Gk(x)Gk+2(x) = 2− x, (2.16)

{Hk+1(x)}2 −Hk(x)Hk+2(x) = 2 + x, (2.17)

Gk(x)Hk+2(x) +Gk+2(x)Hk(x) = 2Gk+1(x)Hk+1(x), (2.18)

{Gk+1(x) +Hk+1(x)}2 − {Gk(x) +Hk(x)}{Gk+2(x) +Hk+2(x)} = 4. (2.19)

2.4 Factorization results for polynomials

By repeated application of (2.3) and (2.4), we obtain

Theorem 2.5 (Reduction formulae). For r < s, we have

Gs(x) =
1

2
{Gr(x) + Hr(x)}Gs−r(x)−

1

2
{Gr−1(x) + Hr−1(x)}Gs−r−1(x), (2.20)

Hs(x) =
1

2
{Gr(x) +Hr(x)}Hs−r(x)−

1

2
{Gr−1(x) +Hr−1(x)}Hs−r−1(x). (2.21)

Corollary 2.1. The following results hold:

G3j+1(x) =
1

2
{G2j(x) + H2j(x)}Gj+1(x)−

1

2
{G2j−1(x) + H2j−1(x)}Gj(x), (2.22)

H3j+1(x) =
1

2
{G2j(x) + H2j(x)}Hj+1(x)−

1

2
{G2j−1(x) + H2j−1(x)}Hj(x). (2.23)

Theorem 2.6 (Factorization of polynomials). For all integers j ≥ 1, we have

Gj(x) | G3j+1(x), (2.24)

Hj(x) | H3j+1(x). (2.25)

Proof. Equation (2.8) implies that 2 Gj(x) | {G2j(x) +H2j (x)}. From this result and (2.22) we
obtain (2.24). Similarly the relation (2.25) follows from (2.8) and (2.23).

Applying the reduction formulae provided by Theorem 2.5, we obtain the following:

Theorem 2.7. For all integers k, j ≥ 1, we have

G{(2j+1)k+(3j+1)}(x) =
1

2
{G2j(x) + H2j(x)}G{(2j+1)(k−1)+3j+2}(x)

−1

2
{G2j−1(x) +H2j−1(x)}G{(2j+1)(k−1)+3j+1}(x), (2.26)

H{(2j+1)k+(3j+1)}(x) =
1

2
{G2j(x) + H2j(x)}H{(2j+1)(k−1)+3j+2}(x)

−1

2
{G2j−1(x) + H2j−1(x)}H{(2j+1)(k−1)+3j+1}(x). (2.27)

By induction, we have the following theorem.
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Theorem 2.8 (Generalized result on the factorization of polynomials). For j ∈ N and k ≥ 0,

Gj(x) | G{(2j+1)k+(3j+1)}(x), (2.28)

Hj(x) | H{(2j+1)k+(3j+1)}(x). (2.29)

Theorem 2.9. It holds that

gcd{Gk−1(x), Gk(x)} = 1, ∀ k ≥ 1 (2.30)

gcd{Gk−2(x), Gk(x)} = 1, ∀ k ≥ 2 (2.31)

gcd{Hk−1(x), Hk(x)} = 1, ∀ k ≥ 1 (2.32)

gcd{Hk−2(x), Hk(x)} = 1, ∀ k ≥ 2. (2.33)

Now we consider the question: Given j ∈ N , which are the polynomials in theG(x)-sequence
(respectively, H(x)-sequence) not divisible by Gj(x) (respectively, Hj(x))? We obtain an
important result.

Theorem 2.10. The following relations hold: Gj(x) ∤ Gj+1(x), Gj+2(x), . . . , G3j(x) and
Hj(x) ∤ Hj+1(x), Hj+2(x), . . . , H3j(x), ∀j ∈ N .

Theorem 2.11. The following properties hold:

Gj(x) ∤ G{(2j+1)k+(3j+1+λ)}(x), (2.34)

Hj(x) ∤ H{(2j+1)k+(3j+1+λ)}(x) (2.35)

for all k ≥ 0 and λ = 1, 2, . . . , 2j.

Proof. Assume (2.34) for all positive integers up to λ with λ < 2j + 1. From (2.20) we have

G{(2j+1)k+(3j+2+λ)}(x) =
1

2
{Gλ(x) + Hλ(x)}G{(2j+1)k+(3j+2)}(x)

− 1

2
{Gλ−1(x) + Hλ−1(x)}G{(2j+1)k+(3j+1)}(x).

The relation (2.28) implies Gj(x) | G{(2j+1)k+(3j+1)}(x). By induction assumption, it follows that
Gj(x) ∤ G{(2j+1)k+(3j+2)}(x). Therefore, Gj(x) ∤ G{(2j+1)k+(3j+2+λ)}(x). This proves (2.34).
Similarly one can prove (2.35).

Divisibility among odd numbers is transformed into an equivalent problem of divisibility
among G(x)-polynomials or H(x)-polynomials as follows:

Theorem 2.12. The following statements are equivalent:

(a) 2j + 1 | 2m+ 1,

(b) Gj(x) | Gm(x),

(c) Hj(x) | Hm(x), ∀ j,m > 0.

Proof. Assume (a) holds. Then there exists an odd integer 2s+1 such that

2m+ 1 = (2j + 1)(2s+ 1). (2.36)

This relation gives m = 2js + j + s = (2j + 1)(s − 1) + (3j + 1). So m is of the form
(2j + 1)k + (2j + 1) with k = s− 1 ≥ 0. This implies that Gj(x) | Gm(x). Thus (a)⇒ (b).
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Next, assume (b) holds. Then, by Theorem 2.8, Gj(x) | G{(2j+1)k+(3j+1)}(x), ∀k ≥ 0 and by
Theorem 2.11, Gj(x) ∤ G{(2j+1)k+(3j+1+λ)}(x),∀k ≥ 0 and λ = 1, 2, ..., 2j. So m = (2j+1)k+

(3j + 1) for some integer k. This yields 2m + 1 = 4jk + 2k + 6j + 3 = (2j + 1)(2s + 1) with
s = k + 1. Hence 2j + 1 | 2m+ 1. Thus (b)⇒ (a). Similarly we check that (a)⇔ (c).

2.5 Arithmetic progressions

Theorem 2.13. The sequences {Gk(x)} and {Hk(x)} of polynomials over Z contain infinite
number of infinite sub-sequences, the subscripts of the terms of which are in arithmetic progression,
with non-trivial common factors.

Example 2.1. We haveG1(x) | G4(x), G7(x), G10(x), . . . andH1(x) | H4(x), H7(x), H10(x), . . ..
Since G1(x) = x− 1 and H1(x) = x+ 1, it is seen that x− 1 | Gj(x) and x+ 1 | Hj(x) for all
j ≡ 1 (mod 3).

Theorem 2.14. If 2m + 1 is a prime ≥ 5, then there do not exist Gj(x) and Hj(x) such that
0 < j < m and Gj(x) | Gm(x) or Hj(x) | Hm(x).

Proof. Suppose Gj(x) | Gm(x). Then 2j +1 | 2m+1. Since 2m+1 is a prime, 2j +1 is either
1 or 2m+ 1. So j is either 0 or m. This implies Gj(x) is 1 or Gm(x), a contradiction. Similar is
the case if Hj(x) | Hm(x).

As a consequence of the foregoing discussion, it follows that the only possibilities of the
divisors of the polynomials Gm(x) and Hm(x) are as provided by Theorem 2.12.

2.6 Products and quotients of polynomials

Theorem 2.15. If Gi(x) and Gj(x) ∈ {Gk(x)}, then Gi(x)Gj(x) ̸∈ {Gk(x)}. If Hi(x) and
Hj(x) ∈ {Hk(x)}, then Hi(x)Hj(x) ̸∈ {Hk(x)}.

Proof. The leading coefficient and the coefficient of xk−1 in Gk(x) are 1 and −1, respectively.
The coefficient of xi+j−1 in Gi(x)Gj(x) is −2. Consequently Gi(x)Gj(x) ̸∈ {Gk(x)}. The
leading coefficient and the coefficient of xk−1 in Hk(x) are both 1. The coefficient of xi+j−1 in
Hi(x)Hj(x) is 2. Therefore, Hi(x)Hj(x) ̸∈ Hk(x)}.

