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Abstract: We study the arithmetical products
∏

dd,
∏

d
1
d and

∏
dlog d, where d runs through the

divisors of an integer n > 1.
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1 Introduction

Let n > 1 be a positive integer. Define the arithmetical products

P1(n) =
∏
d|n

dd, P2(n) =
∏
d|n

d1/d, P3(n) =
∏
d|n

dlog d (1)

where d | n means that d runs through all distinct and positive divisors of n > 1.
The aim of this paper is to study some properties of these arithmetical products. In what

follows, we will use also the notation

σk(n) =
∑
d|n

dk, (2)

which denotes the sum of k-th powers of divisors of n.
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Particularly, σ1(n) = σ(n) equals the sum of divisors of n, σ0(n) = d(n) equals the number
of divisors of n. We will need also σ2(n) to equal the sum of squares of divisors of n, or σ3/2(n),

the value of σk(n) for k =
3

2
.

We will need also some algebraic and analytic inequalities, which will be mentioned in the
contexts of the proofs.

2 Main results

Theorem 1. One has the identity

P1(n) =
nσ(n)

(P2(n))
n . (3)

Proof. Let d1, d2, . . . , dr be the distinct divisors of n. Remark that n

d1
,

n

d2
, . . . ,

n

dr
are also the

divisors of n, and n
n
d1 n

n
d2 · · ·n

n
dr = nσ(n). On the other hand,

P2(n)
n/nσ(n) =

(
d1
n

)n
d1

· · ·
(
d1
n

)n
dr

=

(
1
n
d1

)n
d1

· · ·
(

1
n
d1

)n
dr

=
∏(

1
n
d

)n
d

=
∏(

1

d

)d

=
1∏
dd

,

so the equality (3) follows.

Theorem 2. One has the inequality

nn ≤ P1(n) ≤ nσ(n)−1, (4)

for n > 1, with equality in both sides only for n being prime.

Proof. The left side of (4) follows from the definition of P1(n), as
∏

dd ≥ nn with equality only
if n > 1 has only one divisor, i.e., if n is prime. The right side of (4) follows by identity (3), as
P2(n) ≥ n

1
n , with equality if and only if n > 1 is prime.

A refinement of left side of (4) is given in the following remark.

Remark 1. The left side of (4) can be improved as follows:

n
σ(n)
2 ≤ P1(n). (5)

Indeed, apply the Chebyshev sum inequality (see [3])

r

r∑
i=1

aibi ≥
( r∑

i=1

ai

)( r∑
i=1

bi

)
(6)

(where (ai), (bi) have the same type of monotonicity) for the sequences ai = di, bi = log di, and
d1 < · · · < dr are the divisors of n.
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Now, it is well known that ∏
d|n

d = n
d(n)
2 (7)

so we get from (6) that

d(n)
∑
d|n

d log d ≥

(∑
d|n

d

)(∑
d|n

log d

)
= σ(n) · d(n) log n

2
.

This gives
∑
d|n

log d ≥ σ(n) log n

2
, so (5) follows.

However, an even stronger relation will be contained in the left side of the following theorem.

Theorem 3. (
σ(n)

d(n)

)σ(n)

≤ P1(n) ≤
(
σ2(n)

σ(n)

)σ(n)

. (8)

Proof. The function f(x) = x log x (x > 0) is strictly convex, as f ′′(x) =
1

x
> 0, so by Jensen’s

inequality we can write

f

(
x1 + · · ·+ xr

r

)
≤ f(x1) + · · ·+ f(xr)

r
, (9)

for any xi > 0. Applying (9) for xi = di (divisors of n) and remarking that d1 + · · ·+ dr
r

=
σ(n)

d(n)
,

the left side of (8) follows.
Apply now the weighted arithmetic mean-geometric mean inequality

p1x1 + · · ·+ prxr ≥ xp1
1 · · · xpi

r , (10)

where pi > 0,
r∑

i=1

pi = 1 and xi > 0(i = 1, r) for pi =
di

σ(n)
, xi = di. As d1

σ(n)
+ · · ·+ dr

σ(n)
= 1,

we can apply (10), so the right side of (8) follows.

Remark 2. By the known inequality σ(n)

d(n)
≥

√
n (see e.g. [4]) we get that the left side of (8) is

stronger than inequality (5).

