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1 Introduction

Consider the second-order linear recurrence (w) = w(a, b) satisfying the recursion relation

wn+2 = awn+1 + bwn, (1.1)

where the parameters a and b and the initial terms w0 and w1 are all integers. We distinguish two
special recurrences, the Lucas sequence of the first kind (LSFK) u(a, b) and the Lucas sequence
of the second kind (LSSK) v(a, b) with initial terms u0 = 0, u1 = 1 and v0 = 2, v1 = a,
respectively. Associated with the linear recurrence w(a, b) is the characteristic polynomial f(x)
defined by

f(x) = x2 − ax− b (1.2)

with characteristic roots α and β and discriminant D = a2 + 4b = (α − β)2. By the Binet
formulas,

un =
αn − βn

α− β
, vn = αn + βn. (1.3)

Throughout this paper, m will denote a positive integer, p will denote an odd prime unless
specified otherwise, and ε will specify an element from {−1, 1}. It was shown in Carmichael
[3, pp. 344–345] that w(a, b) is purely periodic modulo m if gcd(b,m) = 1. From here on, we
assume that gcd(b,m) = 1. We will usually assume that b = ±1, which will automatically
guarantee that gcd(b,m) = 1. If (r/p) = 1, where (r/p) denotes the Legendre symbol,

√
r

modulo p will denote the residue c modulo p such that c2 ≡ r (mod p) and 0 ≤ c ≤ (p− 1)/2.
The period of w(a, b) modulo m, denoted by λw(m), is the least positive integer c such that

wn+c ≡ wn (mod m) for all n ≥ 0. The restricted period of w(a, b) modulo m, denoted by
hw(m), is the least positive integer r such that wn+r ≡ Mwn (mod m) for all n ≥ 0 and
some fixed residue M modulo m such that gcd(M,m) = 1. Here M = Mw(m) is called the
multiplier of w(a, b) modulo m. Since the LSFK u(a, b) is purely periodic modulo m and has
initial terms u0 = 0 and u1 = 1, it is easily seen that hu(m) is the least positive integer r such that
ur ≡ 0 (mod m). It is proved in Carmichael [3, pp. 354–355] that hw(m) | λw(m). Let
Ew(p) = λw(m)

hw(m)
. Then by Carmichael [3, pp. 354–355], Ew(m) is the multiplicative order of

the multiplier M modulo m.
The main result of the paper Somer & Křı́žek [20] was to prove that if p is a fixed prime and

u(a1, 1) and u(a2, 1) are two LSFK’s with the same restricted period modulo p, or equivalently the
same period modulo p, then the residues appearing in u(a2, 1) are fixed multiples of the residues
appearing in u(a1, 1) modulo p. Even more so, it was shown that if v(a1, 1) and v(a2, 1) are
two LSSK’s with the same restricted period modulo p, then the residues modulo p appearing in
v(a2, 1) are exactly the same as the residues appearing in v(a1, 1) modulo p. The results of Somer
& Křı́žek [20] extend those in Somer & Křı́žek [19].

In this paper, we will prove similar results for the Lucas sequences u(a,−1) and v(a,−1)

modulo p. Furthermore, we will extend these results to u(a,±1) modulo prime powers for a
certain class of primes.

Given a residue d modulo m, we let Aw(d,m) denote the number of times that d appears in
a minimal period of (w) modulo m. If the modulus m is clearly specified, we frequently simply
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write only Aw(d) rather than Aw(d,m). We have the following theorem regarding upper bounds
for Aw(d, p).

Theorem 1.1. Let p be a fixed prime and consider the recurrence w(a, b) and the LSFK u(a, b).
Let d be a fixed residue modulo p such that 0 ≤ d ≤ p − 1. Let g = ordp(−b), where ordp(−b)

denotes the multiplicative order of (−b) modulo p.

(i) Aw(d) ≤ min(2 · ordp(−b), p).

(ii) Au(0) = Eu(p) ≤ min(p− 1, 2g) and Au(d) ≤ min(g + Eu(p), 2g, p) if d ̸= 0.

(iii) If b = 1 then Aw(d) ≤ 4.

(iv) If b = 1 and Eu(p) = 1, then Au(d) ≤ 3.

(v) If b = −1 then Aw(d) ≤ 2.

Proof. Part (i) was proved in Theorem 3 of Niederreiter et al. [9]. Part (ii) was proved in
Theorem 2 of Somer [17]. Parts (iii) and (v) follow from parts (i) and (ii), respectively.

Before proceeding further, we will need the following results and definitions.