For j ∈ N and k ≥ 0, by Theorem 2.8 we have Gj(x) | G{(2j+1)k+(3j+1)}(x) and Hj(x) |
H{(2j+1)k+(3j+1)}(x). As a consequence of Theorem 2.15, we obtain the following result:

Theorem 2.16. The quotient polynomials
G(2j+1)k+3j+1(x)

Gj(x)
and

H(2j+1)k+3j+1(x)

Hj(x)
̸∈ {Gk(x)} and

{Hk(x)}, respectively.

2.7 Satellite polynomials

Let us consider Gm(x) and Hm(x), where 2m + 1 is a composite number. The result contained
in Theorem 2.16 leads to the following.
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Definition 2.4 (Satellite polynomial). A polynomial p(x)∈Z[x] is said to be a satellite polynomial
for Gj(x) if p(x) | Gj(x) but p(x) ̸∈ {Gk(x)}. A polynomial q(x) ∈ Z[x] is said to be a satellite
polynomial for Hj(x) if q(x) | Hj(x) but q(x) ̸∈ {Hk(x)} .

Example 2.2. The polynomial p(x) = x3 − 3x− 1 | G4(x) but p(x) ̸∈ {Gk(x)}. Therefore p(x)
is a satellite polynomial f or G4(x).
The polynomial q(x) = x3 − 3x + 1 | H4(x) but q(x) ̸∈ {Hk(x)}. Therefore q(x) is a satellite
polynomial for H4(x).

As a consequence of Theorems 2.12 and 2.16, we have

Theorem 2.17. When 2m+1 is composite, Gm(x) (respectively, Hm(x)) is a product of at least
one polynomial in {Gk(x)} (resp. {Hk(x)}) and at least one satellite polynomial.

3 TheM -sequences and cycles in the field Fρ
The polynomial sequences {Fk(x)}, {Gk(x)} and {Hk(x)} in Z[x] have been introduced in
Section 2. It would be worthwhile to determine the interplay among the values assumed by
these sequences in a finite field. We deal with the first sequence in this section and the other two
sequences will be taken up in the next section.

Definition 3.1 (The sequence {Mk} in Fρ). Let ρ be given odd prime. Consider the field
Fρ = {0, 1, . . . , ρ − 1}. Choose any element M ∈ Fρ and fix it. Define the infinite sequence
{Mk} in Fρ as follows:

Mk = Fk(M) (k ≥ 1), (3.1)

where F is defined by (2.1) and each Mk is reduced modulo ρ.

We have M1 =M,M2 =M2− 2,M3 =M4− 4M2 +2, etc. Thus the terms of the sequence
{Mk} are polynomial expressions in M with coefficients from Fρ. The sequence {Mk} will be
referred to as the M -sequence in Fρ.

Definition 3.2 (Stationary M -sequences in Fρ). We call the two sequences 2 → 2 → 2 → · · ·
and −1→ −1→ −1→ · · · as stationary M -sequences in Fρ.

In the case of ρ = 3, the two sequences become identical. Let us assume ρ > 3 so that the
two sequences are distinct.

Definition 3.3 (Singular and non-singular sequences). We refer to the sequence 2 → 2 → 2 →
· · · as singular and the sequence −1→ −1→ −1→ · · · as non-singular in Fρ.

This terminology is used in the sense that the latter sequence possesses a property in common
with some other non-stationary M -sequence in Fρ as would be seen in the course of subsequent
development of the theory.

If we start with M =0, 2 or −2, we end up with the stationary M -sequence 2→2→2→· · · .
If we take M = 1 or −1, we obtain the stationary M -sequence −1→ −1→ −1→ · · · .
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Hence, in order to obtain non-stationary M -sequences in Fρ, we have to exclude the values
M = 0,±1,±2. Suppose M ∈ Fρ such that M ̸= 0,±1,±2. If M2 = 2, then we get the
stationary M -sequence M → 0 → −2 → −2 → −2 → · · · and if M2 = 3, then there results
the stationary M -sequence M → 1 → −1 → −1 → −1 → · · · . So, a necessary condition
for getting a non-stationary M -sequence in Fρ is that M ̸= 0,±1,±2 and M2 ̸= 2, 3. However,
the restrictions M ̸= 0,±1,±2 and M2 ̸= 2, 3 are not sufficient to produce a non-stationary
M -sequence in Fρ as illustrated by the following.

Example 3.1. For ρ = 17 and M = 5, we get the sequence 5→ 6→ 0→ −2→ 2→ 2→ · · · .

Theorem 3.1 (Necessary and sufficient condition). Given M ∈ Fρ, let Mk be a general term of
the M -sequence in Fρ. A necessary and sufficient condition for the M -sequence to be
non-stationary is that M ̸= 0,±1,±2 and M2

k ̸= 2, 3, ∀ k ∈ N .

Proof. We establish the sufficiency of the condition. Assume that M ̸= 0,±1,±2 and
M2

k ̸= 2, 3,∀k ∈ N . These conditions imply that M2 = M2
1 − 2 ̸= 0,±1,±2. Similarly we

check that Mk ̸= 0,±1,±2,∀ k ≥ 3. Hence the M -sequence is non-stationary.

Restriction on ρ: The conditions M ̸= 0,±1,±2 and M2
k ̸= 2, 3,∀ k ∈ N , imply that we

have to choose ρ ≥ 11, in order to obtain a non-stationary M -sequence in Fρ.
Notation: Let (p

q
) denote the Jacobi symbol. In view of Theorem 3.1, if either of (2

ρ
) , (3

ρ
) is

+1, then we have to exclude M ∈ Fρ with the property M2 = 2 or 3, so as to get a non-stationary
M -sequence.

Theorem 3.2. If M ∈ Fρ − {0,±1,±2} and M2 ̸∈ {2, 3}, then M2 is different from both M1

and M3.

Proof. Clearly, M2 ̸=0,±1,±2. If M2=M1, then we have M−2=M . i.e., (M +1)(M − 2)=0.
This implies that M = −1 or 2, which is a contradiction. Hence M2 ̸= M1. Next, if M2 = M3 ,
then we must have M4 − 4M2 + 2 = M2 − 2. i.e., (M2 − 1)(M2 − 4) = 0. This implies that
M = ±1, ±2, again a contradiction. So M2 ̸=M3.

Definition 3.4 (Cycle-contributing element). An elementM ∈ Fρ is said to be a cycle-contributing
element if the sequence {Mk (mod ρ)} contains a cycle as follows: M = M1 → M2 → · · · →
Mj →Mj+1 → · · · →Mj → · · · , where Mj+1 ̸=Mj for some j ∈ N .

Definition 3.5 (Cycle-forming element). An element M ∈ Fρ is said to be a cycle-forming
element if the sequence {Mk (mod ρ)} contains a cycle as follows: M = M1 → M2 → M3 →
· · · →M1 → · · · , where M2 ̸=M1.

Definition 3.6 (In-cycle element). A cycle-forming element in Fρ is called an in-cycle element.

Definition 3.7 (Ex-cycle element). A cycle-contributing element but not cycle-forming element
in Fρ is called an ex-cycle element.

Theorem 3.3. If M is an in-cycle or ex-cycle element in Fρ, then −M is an ex-cycle element.

Definition 3.8 (M -cycle). If M is an in-cycle element in Fρ, then a cycle beginning with M and
ending with M is called an M -cycle and the numbers in the cycle are called its elements.
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Definition 3.9 (Background prime). If M is an in-cycle element in Fρ, we refer to ρ as the
background prime for the M -cycle.

Definition 3.10 (Length of an M−cycle). Consider an M -sequence (mod ρ) containing a cycle
M = M1 → M2 → · · ·→M j → Mj+1 → · · · . If n is the smallest natural number such that
Mn+1 =M1 then we say that the M -sequence has period n and the cycle has length n.

The following result lays the foundation for the major results in the later sections.

Theorem 3.4 (Existence of M -cycle in Fρ). If ρ is an odd prime ≥ 11, then there exists at least
one M -cycle of length ≥ 2 in Fρ.
Proof. We provide a construction proof. First consider the case when (2

ρ
) = +1 and (3

ρ
) = +1.

