On certain arithmetical products involving the divisors of an integer

József Sándor
Department of Mathematics, Babeş-Bolyai University
Cluj-Napoca, Romania
e-mail: jsandor@math.ubbcluj.ro

Received: 3 August 2023
Accepted: 28 February 2024

Revised: 12 February 2024
Online First: 6 March 2024

Abstract: We study the arithmetical products $\prod d^{d}, \prod d^{\frac{1}{d}}$ and $\prod d^{\log d}$, where d runs through the divisors of an integer $n>1$.
Keywords: Arithmetic functions, Inequalities for arithmetic functions, Inequalities for sums. 2020 Mathematics Subject Classification: 11A25, 11N37, 26D15.

1 Introduction

Let $n>1$ be a positive integer. Define the arithmetical products

$$
\begin{equation*}
P_{1}(n)=\prod_{d \mid n} d^{d}, P_{2}(n)=\prod_{d \mid n} d^{1 / d}, P_{3}(n)=\prod_{d \mid n} d^{\log d} \tag{1}
\end{equation*}
$$

where $d \mid n$ means that d runs through all distinct and positive divisors of $n>1$.
The aim of this paper is to study some properties of these arithmetical products. In what follows, we will use also the notation

$$
\begin{equation*}
\sigma_{k}(n)=\sum_{d \mid n} d^{k}, \tag{2}
\end{equation*}
$$

which denotes the sum of k-th powers of divisors of n.

	Copyright © 2024 by the Author. This is an Open Access paper distributed under the
(c) (i)	
terms and conditions of the Creative Commons Attribution 4.0 International License	
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/	

Particularly, $\sigma_{1}(n)=\sigma(n)$ equals the sum of divisors of $n, \sigma_{0}(n)=d(n)$ equals the number of divisors of n. We will need also $\sigma_{2}(n)$ to equal the sum of squares of divisors of n, or $\sigma_{3 / 2}(n)$, the value of $\sigma_{k}(n)$ for $k=\frac{3}{2}$.

We will need also some algebraic and analytic inequalities, which will be mentioned in the contexts of the proofs.

2 Main results

Theorem 1. One has the identity

$$
\begin{equation*}
P_{1}(n)=\frac{n^{\sigma(n)}}{\left(P_{2}(n)\right)^{n}} \tag{3}
\end{equation*}
$$

Proof. Let $d_{1}, d_{2}, \ldots, d_{r}$ be the distinct divisors of n. Remark that $\frac{n}{d_{1}}, \frac{n}{d_{2}}, \ldots, \frac{n}{d_{r}}$ are also the divisors of n, and $n^{\frac{n}{d_{1}}} n^{\frac{n}{d_{2}}} \cdots n^{\frac{n}{d_{r}}}=n^{\sigma(n)}$. On the other hand,

$$
\begin{aligned}
P_{2}(n)^{n} / n^{\sigma(n)} & =\left(\frac{d_{1}}{n}\right)^{\frac{n}{d_{1}}} \cdots\left(\frac{d_{1}}{n}\right)^{\frac{n}{d_{r}}}=\left(\frac{1}{\frac{n}{d_{1}}}\right)^{\frac{n}{d_{1}}} \cdots\left(\frac{1}{\frac{n}{d_{1}}}\right)^{\frac{n}{d_{r}}} \\
& =\prod\left(\frac{1}{\frac{n}{d}}\right)^{\frac{n}{d}}=\prod\left(\frac{1}{d}\right)^{d}=\frac{1}{\prod d^{d}},
\end{aligned}
$$

so the equality (3) follows.
Theorem 2. One has the inequality

$$
\begin{equation*}
n^{n} \leq P_{1}(n) \leq n^{\sigma(n)-1} \tag{4}
\end{equation*}
$$

for $n>1$, with equality in both sides only for n being prime.
Proof. The left side of (4) follows from the definition of $P_{1}(n)$, as $\prod d^{d} \geq n^{n}$ with equality only if $n>1$ has only one divisor, i.e., if n is prime. The right side of (4) follows by identity (3), as $P_{2}(n) \geq n^{\frac{1}{n}}$, with equality if and only if $n>1$ is prime.