Definition 1.2. Let p be a fixed prime. The recurrence w(a, b) is said to be p-regular if∣∣∣∣∣w0 w1

w1 w2

∣∣∣∣∣ = w0w2 − w2
1 ̸≡ 0 (mod p). (1.4)

Otherwise, the recurrence w(a, b) is called p-irregular. The p-irregular recurrence in which
wn ≡ 0 (mod p) for all n ≥ 0 is called the trivial recurrence modulo p.

The recurrence w(a, b) is p-irregular if and only if it satisfies a recursion relation modulo p of
order less than two.

Theorem 1.3. Suppose that the recurrences w(a, b) and w′(a, b) are both p-regular. Then

λw(p) = λw′(p), hw(p) = hw′(p), Ew(p) = Ew′(p), and Mw(p) ≡ Mu′(p) (mod p).

This is proved in Carlip & Somer [1, p. 695].

Theorem 1.4. Let p be a fixed prime. Consider the LSFK u(a, b) and the LSSK v(a, b) with
discriminant D = a2 + 4b. Then

(i) u(a, b) is p-regular,

(ii) v(a, b) is p-regular if and only if p ∤ D.

Proof. (i) We note that

u0u2 − u2
1 = 0 · a− 12 = −1 ̸≡ 0 (mod p).

Thus, u(a, b) is p-regular by (1.4).
(ii) We observe that

v0v2 − v21 = 2(a2 + 2b)− a2 = a2 + 4b = D.

Thus, v(a, b) is p-regular if and only if p ∤ D.
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Theorem 1.5. Let p be a fixed prime. Consider the p-regular recurrence w(a, b) with discriminant D.
Let h = hw(p) and λ = λw(p). Then

(i) h > 1 and h | p− (D/p), where (D/p) = 0 if p | D.

(ii) If (D/p) = 0, then h = p.

(iii) If p ∤ D, then h | (p− (D/p))/2 if and only if (−b/p) = 1.

(iv) If w(a, b) = u(a, b), then un ≡ 0 (mod p) if and only if h | n.

(v) If (D/p) = 1, then λ | p− 1.

Proof. We first note that by Theorem 1.3 and Theorem 1.4 (i) and (iii), we have hw(p) > 1,
hw(p) = hu(p), and λw(p) = λu(p), since both w(a, b) and u(a, b) are p-regular. Parts (i) and (v)
are proved in Carmichael [2, pp. 44–45] and Lucas [6, pp. 290, 296, 297]. Parts (ii) and (iv) are
proved in Lehmer [5, pp. 423–424]. Part (iii) is proved in Lehmer [5, p. 441].

Theorem 1.6. Let w(a, 1) be a p-regular recurrence with discriminant D. Then

(i) Ew(p) = 1, 2, or 4.

(ii) Ew(p) = 1 if and only if hw(p) ≡ 2 (mod 4). Moreover, if Ew(p) = 1, then (D/p) = 1.

(iii) Ew(p) = 2 if and only if hw(p) ≡ 0 (mod 4). Moreover, if Ew(p) = 2, then (D/p) =

(−1/p).

(iv) Ew(p) = 4 if and only if hw(p) is odd. Moreover, if Ew(p) = 4 then p ≡ 1 (mod 4).

(v) If p ≡ 3 (mod 4) and (D/p) = 1, then hw(p) ≡ 2 (mod 4) and Ew(p) = 1.

(vi) If p ≡ 3 (mod 4) and (D/p) = −1, then hw(p) ≡ 0 (mod 4) and Ew(p) = 2.

(vii) If p ≡ 1 (mod 4) and (D/p) = −1, then hw(p) is odd and Ew(p) = 4.

Proof. By Theorem 1.4 (i), u(a, b) is p-regular. It now follows from Theorem 1.3 that hw(p) =

hu(p) and λw(p) = λu(p). Parts (i)–(vii) now follow from Lemma 3 and Theorem 13 of Somer
[12].

Theorem 1.7. Let w(a,−1) be a p-regular recurrence with discriminant D. Then

(i) Ew(p) = 1 or 2.

(ii) If λw(p) is odd, then hw(p) is odd, Ew(p) = 1, and Mw(p) ≡ 1 (mod p).

(iii) If λw(p) ≡ 2 (mod 4), then hw(p) is odd, Ew(p) = 2, and Mw(p) ≡ −1 (mod p).

(iv) If λw(p) ≡ 0 (mod 4), then hw(p) is even, Ew(p) = 2, and Mw(p) ≡ −1 (mod p).