Working backwards with the sequence 2 → 2 → 2 → · · · , consider the predecessor elements.
There exist elements a1, a2, . . . , ar ∈ Fρ such that a1 → a2 → · · · → ar → ar+1 =

0 → ar+2 = 2 → 2 → 2 → · · · for some index r. This implies that a2r ≡ 2(mod ρ). Since
ar = a2r−1 − 2, it follows that ar + 2 is expressible as a square in Fρ. Similarly, each one of
ar−1+2, ar−2+2, . . . , a1+2 is a quadratic residue modulo ρ.However, since there exist quadratic
non-residues modulo ρ, the predecessor elements in the above sequence cannot exhaust all the
elements of Fρ. A similar observation applies to the sequence −1 → −1 → −1 → · · · . Take
an element b1 ∈ Fρ, not exhausted by the predecessor elements of the two stationary sequences
in Fρ. Then b1 ̸≡ 0,±1,±2 and b21 ̸≡ 2, 3 (mod ρ). Consider the sequence b1 → b2 → b3 →
· · · → bk−1 → bk → · · · , where bk = b2k−1 − 2, for all k ≥ 2. We check that b2k ̸≡ 2, 3 (mod ρ)

for all k ≥ 2. By Theorem 3.2, b2 ̸= b1 and b2 ̸= b3. Since Fρ has exactly ρ elements, it follows
that there exist integers k ̸= j such that bk = bj. Thus the above sequence is non-stationary and
it contains a cycle of length ≥ 2. A similar proof applies when only one or none of (2

ρ
), (3

ρ
) is

+1.

Theorem 3.5 (Uniqueness of M -cycle and its length in Fρ). For an M -cycle element in Fρ,
(i) the M -cycle in which it occurs is unique.

(ii) the length of the M -cycle in which it occurs is unique.

4 The sequences {θt,k} and {ψt,k} in the field Fρ
In this section, we introduce two sequences in the field Fρ and establish their properties.

4.1 M -cycle through a parameter

Let ρ be a given odd prime≥ 11. In order to identify the relationship that anM -cycle has with the
values assumed by the sequences {Gk(x)} and {Hk(x)} in Fρ, the introduction of a parameter
becomes necessary. We consider a non-stationary M -cycle in Fρ attached with a parameter t.
Choose any in-cycle element M(t) ∈ Fρ. Then M(t) ̸= 0,±1,±2. By our assumption, the
resulting cycle in Fρ has a period n ≥ 2. Denote the cycle by M1 → M2 → · · · → Mn →
Mn+1 =M1 → · · · , where M1 =M(t),M2 =M(t+1) =M2

1 − 2, . . . ,Mn =M(t+n− 1) =

M2
n−1 − 2 and

Mn+1 =M(t+ n) =M2
n − 2 =M(t) =M1. (4.1)
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Example 4.1. Consider ρ = 65537. We see that ( 989
65537

) = 1. On computation, we obtain 13552 =

1836025 ≡ 989 (mod 65537). Hence 13552 − 2 ≡ 987 (mod 65537). Choosing M1 =M(t) =

987, we get the cycleM(t)→M(t+1)→ · · · →M(t+14)→M(t+15) =M(t) in the field Fρ
with the explicit expression 987 → 56649 → 24457 → 54185 → 22160 → 62394 → 47897 →
65459→ 6082→ 27854→ 18308→ 26644→ 5950→ 12518→ 1355→ 987→ · · ·

Definition 4.1 (The sequences {θt,k}, {ψt,k}). Define the infinite sequences {θt,k} and {ψt,k}
(k ≥ 0) in Fρ as follows:

θt,k = the least non-negative residue of Gk (M(t)) (mod ρ)

ψt,k = the least non-negative residue of Hk (M(t)) (mod ρ)

}
(4.2)

where G and H are defined by (2.2), (2.3) or (2.4). Considering (2.5), we define the matrix
a(M(t)) with elements from Fρ as follows:

a(M(t)) =

[
θt,0 θt,1 θt,2 · · ·
ψt,0 ψt,1 ψt,2 · · ·

]
(4.3)

4.2 Cyclic nature of the sequence {θt,k}

To establish the cyclic nature of the θt,k-sequence, we require a relationship between M(t) and
M(t− 1) through the terms of the θt,k-sequence. This crucial relationship is presented below.

Theorem 4.1. The following relation holds in Fρ:

M(t)θt+1,k = {M(t− 1)}2 θ2t,k − 2, ∀ k ≥ 0. (4.4)

Proof. The relation (4.4) holds for k = 0. Assume (4.4) for all positive integers up to k. In view of
(2.11), we have {θt,k−1}2+{θt,k}2 =M(t)θt,k−1θt,k−M(t)+2. UsingM(t)−2 = {M(t−1)}2−4
in the above relation, we obtain {θt,k−1}2 + {θt,k}2 + {M(t− 1)}2 − 4 =M(t)θt,k−1θt,k.

Multiplying both sides by 2{M(t− 1)}2 and using the relation

{M(t)}2 = {M(t− 1)}4 − 4{M(t− 1)}2 + 4,

we get

2{M(t− 1)}2{θt,k−1}2 +2{M(t− 1)}2{θt,k}2 +2{M(t)}2 = 2{M(t− 1)}2M(t)θt,k−1θt,k +8.

Adding {M(t− 1)M(t)θt,k}2 to both sides, we get

{M(t− 1)}2{(M(t))2(θt,k)
2 − 2M(t)θt,k−1θt,k + (θt,k−1)

2} − 2

= {M(t− 1)}2{(M(t))2 − 2}{θt,k}2 − {M(t− 1)}2 (θt,k−1)
2 − 2{(M(t))2 − 2}+ 2.

Using induction assumption, we obtain

{M(t− 1)}2{M(t)θt,k − θt,k−1}2 − 2

=M(t+ 1){M(t)θt+1,k + 2} − {M(t)θt+1,k−1 + 2} − 2M(t+ 1) + 2

=M(t){M(t+ 1)θt+1,k − θt+1,k−1},

i.e., {M(t− 1)}2{θt,k+1}2 − 2 =M(t)θt+1,k+1.

Hence the relation (4.4) follows by induction on k.
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In order to derive the properties of the M(t)-cycles, we need two important transformations.
The first to be introduced is the following.

Definition 4.2 (The transformation τt). With respect to the M(t)-cycle under consideration,
define τt : Fρ → Fρ by the rule

τt(α) =
M(t− 1)2α2 − 2

M(t)
(4.5)

∀ α ∈ Fρ, where 1

M(t)
is the multiplicative inverse of M(t) in Fρ.

Theorem 4.2 (Cyclic nature of θt,k as a function of t). The following relation holds for all k ≥ 0 :

τt(θt,k) = θt+1,k. (4.6)

Proof. Follows from the relation (4.4).

Corresponding to the cycle M(t) =M1 rightarrowM2 → · · · →Mn →Mn+1 =M1 in Fρ,
we obtain the cycle θt,j → θt+1,j → · · · → θt+n−1,j → θt+n,j = θt,j, ∀ j ≥ 0.

Theorem 4.3. The {θt,k (mod ρ)}-sequence never attains the value of 0 or −1.

Proof. If possible, suppose that there exists a natural number j such that θt,j = 0. Using Theorem
4.2 successively, we get

θt+1,j = −
2

M(t)
, θt+2,j =

2

M(t+ 1)
, . . . , θt+n,j =

2

M(t+ n− 1)
.

So the cycle θt,j → θt+1,j → · · · → θt+n,j becomes 0 → − 2
M(t)

→ 2
M(t+1)

→ · · · →
2

M(t+n−1)
. However, 2

M(t+n−1)
̸= 0. Therefore, θt+n,j ̸= θt,j , which is a contradiction.

Consequently, θt,j ̸= 0, ∀j ≥ 0. Next, suppose that there exists some s ∈ N such that
θt,s = −1. Then the cycle θt,s → θt+1,s → · · · → θt+n,s becomes −1→ 1→ 1→ · · · → 1. This
implies that θt+n,s ̸= θt,s, which is a contradiction. The proof is now complete.