A refinement of left side of (4) is given in the following remark.
Remark 1. The left side of (4) can be improved as follows:

$$
\begin{equation*}
n^{\frac{\sigma(n)}{2}} \leq P_{1}(n) \tag{5}
\end{equation*}
$$

Indeed, apply the Chebyshev sum inequality (see [3])

$$
\begin{equation*}
r \sum_{i=1}^{r} a_{i} b_{i} \geq\left(\sum_{i=1}^{r} a_{i}\right)\left(\sum_{i=1}^{r} b_{i}\right) \tag{6}
\end{equation*}
$$

(where $\left(a_{i}\right),\left(b_{i}\right)$ have the same type of monotonicity) for the sequences $a_{i}=d_{i}, b_{i}=\log d_{i}$, and $d_{1}<\cdots<d_{r}$ are the divisors of n.

Now, it is well known that

$$
\begin{equation*}
\prod_{d \mid n} d=n^{\frac{d(n)}{2}} \tag{7}
\end{equation*}
$$

so we get from (6) that

$$
d(n) \sum_{d \mid n} d \log d \geq\left(\sum_{d \mid n} d\right)\left(\sum_{d \mid n} \log d\right)=\sigma(n) \cdot \frac{d(n) \log n}{2} .
$$

This gives $\sum_{d \mid n} \log d \geq \frac{\sigma(n) \log n}{2}$, so (5) follows.
However, an even stronger relation will be contained in the left side of the following theorem.

Theorem 3.

$$
\begin{equation*}
\left(\frac{\sigma(n)}{d(n)}\right)^{\sigma(n)} \leq P_{1}(n) \leq\left(\frac{\sigma_{2(n)}}{\sigma(n)}\right)^{\sigma(n)} . \tag{8}
\end{equation*}
$$

Proof. The function $f(x)=x \log x(x>0)$ is strictly convex, as $f^{\prime \prime}(x)=\frac{1}{x}>0$, so by Jensen's inequality we can write

$$
\begin{equation*}
f\left(\frac{x_{1}+\cdots+x_{r}}{r}\right) \leq \frac{f\left(x_{1}\right)+\cdots+f\left(x_{r}\right)}{r} \tag{9}
\end{equation*}
$$

for any $x_{i}>0$. Applying (9) for $x_{i}=d_{i}$ (divisors of n) and remarking that $\frac{d_{1}+\cdots+d_{r}}{r}=\frac{\sigma(n)}{d(n)}$, the left side of (8) follows.

Apply now the weighted arithmetic mean-geometric mean inequality

$$
\begin{equation*}
p_{1} x_{1}+\cdots+p_{r} x_{r} \geq x_{1}^{p_{1}} \cdots x_{r}^{p_{i}} \tag{10}
\end{equation*}
$$

where $p_{i}>0, \sum_{i=1}^{r} p_{i}=1$ and $x_{i}>0(i=\overline{1, r})$ for $p_{i}=\frac{d_{i}}{\sigma(n)}, x_{i}=d_{i}$. As $\frac{d_{1}}{\sigma(n)}+\cdots+\frac{d_{r}}{\sigma(n)}=1$, we can apply (10), so the right side of (8) follows.
Remark 2. By the known inequality $\frac{\sigma(n)}{d(n)} \geq \sqrt{n}$ (see e.g. [4]) we get that the left side of (8) is stronger than inequality (5).
Remark 3. Applying (10) to $x_{i}=\sqrt{d_{i}}, p_{i}=\frac{d_{i}}{\sigma(n)}$ after some computations, we get

$$
\begin{equation*}
P_{1}(n) \leq\left(\frac{\sigma_{\frac{3}{2}}(n)}{\sigma(n)}\right)^{2 \sigma(n)} \tag{11}
\end{equation*}
$$