Remark 3. Applying (10) to xi =
√
di, pi =

di
σ(n)

after some computations, we get

P1(n) ≤
(
σ 3

2
(n)

σ(n)

)2σ(n)

. (11)

This is slightly stronger than the right side of (8), which follows from the inequality

σ2
3
2
(n) ≤ σ(n) · σ2(n), (12)

i.e.,
(
d

3
2
1 + · · · + d

3
2
r

)2 ≤ (d1 + · · · + dr) · (d21 + · · · + d2r). This follows by the Cauchy–Schwarz
inequality, as (

r∑
i=1

d
1
2
i di

)2

≤

(
r∑

i=1

di

)(
r∑

i=1

d2i

)
,

for application of
(∑

ai.bi
)2 ≤ (∑ a2i

)(∑
b2i
)

to ai = d
1
2
i , bi = di.
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Theorem 4. One has
A(n)

n
≤ σ2(n)

σ(n)
− P1(n)

1
σ(n) ≤ A(n), (13)

where

A(n) =
1

2

[
σ3(n)

σ(n)
− σ2

2(n)

σ2(n)

]
≥ 0.

Proof. Apply the Cartwright–Field inequality (see [1]):

1

2M

r∑
i=1

pi

(
xi −

r∑
i=1

pkxk

)2

≤
r∑

i=1

pixi −
r∏

i=1

xpi
i ≤ 1

2m

r∑
i=1

pi

(
xi −

r∑
i=1

pkxk

)
, (14)

where pi, xi are as in (10), but 0 < m ≤ xi ≤ M ·
Let pi =

di
σ(n)

, xi = di, r = d(n). Then clearly m = 1 and M = n. Remark that one has

∑
d|n

d ·
(
d− σ2(n)

σ(n)

)2

=
∑
d|n

(
d3 − 2d2 · σ2(n)

σ(n)
+ d · σ

2
2(n)

σ2(n)

)

= σ3(n)− 2
σ2
2(n)

σ(n)
+

σ2
2(n)

σ(n)
= σ3(n)−

σ2
2(n)

σ(n)
≥ 0,

and the inequalities (13) follow.

Theorem 5. One has
nlogn ≤ P3(n) ≤

1

tn
(logP1(n))

tn , (15)

where tn =
d(n) · log n

2
.

Proof. The left side of (15) is obvious from the definition of P3(n), with equality only if
n > 1 is prime. For the right side of (15), apply (10) for xi = di, pi =

log di
tn

. One has indeed∑
d|n

log d = log
∏
d|n

d =
d(n) log n

2
, by (7), so

∑
log di
tn

= 1.

By other methods, we can deduce another result on P3(n), namely Theorem 6.

Theorem 6.
1

4
d(n) log2(n) < logP3(n) ≤

1

2
d(n) log2 n (16)

for n > 1.

Proof. Remark that logP3(n) =
∑
d
n

log2 d . Now, apply the classical inequality

x2
1 + · · ·+ x2

r

r
≥
(x1 + · · ·+ xr

r

)2
(17)

to xi = log di. As
r∑

i=1

log di = log(
r∏

i=1

di) =
(log n)d(n)

2
, we get from (17) the left side of (16). As

there is equality in (17) only for r = 1, for n > 1 there is strict inequality in the left side of (16).
For the right side we can remark that∑

d|n

log2 d =
∑
d|n

log d · log d ≤ (log n) ·
∑
d|n

log d = (log n)

(
1

2
d(n) log n

)
,

so the inequality follows.

114



As for any prime p one has logP3(p) =
1

2
d(p) log2 p, we can state the following:

Remark 4.
lim sup
n→∞

logP3(n)

d(n) log2 n
=

1

2
. (18)

Theorem 7. One has

lim inf
n→∞

σ(n) log n− logP1(n)

n(log log n)2
= 0 (19)

and

lim sup
n→∞

σ(n) log n− logP1(n)

n(log log n)2
= eγ, (20)

where e and γ are the classical Euler constants.

Proof. As logP1(p) = p log p for a prime p, and σ(p) = p+ 1 by,

(p+ 1) log p− p log p

p(log log p)2
=

log p

p(log log p)2
→ 0,

as p → ∞ relation (19) follows.

For the proof of (20), remark that logP1(n) = σ(n) log n− n logP2(n), thus

σ(n) log n− logP1(n) = n logP2(n) = n
∑
d|n

log d

d
.

Now, a result of Erdős and Zaremba [2] states that

lim sup
n→∞

F (n)

(log log n)2
= ϵγ, (21)

where F (n) =
∑
d|n

log d

d
. By using the above, from (21) we deduce relation (20).
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