(v) If
(

2−a
p

)
= −1 and

(
2+a
p

)
= 1, then λw(p) is odd.

(vi) If
(

2−a
p

)
= 1 and

(
2+a
p

)
= −1, then λw(p) ≡ 2 (mod 4).

(vii) If
(

2−a
p

)
=

(
2+a
p

)
= −1, then λw(p) ≡ 0 (mod 4).

(viii) If p ∤ D, then hw(p) | (p− (D/p))/2 and λw(p) | p− (D/p).

The proof follows from Theorem 1.4 (i), Theorem 1.3, and Theorem 1.5 (iii) of this paper and
from Theorem 16 of Somer [12].
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Definition 1.8. Let p be a fixed prime. The recurrences w(a, b) and w′(a, b) are p-equivalent if
w′(a, b) is a nonzero multiple of a translation of w(a, b) modulo p, that is, there exists a nonzero
residue c and a fixed integer r such that

w′
n ≡ cwn+r (mod p) for all n ≥ 0. (1.5)

It is clear that p-equivalence is indeed an equivalence relation on the set of recurrences w(a, b)
modulo p, since c is invertible modulo p. It is also evident that if w′(a, b) is p-equivalent to w(a, b)

and (1.5) holds, then
Aw′(cd) = Aw(d) (1.6)

for 0 ≤ d ≤ p− 1.

Theorem 1.9. Suppose that w(a, b) and w′(a, b) are p-equivalent recurrences such that w′
n ≡

cwn+r (mod p) for all n ≥ 0, where c is a fixed nonzero residue modulo p and r is a fixed integer.
Then w(a, b) and w′(a, b) are either both p-regular or both p-irregular.

This is proven in Carlip & Somer [1, p. 694].

Theorem 1.10. Let w(a, b) be a p-regular recurrence. Then w(a, b) is p-equivalent to u(a, b) if
and only if wn ≡ 0 (mod p) for some n ≥ 0.

Proof. This follows from the fact that u0 ≡ 0 (mod p), from Definition 1.8, from Theorem
1.4 (i), and from the fact that if c ̸≡ 0 (mod p), then cm ≡ 0 (mod p) if and only if m ≡ 0

(mod p).

Theorem 1.11. Let p be a fixed prime and let ε ∈ {−1, 1}.

(i) If p ≡ 1 (mod 4), then there exists a LSFK u(a, 1) such that (D/p) = ε and hu(p) = r if
and only if r | (p− ε)/2 and r ̸= 1.

(ii) If p ≡ 3 (mod 4), then there exists a LSFK u(a, 1) such that hu(p) = r if and only if
r | p− ε and r ∤ (p− ε)/2.

(iii) There exists a LSFK u(a,−1) such that (D/p) = ε and hu(p) = r if and only if r | (p−ε)/2

and r ̸= 1.

(iv) Let p > 3. Then there exists a LSFK u(a,−1) such that (D/p) = ε and λu(p) = p− ε.

(v) If there exists a LSFK u(a, ε1) such that (D/p) = ε and hu(p) = r, where ε1 ∈ {−1, 1},
then there exist exactly ϕ(r) such LSFK’s, where ϕ(r) denotes Euler’s totient function and
0 ≤ a ≤ p− 1.

Proof. Parts (i)–(iii) follow from Theorem 12 of Somer [13]. and Theorems 3 and 4 of Somer
[16]. Part (iv) follows from Theorem 11 of Somer [13] and Theorems 1 and 2 of Somer [16]. Part
(v) is proved in Theorems 3.7, 3.8, and 3.12 of Müller [8].

The principal results of the paper Somer & Křı́žek [20] are given in Theorems 1.12 and 1.13.
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Theorem 1.12. Let p be an odd prime. Suppose that (u) = u(a1, 1) and (u′) = u(a2, 1) both
have the same restricted period h = hu(p) and that the associated respective discriminants D1

and D2 both have the same nonzero quadratic character modulo p. Then (u) and (u′) have the
same period modulo p and there exists an integer c such that

Au′(d) = Au(cd) ∀d ∈ {0, 1, . . . , p− 1},

where

c ≡

{
ε
√

D2D
−1
1 (mod p) if h ≡ 2 (mod 4)√

D2D
−1
1 (mod p) if h ̸≡ 2 (mod 4)

for some ε = ±1.
In the case h ̸≡ 2 (mod 4), we may also choose c ≡ Mk

√
D2D

−1
1 (mod p), where k is any

integer and M is the multiplier Mu(p).