This is slightly stronger than the right side of (8), which follows from the inequality

$$
\begin{equation*}
\sigma_{\frac{3}{2}}^{2}(n) \leq \sigma(n) \cdot \sigma_{2}(n) \tag{12}
\end{equation*}
$$

i.e., $\left(d_{1}^{\frac{3}{2}}+\cdots+d_{r}^{\frac{3}{2}}\right)^{2} \leq\left(d_{1}+\cdots+d_{r}\right) \cdot\left(d_{1}^{2}+\cdots+d_{r}^{2}\right)$. This follows by the Cauchy-Schwarz inequality, as

$$
\left(\sum_{i=1}^{r} d_{i}^{\frac{1}{2}} d_{i}\right)^{2} \leq\left(\sum_{i=1}^{r} d_{i}\right)\left(\sum_{i=1}^{r} d_{i}^{2}\right)
$$

for application of $\left(\sum a_{i} \cdot b_{i}\right)^{2} \leq\left(\sum a_{i}^{2}\right)\left(\sum b_{i}^{2}\right)$ to $a_{i}=d_{i}^{\frac{1}{2}}, b_{i}=d_{i}$.

Theorem 4. One has

$$
\begin{equation*}
\frac{A(n)}{n} \leq \frac{\sigma_{2}(n)}{\sigma(n)}-P_{1}(n)^{\frac{1}{\sigma(n)}} \leq A(n) \tag{13}
\end{equation*}
$$

where

$$
A(n)=\frac{1}{2}\left[\frac{\sigma_{3}(n)}{\sigma(n)}-\frac{\sigma_{2}^{2}(n)}{\sigma^{2}(n)}\right] \geq 0
$$

Proof. Apply the Cartwright-Field inequality (see [1]):

$$
\begin{equation*}
\frac{1}{2 M} \sum_{i=1}^{r} p_{i}\left(x_{i}-\sum_{i=1}^{r} p_{k} x_{k}\right)^{2} \leq \sum_{i=1}^{r} p_{i} x_{i}-\prod_{i=1}^{r} x_{i}^{p_{i}} \leq \frac{1}{2 m} \sum_{i=1}^{r} p_{i}\left(x_{i}-\sum_{i=1}^{r} p_{k} x_{k}\right) \tag{14}
\end{equation*}
$$

where p_{i}, x_{i} are as in (10), but $0<m \leq x_{i} \leq M$.
Let $p_{i}=\frac{d_{i}}{\sigma(n)}, x_{i}=d_{i}, r=d(n)$. Then clearly $m=1$ and $M=n$. Remark that one has

$$
\begin{aligned}
\sum_{d \mid n} d \cdot\left(d-\frac{\sigma_{2}(n)}{\sigma(n)}\right)^{2} & =\sum_{d \mid n}\left(d^{3}-2 d^{2} \cdot \frac{\sigma_{2}(n)}{\sigma(n)}+d \cdot \frac{\sigma_{2}^{2}(n)}{\sigma^{2}(n)}\right) \\
& =\sigma_{3}(n)-2 \frac{\sigma_{2}^{2}(n)}{\sigma(n)}+\frac{\sigma_{2}^{2}(n)}{\sigma(n)}=\sigma_{3}(n)-\frac{\sigma_{2}^{2}(n)}{\sigma(n)} \geq 0
\end{aligned}
$$

and the inequalities (13) follow.
Theorem 5. One has

$$
\begin{equation*}
n^{\log n} \leq P_{3}(n) \leq \frac{1}{t_{n}}\left(\log P_{1}(n)\right)^{t_{n}} \tag{15}
\end{equation*}
$$

where $t_{n}=\frac{d(n) \cdot \log n}{2}$.
Proof. The left side of (15) is obvious from the definition of $P_{3}(n)$, with equality only if $n>1$ is prime. For the right side of (15), apply (10) for $x_{i}=d_{i}, p_{i}=\frac{\log d_{i}}{t_{n}}$. One has indeed $\sum_{d \mid n} \log d=\log \prod_{d \mid n} d=\frac{d(n) \log n}{2}$, by (7), so $\frac{\sum \log d_{i}}{t_{n}}=1$.