4.3 Cyclic nature of {ψt,k}-sequence as a function of t

Theorem 4.4. The following relation holds:

θt,kψt,k = ψt+1,k, ∀ k ≥ 0. (4.7)

Proof. The result is true for k = 0. Assume (4.7) for all integers up to k. Using (2.3) and (2.4)
we obtain θt,k+1ψt,k+1 = {M(t)θt,k − θt,k−1}{M(t)ψt,k − ψt,k−1}. In view of the relation (2.13),
we get

θt,k+1ψt,k+1 = {M(t)}2θt,kψt,k − 2(θt,k−1ψt,k−1 + θt,kψt,k) + θt,k−1ψt,k−1

= {M(t)2 − 2}θt,kψt,k − θt,k−1ψt,k−1.

Using induction hypothesis, we obtain θt,k+1ψt,k+1 =M(t+1)ψt+1,k −ψt+1,k−1. Because of the
relation (2.3), we get θt,k+1ψt,k+1 = ψt+1,k+1. Hence (4.7) holds by induction on k.
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The second tool required is the following.

Definition 4.3 (The transformation σt). Define σt : Fρ × Fρ → Fρ by the rule

σt(α, β) = αβ, ∀ α, β ∈ Fρ. (4.8)

Theorem 4.5. The following property holds:

σt(θt,k, ψt,k) = ψt+1,k, ∀ k ≥ 0. (4.9)

Proof. Follows from the relation (4.7).

Corresponding to the cycle M(t) = M1 → M2 → · · · → Mn → Mn+1 = M1 in Fρ, we
obtain the cycle ψt,j → ψt+1,j → · · · → ψt+n−1,j → ψt+n,j = ψt,j , ∀ j ≥ 0.

Theorem 4.6. Let t be varying. For each fixed k, the cyclic sequences {θt,k (mod ρ)} and
{ψt,k (mod ρ)} as functions of t are periodic with the same period as that of the cycle
M1 →M2 → · · · →Mn →Mn+1 =M1.

Proof. Follows from the relations (2.3), (2.4), (4.1), (4.6) and (4.9).

Example 4.2. Consider ρ = 26879. We have (12935
26879

) = 1. Take M1 = M(t) = 12933. We have
the M -cycle 12933 → 21349 → 19475 → 12933 → · · · with period 3. Next take M2 = 21349

and M3 = 19475. Corresponding to Mi (i = 1, 2, 3), we construct Table 4.1 consisting of the
terms of the sequences θt,k and ψt,k (mod 26879), using (2.2) or equivalently (2.3) and (2.4).
The table consists of three parts contributed by the values of M ′

is.

Table 4.1. M -cycles in F26879

k 0 1 2 3 4 5 6 7 8 · · ·
θt,k 1 12932 8417 11058 8417 12932 1 1 12932 · · ·
ψt,k 1 12934 7404 0 19475 13945 26878 1 12934 · · ·
k 0 1 2 3 4 5 6 7 8 · · ·
θt,k 1 21348 25006 14806 25006 21348 1 1 21348 · · ·
ψt,k 1 21350 13946 0 12933 5529 26878 1 21350 · · ·
k 0 1 2 3 4 5 6 7 8 · · ·
θt,k 1 19474 20338 1011 20338 19474 1 1 19474 · · ·
ψt,k 1 19476 5530 0 21349 7403 26878 1 19476 · · ·

As a consequence of the cyclic nature of θt,k and ψt,k as functions of t, starting with any one
part of the above table, we can construct the other two parts of the table.

5 Structure of {θt,k} and {ψt,k}-sequences in the field Fρ
In this section, we exhibit how the θt,k and ψt,k-sequences, considered as functions of t, can be
split into several identical parts and determine the structure of such parts in Fρ.
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Definition 5.1. (Neighboring elements and neighboring region). Let t be fixed. For θt,k
(respectively, ψt,k), we say that the neighboring elements are θt,k−1 and θt,k+1 (respectively, Ψt,k−1

and ψt,k). For given t, any three consecutive elements in the θt,k (respectively, ψt,k)-sequence
constitute a neighboring region with respect to the middle element among them.

5.1 Properties of the neighboring elements in {θt,k(mod ρ)}
and {ψt,k(mod ρ)}-sequences

Theorem 5.1. If the relation
θt,j = θt,j+1 (mod ρ) (5.1)

holds for some integer j, then

θt,j = 1 and ψt,j+1 = ψt,j + 2 (mod ρ). (5.2)

Proof. Suppose (5.1) holds for some integer j. Using Theorem 2.2 and the relation (5.1) we have
θt,j(ψt,j+1−ψt,j) = 2. In view of the relation (2.6), we obtain ψt,j+1 = ψt,j+2θt,j. Consequently
we get

θt,j = ±1. (5.3)

However, by Theorem 4.4, the − sign cannot hold in (5.3). So ψt,j+1 = ψt,j + 2.

Corollary 5.1. There does not exist an integer j such that
θt,j = θt,j+1 (mod ρ) and ψt,j = ψt,j+1 (mod ρ).

Theorem 5.2. If the relation
θt,j = ψt,j (mod ρ) (5.4)

holds for some positive integer j, then θt,j = 1, θt,j−1 = 1 and ψt,j−1 = −1.

Proof. Assume (5.4) holds for some j > 0. Then, because of the relation (2.6), we have
ψt,j+1 = 2θt,j + θt,j+1. In view of Theorem 2.2, we obtain θ2t,j = 1. This implies that

θt,j−1 − ψt,j−1 = 2. (5.5)

However, in view of Theorem 2.1 we have

θt,j−1 + ψt,j−1 = ψt,j − θt,j = 0. (5.6)

Solving the equations (5.5) and (5.6), we obtain θt,j−1 = 1 and ψt,j−1 = − 1.

5.2 Method of finding successor and predecessor elements

We consider the forward movement in {θt,k ( mod ρ)} and {ψt,k ( mod ρ)}-sequences. i.e., θt,r →
θt,r+1 → · · · and ψt,r → ψt,r+1 → · · · (mod ρ). We obtain the formulae

θt,r+1 =
(ψt,r + θt,r)θt,r − 2

ψt,r − θt,r
. (5.7)

and

ψt,r+1 =
(ψt,r + θt,r)ψt,r − 2

ψt,r − θt,r
, provided θt,r ̸≡ ψt,r (mod ρ). (5.8)
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Next we consider the backward movement in {θt,k (mod ρ)} and {ψt,k (mod ρ)}-sequences.
i.e., · · · ← θt,r−1 ← θt,r and · · · ← ψt,r−1 ← ψt,r(mod ρ). We have

θt,r−1 =
(ψt,r − θt,r)θt,r + 2

θt,r + ψt,r
(5.9)

and

ψt,r−1 =
(ψt,r − θt,r)ψt,r − 2

θt,r + ψt,r
, provided θt,r + ψt,r ̸≡ 0 (mod ρ). (5.10)

5.3 Symmetric and skew-symmetric properties

Definition 5.2 (Subsets of a sequence with symmetric or skew-symmetric property). Consider
two distinct sets with the same cardinality consisting of consecutive elements from a sequence
{Sn} (mod ρ). Let them be {Sk, Sk+1, . . . , Sk+r−1} and {Sh−r+1, . . . , Sh−1, Sh}. We impose the
condition h ≥ k + 2r − 2 so that the first set can be referred to as the set in the left side and
the second set can be referred to as the set in the right side. We say that the two sets possess
symmetric property if

Sk = Sh, Sk+1 = Sh−1, . . . Sk+r−1 = Sh−r+1. (5.11)

We say that the two sets have skew-symmetric property if

Sk = −Sh, Sk+1 = −Sh−1, Sk+r−1 = −Sh−r+1. (5.12)

Using (2.3) and (2.4) we obtain the following theorem.

Theorem 5.3 (Extension of symmetric and skew-symmetric sets). Suppose there are two distinct
pairs of consecutive elements in {θt,k (mod ρ)}-sequence with symmetric property. Suppose
the elements in the corresponding positions of {ψt,k ( mod ρ)}-sequence possess skew-symmetric
property. Then the cardinalities of these sets can be increased by 1, still maintaining the symmetric
and skew-symmetric properties of the respective sets, with the inclusion of the successor elements
in the forward movements of the left side sets and the predecessor elements in the backward
movements of the right side sets.

By induction, we have the following corollary.