Theorem 1.13. Let p be an odd prime. Suppose that (v) = v(a1, 1) and (v′) = v(a2, 1) both
have the same restricted period h = hv(p) and that the associated respective discriminants D1

and D2 both have the same nonzero quadratic character modulo p. Then (v) and (v′) have the
same period modulo p and

Av′(d) = Av(d) ∀d ∈ {0, 1, . . . , p− 1}.

Moreover, in the case h ̸≡ 2 (mod 4) we also have that

Av′(d) = Av(M
kd) ∀d ∈ {0, 1, . . . , p− 1},

where k is any integer and M is the multiplier Mv(p).

The example below illustrates Theorems 1.12 and 1.13 for particular cases.

Example 1.14. Let p = 11. Consider the LSFK’s (u) = u(4, 1) and (u′) = u(1, 1) and the
LSSK’s (v) = v(4, 1) and (v′) = v(1, 1) modulo 11. The first 12 terms of u(4, 1), u(1, 1),
v(4, 1), and v(1, 1) modulo 11 are:

u(4, 1) : {0, 1, 4, 6, 6, 8, 5, 6, 7, 1, 0, 1},
u(1, 1) : {0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1},
v(4, 1) : {2, 4, 7, 10, 3, 0, 3, 1, 7, 7, 2, 4},
v(1, 1) : {2, 1, 3, 4, 7, 0, 7, 7, 3, 10, 2, 1}.

Thus, the restricted period and periods modulo 11 of all these four sequences are equal to
10 ≡ 2 (mod 4), and each recurrence has the same multiplier M ≡ 1 (mod 11). We observe
that u(4, 1) and v(4, 1) both have the discriminant D1 = 20, while u(1, 1) and v(1, 1) each has
the discriminant D2 = 5. Moreover,(D1

11

)
=

( 9

11

)
=

(D2

11

)
=

( 5

11

)
= 1.
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Further, we let c ≡
√

D2/D1 (mod 11). Then

c ≡
√

5

9
≡

√
3 ≡ 5 (mod 11).

By inspection, we see that indeed

Au′(d) = Au(6d) = Au(−cd)

and
Av′(d) = A(d)

for all d ∈ {0, 1, 2, . . . , 10}.

In the next section we present the principal results of this paper.

2 Main theorems

Theorem 2.1. Let p be an odd prime. Suppose that (u) = u(a1,−1) and (u′) = u(a2,−1) both
have the same period λ = λu(p) and that the associated respective discriminants D1 and D2 both
have the same nonzero quadratic character modulo p. Then there exists an integer c such that

Au′(d) = Au(cd) ∀d ∈ {0, 1, . . . , p− 1}, (2.1)

where

c ≡

{
ε
√

D2D
−1
1 (mod p) if λ is odd√

D2D
−1
1 (mod p) if λ is even

for some ε = ±1.
In the case λ is even, we may also choose

c ≡ −
√

D2D
−1
1 (mod p). (2.2)

Theorem 2.2. Let p be an odd prime. Suppose that (v) = v(a1,−1) and (v′) = v(a2,−1) both
have the same period λ = λv(p) and that the associated respective discriminants D1 and D2 both
have the same nonzero quadratic character modulo p. Then

Av′(d) = Av(d) ∀d ∈ {0, 1, . . . , p− 1}. (2.3)

Moreover, in the case for which λ is even, we also have that

Av′(d) = Av(−d) ∀d ∈ {0, 1, . . . , p− 1}. (2.4)

Theorems 2.1 and 2.2 will be proved in Section 4.

Example 2.3. Let p = 17. Consider the LSFK’s (u) = u(4,−1) and (u′) = (10,−1) and
the LSSK’s (v) = v(4,−1) and (v′) = v(10,−1) modulo 17. The first 20 terms of u(4,−1),
u(10,−1), v(4,−1), and v(10,−1) modulo 17 are:

u(4,−1) : {0, 1, 4, 15, 5, 5, 15, 4, 1, 0,−1,−4,−15,−5,−5,−15,−4,−1, 0, 1},
u(10,−1) : {0, 1, 10, 14, 11, 11, 14, 10, 1, 0,−1,−10,−14,−11,−11,−14,−10,−1, 0, 1},
v(4,−1) : {2, 4, 14, 1, 7, 10, 16, 3, 13, 15, 13, 3, 16, 10, 7, 1, 14, 4, 2, 4},
v(10,−1) : {2, 10, 13, 1, 14, 3, 16, 4, 7, 15, 7, 4, 16, 3, 14, 1, 13, 10, 2, 10}.
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Therefore, for all four of these recurrences, the restricted periods modulo 17 are each equal
to 9, the periods modulo 17 are all equal to 18 ≡ 0 (mod 2), and M ≡ −1 (mod 17). Moreover,
u(4,−1) and v(4,−1) both have the discriminant D1 = 12, whereas u(10,−1) and v(10,−1)

each has the discriminat D2 = 96. We observe that(D1

17

)
=

(12
17

)
=

(D2

17

)
=

(11
17

)
= −1.