By other methods, we can deduce another result on $P_{3}(n)$, namely Theorem 6.

Theorem 6.

$$
\begin{equation*}
\frac{1}{4} d(n) \log ^{2}(n)<\log P_{3}(n) \leq \frac{1}{2} d(n) \log ^{2} n \tag{16}
\end{equation*}
$$

for $n>1$.
Proof. Remark that $\log P_{3}(n)=\sum_{\frac{d}{n}} \log ^{2} d$. Now, apply the classical inequality

$$
\begin{equation*}
\frac{x_{1}^{2}+\cdots+x_{r}^{2}}{r} \geq\left(\frac{x_{1}+\cdots+x_{r}}{r}\right)^{2} \tag{17}
\end{equation*}
$$

to $x_{i}=\log d_{i}$. As $\sum_{i=1}^{r} \log d_{i}=\log \left(\prod_{i=1}^{r} d_{i}\right)=\frac{(\log n) d(n)}{2}$, we get from (17) the left side of (16). As there is equality in (17) only for $r=1$, for $n>1$ there is strict inequality in the left side of (16). For the right side we can remark that

$$
\sum_{d \mid n} \log ^{2} d=\sum_{d \mid n} \log d \cdot \log d \leq(\log n) \cdot \sum_{d \mid n} \log d=(\log n)\left(\frac{1}{2} d(n) \log n\right)
$$

so the inequality follows.

As for any prime p one has $\log P_{3}(p)=\frac{1}{2} d(p) \log ^{2} p$, we can state the following:

Remark 4.

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log P_{3}(n)}{d(n) \log ^{2} n}=\frac{1}{2} \tag{18}
\end{equation*}
$$

Theorem 7. One has

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\sigma(n) \log n-\log P_{1}(n)}{n(\log \log n)^{2}}=0 \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\sigma(n) \log n-\log P_{1}(n)}{n(\log \log n)^{2}}=e^{\gamma} \tag{20}
\end{equation*}
$$

where e and γ are the classical Euler constants.
Proof. As $\log P_{1}(p)=p \log p$ for a prime p, and $\sigma(p)=p+1$ by,

$$
\frac{(p+1) \log p-p \log p}{p(\log \log p)^{2}}=\frac{\log p}{p(\log \log p)^{2}} \rightarrow 0
$$

as $p \rightarrow \infty$ relation (19) follows.
For the proof of (20), remark that $\log P_{1}(n)=\sigma(n) \log n-n \log P_{2}(n)$, thus

$$
\sigma(n) \log n-\log P_{1}(n)=n \log P_{2}(n)=n \sum_{d \mid n} \frac{\log d}{d}
$$

Now, a result of Erdős and Zaremba [2] states that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{F(n)}{(\log \log n)^{2}}=\epsilon^{\gamma} \tag{21}
\end{equation*}
$$

where $F(n)=\sum_{d \mid n} \frac{\log d}{d}$. By using the above, from (21) we deduce relation (20).

References

[1] Cartwright, D. I., \& Field, M. J. (1978). A refinement of the arithmetic mean-geometric mean inequality. Proceedings of the American Mathematical Society, 71(1), 36-38.
[2] Erdős, P., \& Zaremba, S. K. (1973). The arithmetic function $\sum_{d \mid n} \frac{\log d}{d}$. Demonstratio Mathematica, 6, 575-579.
[3] Mitrinović, D. S. (1970). Analytic Inequalities. Springer Verlag.
[4] Sándor, J., Mitrinović, D. S., \& Crstici, B. (2006). Handbook of Number Theory I. Springer.