Corollary 5.2. Under the assumptions of Theorem 5.3, the cardinalities of the left side sets and
the right side sets can be increased by any desired natural number, still maintaining the symmetric
and skew-symmetric properties of the respective sets, with the inclusion of the successor elements
in the forward movements of the left side sets and the predecessor elements in the backward
movements of the right side sets.

5.4 Existence of identical parts

Because of the finiteness of Fρ, there exist two positive integers r > j such that

θt,r = θt,j and ψt,r = ψt,j. (5.13)

Without loss of generality, we may assume that r is the smallest positive integer > j satisfying
(5.13). Modulo ρ, we see that θt,j + ψt,j and −θt,j cannot both be 0 simultaneously. So we can
apply either (5.7), (5.8) or (5.9), (5.10).
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With forward and backward movements around θt,j and ψt,j , one obtains the elements in the
{θt,k (mod ρ)} and {ψt,k (mod ρ)}-sequences as in (5.14)[

. . . 1 1 · · · θt,j−1 θt,j θt,j+1 . . . 1 1 · · ·
· · · −1 1 . . . ψt,j−1 ψt,j ψt,j+1 · · · −1 1 · · ·

]
(5.14)

Similarly movements around θt,r and ψt,r yield the elements in the {θt,k (mod ρ)} and
{ψt,k (mod ρ)}-sequences as in (5.15):[

· · · 1 1 . . . θt,r−1 θt,r θt,r+1 · · · 1 1 · · ·
· · · −1 1 · · · ψt,r−1 ψt,r ψt,r+1 · · · −1 1 . . .

]
(5.15)

The minimality of r implies that the sub-matrix

[
1 1

−1 1

]
of a(M(t)) succeeding the elements

θt,j and ψt,j cannot be the one other than the sub-matrix

[
1 1

−1 1

]
of a(M(t)) preceding the

elements θt,r and ψt,r. The elements have the property θt,j−1 = θt,r−1, ψt,j−1 = ψt,r−1, θt,j = θt,r,

ψt,j = ψt,r and θt,j+1 = θt,r+1,, ψt,j+1 = ψt,r+1. Applying the forward and backward movements
around θt,j , ψt,j , θt,r, ψt,r, we see that each sequence contains two identical parts constituted by
the elements in (5.14) and (5.15).

Definition 5.3 (Compartments of a(M(t))). The sub-matrix with 2 rows of a(M(t)), starting with
1 and ending with the next immediate 1 in the θt,k (mod ρ)-sequence and starting with 1 and
terminating with the next immediate − 1 in the ψt,k (mod ρ)-sequence is called a compartment
of the matrix a(M(t)). Given t, it follows that any two compartments in a(M(t)) have the same
number of elements in the θt,k-sequence as well as the ψt,k-sequence. Let C1(t) denote the first
compartment of a(M(t)). We call C1(t) the principal compartment in a(M(t)).

Theorem 5.4 (Nature of the compartment C1(t)). Given t, the number of elements of θt,k and
ψt,k-sequences in the compartment C1(t) cannot be even.

5.5 Existence of symmetric and skew-symmetric properties

An important characteristic of the θt,k (mod ρ)-sequence is the symmetric property while that
of the ψt,k (mod ρ)-sequence is the skew-symmetric property, as established in the sequel. For
a given t, it follows from Theorem 5.4 that the number of elements in C1(t) of θt,k (mod ρ) as
well as ψt,k (mod ρ)-sequences is odd. We denote this number by 2ω + 1. We have θt,0 = 1,
θt,1 =M(t)− 1, θt,2ω = 1, ψt,0 = 1, ψt,1 =M(t) + 1, ψt,2ω = −1.

From the relation θt,2ω+1 = M(t)θt,2ω − θt,2ω−1, we obtain θt,2ω−1 = M(t) − 1. It is seen
that θt,2ω−1 = θt,1 and θt,2ω−1 = −ψt,1. As a consequence of Corollary 5.2, it follows that the
subsets {θt,0, θt,1, . . . , θt,ω−1} and {θt,ω+1, θt,ω+2, . . . , θt,2ω+1} have symmetric property about
the middlemost element θt,ω while the subsets {ψt,0, ψt,1, . . . , ψt,ω−1} and {ψt,ω+1, ψt,ω+2, . . . ,

ψt,2ω+1} possess skew-symmetric property about the middlemost element ψt,ω.
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Theorem 5.5 (Effect of the transformations). The symmetric and skew-symmetric properties of
{θt,k (mod ρ)} and {ψt,k (mod ρ)}-sequences are preserved under the transformations τt and
σt, respectively.

Proof. Assume h ≥ j + 2. Suppose the subsets {θt,j, θt,j+1} and {θt,h−1, θt,h} in C1(t) have
symmetric property. Then we have θt,j = θt,h and θt,j+1 = θt,h−1. Consequently τt (θt,j) = τt (θt,h)
and τt (θt,j+1) = τt (θt,h−1). By Theorem 4.2, we obtain θt+1,j = θt+1,h and θt+1,j+1 = θt+1,h−1.

i.e., the subsets {θt+1,j, θt+1,j+1} and {θt+1,h−1,θt+1,h} in C1(t+ 1) have symmetric property.
Next suppose that s ≥ r + 2 and the subsets {ψt,r, ψt,r+1} and {ψt,s−1, ψt,s} in C1(t) have

skew-symmetric property. Then ψt,r = −ψt,s and ψt,r+1 = −ψt,s−1. Since the corresponding
elements in the θt,k (mod ρ)-sequence possess symmetric property, we get θt,r = θt,s and
θt,r+1 = θt,s−1.

Application of Theorem 4.5 yields ψt+1,r = σt(θt,r, ψt,r) = σt(θt,s,−ψt,s) = −σt(θt,s, ψt,s) =
−ψt+1,s andψt+1,r+1 = σt(θt,r+1, ψt,r+1) = σt(θt,s−1,−ψt,s−1) = −σt(θt,s−1, ψt,s−1) = −ψt+1,s−1.

Therefore, the subsets {ψt+1,r, ψt+1,r+1} and {ψt+1,s−1, ψt+1,s} in C1(t+1) possess skew-symmetric
property. By Corollary 5.2, the symmetric and skew-symmetric sets with two elements each can
be extended further. This completes the proof.

5.6 Determination of the middlemost elements in the rows of C1(t)

Now we take up an important requirement in our study, namely the determination of the middlemost
elements in the compartments. Around the middlemost elements in the rows of C1(t), we have

θt,ω−1 = θt,ω+1 (5.16)

and
ψt,ω−1 = −ψt,ω+1. (5.17)

By Theorem 2.1, we have
ψt,ω+1 − θt,ω+1 = θt,ω + ψt,ω. (5.18)

Using (5.16) and (5.17), we obtain

ψt,ω−1 + θt,ω−1 = −(θt,ω + ψt,ω). (5.19)

Again by Theorem 2.1, we have

ψt,ω − θt,ω = θt,ω−1 + ψt,ω−1. (5.20)

Using (5.19), we obtain
ψt,ω − θt,ω = −(θt,ω + ψt,ω).

This gives the result
ψt,ω = 0 (5.21)

which plays a crucial role in the further development of our method of cyclic sequences. Applying
Theorem 2.2 we obtain θt,ωψt,ω+1 = 2. This implies ψt,ω+1 ̸= 0 and hence we have

θt,ω =
2

ψt,ω+1

(5.22)

where 1

ψt,ω+1
is the multiplicative inverse of ψt,ω+1 in Fρ.
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From (2.3), we obtain θt,ω+1 =M(t)θt,ω − θt,ω−1.

Using (5.16), we get θt,ω+1 =M(t)θt,ω − θt,ω+1. So we have 2 θt,ω+1 =M(t)θt,ω.
Because of (5.22) we have

θt,ω+1 =
M(t)

ψt,ω+1

. (5.23)

The relations (5.18) and (5.21) give ψt,ω+1 = θt,ω + θt,ω+1. Using (5.22) and (5.23), we obtain
ψt,ω+1 = 2

ψt,ω+1
+ M(t)

ψt,ω+1
. Therefore, ψ2

t,ω+1 = {M(t− 1)}2. This gives ψt,ω+1 = ±M(t −
1). In view of this result, the relations (5.22) and (5.23) yield θt,ω = ± 2

M(t−1)
and θt,ω+1 =

± M(t)
M(t−1).

We assert that the - sign cannot hold in the expression for θt,ω. If θt,k = − 2
M(t−1)

then
from Theorem 4.2 we have θt+1,ω = τt(θt,ω) = 2

M(t)
, · · ··, θt+n,ω = 2

M(t−1)
̸= θt,ω which is a

contradiction. Thus our assertion holds. Hence we have

θt,ω =
2

M(t− 1)
. (5.24)

It follows that θt,ω+1 =
M(t)
M(t−1)

and ψt,ω+1 =M(t− 1). Thus we obtain the following elements in
the θt,k (mod ρ) and ψt,k (mod ρ)-sequences, corresponding to k = ω − 1, ω and ω + 1 as
shown in Table 5.1.

Table 5.1. Values at ω − 1, ω and ω + 1

k · · · ω − 1 ω ω + 1

θt,k · · · M(t)
M(t−1)

2
M(t−1)

M(t)
M(t−1)

ψt,k · · · −M(t− 1) 0 M(t− 1)

5.7 Uniqueness of the middlemost entries in the rows of C1(t)

One can establish that there does not exist a positive integer j ̸= ω such that

θt,j =
2

M(t− 1)
(5.25)

in C1(t). The proof is by contradiction, employing Theorem 2.2 and the method described earlier
for the determination of the neighboring elements. Thus we obtain the following result.

Theorem 5.6. The middlemost positions in each compartment of a(M(t)) are occupied by the
values of 2

M(t−1)
and 0 in the first and second rows, respectively and these values are not attained

at any other places in the concerned compartment.

The following distinguishing characteristic emerges:

Remark 5.1. It is seen that Theorems 4.3 and 5.6 bring out the distinguishing feature of θt,k (mod ρ)
and ψt,k (mod ρ)-sequences, namely that the θt,k-sequence never attains the value of 0 whereas
the ψt,k-sequence attains zero exactly once in each compartment of a(M(t)).

Remark 5.2. Given M(t), it follows from equation (5.21) that ω is the smallest positive integer
such that ψt,ω attains the value of zero in Fρ.

Definition 5.4 (Pivotal elements in C1(t)). The pair of middlemost entries in the first and second
rows of C1(t) are referred to as the pivotal elements of C1(t). The middlemost position in the first
or the second row of C1(t) is called the pivotal position of C1(t).
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Theorem 5.7. For theM -cycle given by (4.1), all the C1(t)-compartments in the matrix a(t) have
the same pair of pivotal elements, for all the positive integral values of t.

Proof. For a given t ∈ N , let the pivotal position of C1(t) in a(t) be ω. Then θt,ω = 2
M(t−1)

and
ψt,ω = 0. By Theorem 4.5, we have ψt+1,ω = σt (θt,ω, ψt,ω) = 0. Since the ψ-sequence assumes
the value of 0 only once in a compartment, it follows that the pivotal position of the compartment
C1(t+ 1) in a(t+ 1) is also ω. Hence the theorem follows.

Corollary 5.3 (Transformation of the pivotal elements). The pivotal elements in C1(t) are
transformed by τt and σt into the respective pivotal elements in C1(t+ 1).

Proof. We have

τt(θt,ω) = τt(
2

M(t− 1)
) =

2

M(t)
= θt+1,ω (5.26)

and
σt(θt,ω, ψt,ω) = θt,ωψt,ω = 0 = ψt+1,ω (5.27)

The theorem follows from (5.26) and (5.27).

Corollary 5.4 (Periodicity of the {θt,k} and {ψt,k}-sequences). Consider the cycle M(t) =

M1 → M2 → · · · → Mn → Mn+1 = M1 in Fρ as per (4.1). For each t, the period of the
cyclic sequence θt,k (respectively, ψt,k ) as a function of k is 2ω + 1.

6 Existence of roots of polynomials ofH(x)-sequence
in finite fields

The existence of a nontrivialM -cycle has been established in Theorem 3.4. GivenM(t), we have
seen in Section 5, how the θt,k (mod ρ) and ψt,k (mod ρ)-sequences, considered as functions of
t, split into several identical parts. A remarkable property in the determination of the structure of
such parts is provided by equation (5.21), viz. the existence of a least positive integer ω such that
ψt,ω = 0. This implies that M(t) satisfies the polynomial Hω(x). If ω = 1, then ψt,1 = 0 implies
M(t) = −1 from which we get the M -cycle −1 → −1 → −1 → . . . Thus M(t) contributes the
root of the polynomial H1(x). Consider the case when ω > 1 so that we have n > 1. Take the
cycleM(t) =M1 →M2 → · · · →Mn →Mn+1 =M1 in Fρ given by (4.1). By Corollary 5.3, it
follows that ψt+1,ω = 0, . . . , ψt+n,ω = 0. Therefore the elementsM(t),M(t+1), . . . ,M(t+n−1)
satisfy the polynomial Hω(x) over Fρ. Hence (x−M(t))(x−M(t+1)) · · · (x−M(t+n−1)) |
Hω(x). So the M(t)-cycle in Fρ contributes n roots of the polynomial Hω(x). Thus the existence
of a nontrivial M -cycle of length n in Fρ implies the existence of n roots of the H(x)-polynomial
in Fρ. Since the degree of Hω(x) is ω, we have

ω ≥ n. (6.1)

Conversely, suppose α is a root of Hω(x) in Fρ. Choose d as the least positive integer such
that 2d+ 1 | 2ω + 1 and α is a root of Hd(x). Since the constant term of any polynomial in the
H(x)-sequence is either 1 or −1, it follows that α ̸= 0. Since the sum of the coefficients of any
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polynomial in the H(x)-sequence is one of ±1,±2, we have α ̸= 1. By induction, we obtain the
following results:

Hk(2) = 2k + 1, ∀ k ≥ 0,

Hk(−2) =

{
1, if k is even,
−1, if k is odd.

So α ̸= ±2. If α2 = 2, then Hk(α) = ±1,±(α + 1),∀ k ≥ 0. Hence Hd(x) = 0 implies
α = −1. In this case, we get the sequence−1→ −1→ −1→ · · · This implies ω = 1. If α2 = 3,
then Hk(α) = ±1, ±(α+ 1),±(α+ 2), ∀ k ≥ 0. Hence Hd(x) = 0 implies that α = −2 or −1.
Since α cannot be−2, we have α = −1, which has already been accounted for. Consider the case
when α ̸= −1. Then α2 ̸= 2, 3 and so ω ̸= 1. Define Mk = Fk(α) (mod ρ) (k ≥ 1), where F is
defined by the relation (2.1). We obtain the sequence α→ α2 − 2→ α4 − 4α2 + 2→ · · · Since
the conditions of Theorem 3.1 are satisfied, the above sequence is non-stationary. Thus we obtain
an M(t)-cycle of length n. The foregoing discussion shows that ψt+1,d = 0, . . . , ψt+n,d = 0.

Hence a root α of the polynomial Hd(x) in Fρ gives rise to an M(t)-cycle of length n such that
each element of this cycle is a root of the polynomial Hd(x). Thus we are led to an important
result on the attainment of the roots of the H(x)-polynomial stated as follows:

Theorem 6.1 (Necessary and sufficient condition). Let ρ be a given odd prime ≥ 11. An
M(t)-cycle of length n exists in the field Fρ if and only if there exists a positive integer ω ≥ n such
that the polynomial Hω(x) attains roots at n distinct elements of Fρ with pivotal position ω in the
compartments C1(t), C1(t + 1), . . . , C1(t + n − 1) of the matrices a(M(t)), a(M(t + 1)), . . . ,
a(M(t+ n− 1)), respectively. One can choose ω as the least positive integer with this property.

Corollary 6.1. If α is a root of Hω(x) in Fρ, then α2 − 2 is also a root of Hω(x).

Corollary 6.2. Every root of an H(x)-polynomial occurring in Fρ is an element of a unique
M -cycle.

7 A relationship involving the pivotal position in C1(t)

The concept of pivotal elements in a compartment was introduced in Section 5. Now we consider
the identification of a relationship involving the pivotal position of the compartment C1(t).

7.1 Formation of new sequences

Let the parameter t be given. We form two new sequences as follows: η-sequence is formed with
the sums of two consecutive terms of the ψ-sequence; ζ-sequence is formed from ψ-sequence by
taking the terms from ψt,ω onwards. We have the following definition.

Definition 7.1. Let ω be the pivotal position in the compartment C1(t). Define

ηt,k = ψt,k−1 + ψt,k, (7.1)

ζt,k = ψt,ω+k. (7.2)
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By induction, we obtain a remarkable relationship between the two sequences.

Theorem 7.1. The following property holds:

ηt,k =M(t− 1)ζt,k,∀ k ≥ 1. (7.3)

Corollary 7.1. It holds that

ψt,k−1 + ψt,k =M(t− 1)ψt,ω+k, ∀ k ≥ 1. (7.4)

Using the relation ψt,2ω+1+k = ψt,k, we obtain a result.

Corollary 7.2. The following relationship holds:

ψt,ω+k + ψt,ω+k+1 =M(t− 1)ψt,k, ∀ k ≥ 0. (7.5)

7.2 Preliminaries for building blocks

By induction, we obtain some important relationships.

Theorem 7.2. The following properties hold:

ψt,2k + ψt,2k+1 = {M(t) + 2}ψt+1,k, ∀ k ≥ 0. (7.6)

θt,kψt,k+1 + θt,k+1ψt,k = 2 ψt+1,ω+k+1, ∀ k ≥ 0. (7.7)

Theorem 7.3. The following relationship holds:

(θt,k + θt,k+1)(ψt,k + ψt,k+1) = {M(t) + 2}ψt+1,ω+k+1, ∀ k ≥ 0. (7.8)

Proof. Applying Theorem 4.4 and the relation (7.7), we obtain (θt,k + θt,k+1)(ψt,k + ψt,k+1) =

ψt+1.k + ψt+1,k+1 + 2ψt+1,ω+k+1. In view of Corollary 7.1, the latter expression reduces to
{M(t) + 2}ψt+1,ω+k+1.

We deduce a relationship between the pivotal position in C1(t) and an element of theM -cycle.

Corollary 7.3. The following holds:

ψ2
t,k − ψ2

t,k−1 = {M(t) + 2}ψt+1,ω+k, ∀ k ≥ 1. (7.9)

Proof. Follows from Theorem 2.1.

The next theorem provides us with a mechanism to link the {ψt,k}-sequence with the Mersenne,
Fermat and Lehmer numbers. By repeated application of the relation (7.6), we obtain

Theorem 7.4. Suppose q = 2i for some positive integer i. Then
q−1∑
j=0

ψt,j = {M(t) + 2}{M(t+ 1) + 2} · · · {M(t+ i− 1) + 2}. (7.10)

7.3 Blocks of ψ-sequences

Blocks are formed from ψ-sequence by taking consecutive terms such that the cardinality of each
block is an integral power of 2.
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Definition 7.2 (ψ-Block at t). We define a block of numbers from ψ-sequence as follows: B0(t)
= {ψt,1} and Bk(t) = {ψt,2k,ψt,2k+1,· · · , ψt,2k+1−1}, ∀ k ≥ 1. We have #Bk(t) = 2k.

Definition 7.3 (Block sum). Let S(Bk(t)) denote the sum of the numbers in Bk(t). i.e.,

S(Bk(t)) =
r−1∑
j=q

ψt,j where q = 2k and r = 2k+1. (7.11)

Theorem 7.5. It holds that

S(B1(t)) = {M(t) + 2}S(B0(t+ 1)). (7.12)

Proof. Using the relation (7.6) we obtain

S(B1(t)) = ψt,2 + ψt,3

= {M(t) + 2}ψt+1,1

= {M(t) + 2}S(B0(t+ 1)).

Theorem 7.6 (Formula for S(Bk(t))). The following holds:

S(Bk(t)) = {M(t+ k) + 1}
k∏
j=1

{M(t+ j − 1) + 2}. (7.13)

Proof. We have S(B2(t)) =
∑7

j=4 ψt,j. Using Theorem 7.2, we get

S(B2(t)) = {M(t) + 2}(ψt+1,2 + ψt+1,3)

= {M(t) + 2}S(B1(t+ 1))

= {M(t) + 2}{M(t+ 1) + 2}S(B0(t+ 2)),

by Theorem 7.5. Continuing this process, we obtain (7.13).

7.4 Product of two consecutive terms in the ψ-sequence

Our requirement now is to find an expression for ψt,k−1ψt,k.

Theorem 7.7. The following relation holds:

ψt,2k−1ψt,2k−ψt,2k−1−1ψt,2k−1 = {M(t)+2}{ψt+1,2k−1+ψt+1,2k−2+· · ·+ψt+1,2k−1+1+ψt+1,2k−1}
(7.14)

Proof. From (2.4), we have ψt,k =M(t)ψt,k−1 − ψt,k−2. This gives ψt,k−2 + ψt,k =M(t)ψt,k−1.

Multiplying both sides by ψt,k−1, we obtain ψt,k−2ψt,k−1 + ψt,k−1ψt,k = M(t)ψ2
t,k−1. Similarly

we obtain ψt,k−3ψt,k−2 + ψt,k−2ψt,k−1 =M(t)ψ2
t,k−2, etc.

From these relations, we get

ψt,k−1ψt,k + ψt,0ψt,1 =M(t)(ψ2
t,k−1 − ψ2

t,k−2 + ψ2
t,k−3 − · · ·+ ψ2

t,3 − ψ2
t,2 + ψ2

t,1)

and
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ψt,k−1ψt,k − ψt,0ψt,1 =M(t)(ψ2
t,k−1 − ψ

2

t,k−2
+ ψ2

t,k−3 − · · · − ψ2
t,3 + ψ2

t,2 − ψ2
t,1),

for n even and odd, respectively.
Using Corollary 7.3, we obtain the relations

ψt,k−1ψt,k = M(t){M(t) + 2}(ψt+1,ω+k−1 + ψt+1,ω+k−3 + · · ·+ ψt+1,ω+3) +

{M(t) + 1}{(M(t))2 − M(t)− 1} for k even, (7.15)

ψt,k−1ψt,k = M(t){M(t) + 2}(ψt+1,ω+k−1 + ψt+1,ω+k−3 + · · ·+ ψt+1,ω+2) +

{M(t) + 1}{(M(t))2 −M(t)− 1} for k odd. (7.16)

Replacing k in (7.15) by 2k and in (7.16) by 2k−1, respectively, we get the relations

ψt,2k−1ψt,2k = M(t){M(t) + 2}(ψt+1,ω+2k−1 + ψt+1,ω+2k−3 + . . .

+ψt+1,ω+3) + {M(t) + 1}{(M(t))2 −M(t)− 1}, (7.17)

ψt,2k−1−1ψt,2k−1 = M(t){M(t) + 2}(ψt+1,ω+2k−1−1 + ψt+1,ω+2k−1−3 + · · ·
+ψt+1,ω+3) + {M(t) + 1}{(M(t))2 − M(t)− 1}. (7.18)

From the relations (7.17) and (7.18), we get ψt,2k−1ψt,2k − ψt,2k−1−1ψt,2k−1

= {M(t) + 2}(ψt+1,ω+2k−1 + ψt+1,ω+2k−3 + · · ·+ ψt+1,ω+2k−1+1)

= {M(t) + 2}(ψt+1,2k−1 + ψt+1,2k−2 + · · ·+ ψt+1,2k−1+1 + ψt+1,2k−1), using Corollary 7.2.

Theorem 7.8. Let q = 2i, r = 2i+1 and s = 2i−1 . Then
r−1∑
j=q

ψt,j = ψt,q−1 ψt,q − ψt,s−1ψt,s. (7.19)

Proof. From the relation (7.14), we have ψt,q−1 ψt,q−ψt,s−1ψt,s = {M(t)+2}S(Bi−1(t+1)) =

S(Bi(t)), yielding (7.19).

Theorem 7.9. The following property holds:

{M(t)− 2}(ψt,2k−1ψt,2k − ψt,2k−1−1
ψt,2k−1) =M(t+ k + 1)−M(t+ k). (7.20)

Proof. From Theorem 7.8, we have

ψt,2k−1ψt,2k − ψt,2k−1−1
ψt,2k−1 = S(Bk(t)) = {M(t+ k) + 1}

k∏
j=1

{M(t+ j − 1) + 2}.

Hence we obtain

{M(t)− 2}(ψt,2k−1ψt,2k − ψt,2k−1−1
ψt,2k−1)

(7.21)
= {M(t)− 2} × {M(t+ k) + 1}

k∏
j=1

{M(t+ j − 1) + 2},

in view of the relation (7.13). We expand the right side of (7.21) and carry out the computations
successively. First we have {M(t)− 2}{M(t) + 2} = {M(t)}2 − 4 =M(t+ 1)− 2.
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Next we have {M(t) − 2}{M(t) + 2}{M(t + 1) + 2} = {M(t + 1) − 2}{M(t + 1) +

2} = {M(t)}2 − 4=M(t + 2) − 2, and so on. Therefore the right side of (7.21) reduces to
{M(t+k)+1} {M(t+k)−2} = {M(t+ k)}2−M(t+k)−2 =M(t+k+1)−M(t+k).

Theorem 7.10. The following identity holds:

{M(t)− 2}ψt,2k−1ψt,2k =M(t+ k + 1)−M(t). (7.22)

Proof. Using the property provided by the relation (7.20), we successively get

{M(t)− 2}(ψt,2k−1ψt,2k − ψt,2k−1−1ψt,2k−1) =M(t+ k + 1)−M(t+ k),

{M(t)− 2}(ψt,2k−1−1ψt,2k−1 − ψt,2k−2−1ψt,2k−1−1) =M(t+ k)−M(t+ k − 1),
...

{M(t)− 2}(ψt,3ψt,4 − ψt,1ψt,2) =M(t+ 3)−M(t+ 2),

{M(t)− 2}(ψt,1ψt,2 − ψt,0ψt,1) =M(t+ 2)−M(t+ 1).


Adding vertically the above relations, we obtain {M(t) − 2}(ψt,2k−1ψt,2k − ψt,0ψt,1) = M(t +

k + 1)−M(t+ 1). This gives

{M(t)− 2}ψt,2k−1ψt,2k =M(t+ k + 1)−M(t+ 1) + {M(t)− 2}{M(t) + 1}
=M(t+ k + 1)−M(t).

8 Divisors of Mersenne and Lehmer numbers

We exhibit a relationship that the cyclic sequences {θt,k (mod ρ)} and {ψt,k (mod ρ)} have
with Mersenne and Lehmer numbers. Let t be varying. For each fixed k, it has been proved
in Section 4 that the cyclic sequences are periodic with the same period as that of the cycle
M1 →M2 → · · · →Mn →Mn+1 =M1. From this result, we obtain the following:

Theorem 8.1. Let n be a positive integer. The following statements are equivalent:

(a) θt+n,1 = θt,1,

(b) ψt+n,1 = ψt,1,

(c) M(t+ n) =M(t).

Putting the different pieces from the previous sections in a comprehensive way, we obtain the
following result fulfilling the objective of this study.

Theorem 8.2 (Divisors of Mersenne and Lehmer numbers). Let ρ be an odd prime ≥ 11. Let
M(t) ∈ Fρ − {0,±1,±2} such that M2

k ̸= 2, 3, ∀ k in the cycle M(t) = M1 → M2 → · · · →
Mn → Mn+1 = M1 → · · · , where Mk = M(t + k − 1) = M2

k−1 − 2. Define ψt,0 = 1,
ψt,1 = M(t) + 1, ψt,k = M(t)ψt,k−1 − ψt,k−2, ∀ k ≥ 2. Let ω be the smallest number in N such
that ψt,ω = 0. Then 2ω + 1 divides either the Mersenne number 2n − 1 or the Lehmer number
2n + 1.
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Proof. Since theM -cycle has length n, we getM(t+n) =M(t). This givesM(t+n)−M(t) = 0.
From Theorem 6.1, it follows that there exists a smallest natural number ω such that ψt,ω = 0 for
all t defining theM -cycle. For each t, by Corollary 5.4, the period of the cyclic sequence ψt,k as a
function of k is 2ω+1. Hence we have ψt,k = 0 for all natural numbers k of the form j(2ω+1)+ω,

where j is a non-negative integer. In view of the identity provided by Theorem 7.10, we obtain
{M(t) − 2}ψt,2n−1−1ψt,2n−1 = 0 for all t defining the M -cycle. Since M(t) ̸= 2, we have either
ψt,2n−1−1 = 0 or ψt,2n−1 = 0. Hence the ψt,k-sequence attains a root when k = 2n−1 − 1 or 2n−1.
This implies that either 2n−1 − 1 or 2n−1 is of the form j(2ω + 1) + ω for some integer j ≥ 0.
Case (i). Suppose

2n−1 − 1 = j(2ω + 1) + ω. (8.1)

Then 2{j(2ω+1)+ω}+1 = 2n− 1, i.e., (2j +1)(2ω+1) = 2n− 1, implying 2ω+1 | 2n− 1.
Case (ii). Suppose

2n−1 = j(2ω + 1) + ω. (8.2)

Then 2{j(2ω+1)+ω}+1 = 2n+1, i.e., (2j+1)(2ω+1) = 2n+1. Hence 2ω+1 | 2n+1.

Thus the ψ-sequence leads to a factor 2ω + 1 of the Mersenne number 2n − 1 in Case (i) and
the Lehmer number 2n + 1 in Case (ii).

Theorem 8.3 (Relationship concerning n, ω and Euler’s function). Given an M(t)-cycle of
length n in Fρ with the occurrence of the roots of the corresponding polynomial H(x) in the
ψt,k-sequence at k = ω, we have

n | 1
2
Φ(2ω + 1), (8.3)

where Φ is Euler’s totient function.

Proof. From Theorem 8.2 we have 2ω + 1 | 22n − 1. By Euler’s generalization of Fermat’s
theorem, 2ω + 1 | 2Φ(2ω+1) − 1. These two relations imply that 2n | Φ(2ω + 1).

The theory presented by means of Theorems 6.1, 8.2 and 8.3 is illustrated below.

Example 8.1. Consider the field Fρ with ρ = 137. We have ( 28
137

) = 1. On computation, 1132 =
12769 ≡ 28 (mod 137). Hence 1132 − 2 ≡ 26 (mod 137). Starting with M(t) = 26, we get the
cycle 26 → 126 → 119 → 48 → 110 → 42 → 118 → 85 → 99 → 72 → 113 → 26 → · · ·
in Fρ of length 11. The Ψ−sequence corresponding to M(t) = 26 is Ψt,0 = 1, Ψt,1 = 27,
Ψt,2 = 16, . . ., which attains the value of zero at ω = 11. In view of Theorem 6.1, the M-cycle
provides 11 roots of H11(x) in Fρ. By Theorem 8.2, we get 23 | 211± 1. We note that 23 | 211− 1.

Example 8.2. Consider the field Fρ with ρ = 1283. We find that ( 13
1283

) = 1. So 12472 =

1555009 ≡ 13 (mod 1283) and 12472 − 2 ≡ 11 (mod 1283). Taking M(t) = 11, we obtain the
M -cycle 11 → 119 → 46 → 831 → 305 → 647 → 349 → 1197 → 979 → 38 → 159 →
902 → 180 → 323 → 404 → 273 → 113 → 1220 → 118 → 1092 → 555 → 103 → 343 →
894→ 1208→ 491→ 1158→ 227→ 207→ 508→ 179→ 1247→ 11→ · · · in Fρ of length
32. The Ψ−sequence corresponding to M(t) = 11 is Ψt,0 = 1, Ψt,1 = 12, Ψt,2 = 131, . . ., which
attains the value of zero at ω = 320. In view of Theorem 6.1, the M -cycle contributes 32 roots of
H320(x) in Fρ. Using Theorem 8.2 we see that 641 | 232± 1. It is checked that 641 | 232+1. Thus
we have a proof for Euler’s result on a prime factor of the fifth Fermat number.
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9 Conclusion

In the material that has been hitherto presented, we have established how an M -cycle in the finite
field Fρ yields the factors of Mersenne, Fermat and Lehmer numbers. It is pertinent to consider
the converse result. A question that arises is how to find the M−cycles from the factors of given
Mersenne, Fermat and Lehmer numbers. This will be taken up in a subsequent study.
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