Further, we let c ≡
√

D2/D1 (mod 17). Then

c ≡
√

11

12
≡

√
8 ≡ 5 (mod 17).

By examination, we find that

Au′(d) = Au(5d) = Au(12d) = Au(cd) = Au(−cd)

and
Av′(d) = Av(d) = Av(−d)

for all d ∈ {0, 1, 2, . . . , 16} as required by Theorems 2.1 and 2.2.

Corollary 2.4 below follows from Theorems 2.1 and 2.2 upon application of Theorem 1.7,
Theorem 1.9, and (1.6).

Corollary 2.4. Let p be a fixed prime. Let w(a1, 1) and w′(a2, 1) be recurrences with discriminants
D1 = a21 + 4 and D2 = a22 + 4, respectively, such that p ∤ D1D2 and (D1/p) = (D2/p). Suppose
that either w(a1, 1) is p-equivalent to u(a1, 1) and w′(a2, 1) is p-equivalent to u(a2, 1), or it is the
case that w(a, 1) is p-equivalent to v(a1, 1) and w′(a2, 1) is p-equivalent to v(a2, 1).

Suppose further that hw(p) = hw′(p). This occurs if and only if λw(p) = λw′(p). Then there
exists a nonzero residue c modulo p such that Aw′(d) = Aw(cd) for 0 ≤ d ≤ p− 1.

In Theorems 2.5 and 2.6, we extend Theorems 1.12 and 2.1 to prime powers for a certain class
of primes.

Theorem 2.5. Let ε ∈ {−1, 1} and p be an odd prime. Consider the LSFK’s (u) = u(a1, 1) and
(u′) = u(a2, 1) with restricted periods h = hu(p) and h1 = hu′(p) and respective discriminants
D1 and D2. Suppose that (D1/p) = (D2/p) = ε and

h = hu(p) = hu′(p) ≡ 1 (mod 2). (2.5)

Then
p ≡ 1 (mod 4) (2.6)

and
λ = λu(p) = λu′(p) = 4h. (2.7)

Suppose further that

hu(p) ̸= hu(p
2) and hu′(p) ̸= hu′(p2). (2.8)

Then
λu(p) ̸= λu(p

2) and λu′(p) ̸= λu′(p2). (2.9)
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Let e > 1. Then
hu(p

e) = hu′(pe), λu(p
e) = λu′(pe), (2.10)

and
Eu(p

e) = Eu′(pe) = Eu(p) = 4. (2.11)

Denote Mu(p
e) by M . Let

c ≡
√
D2D

−1
1 (mod p), (2.12)

where c ∈ {1, 2, . . . , (p− 1)/2}. Suppose that c1 ∈ {1, 2, . . . , pe − 1} and

c1 ≡ c (mod p). (2.13)

Then
Au′(d, pe) = Au(M

ic1d, p
e) ∀d ∈ {0, 1, . . . , pe − 1} (2.14)

and for i ∈ {0, 1, 2, 3}.

Theorem 2.6. Let ε ∈ {−1, 1} and p be an odd prime. Consider the LSFK’s (u) = u(a1,−1)

and (u′) = u(a2,−1) with periods λ = λu(p) and λ1 = λu′(p) and respective discriminants D1

and D2. Suppose that (D1/p) = (D2/p) = ε and

λ = λu(p) = λu′(p) ̸≡ 0 (mod 4). (2.15)

Then
h = hu(p) = hu′(p) ≡ 1 (mod 2). (2.16)

Suppose further that
hu(p) ̸= hu(p

2) and hu′(p) ̸= hu′(p2). (2.17)

Then
λu(p) ̸= λu(p

2) and λu′(p) ̸= λu′(p2). (2.18)

Let e > 1. Then
hu(p

e) = hu′(pe), λu(p
e) = λu′(pe) (2.19)

and
Eu(p

e) = Eu′(pe) = Eu(p) = 1 or 2. (2.20)

Let
c ≡

√
D2D

−1
1 (mod p), (2.21)

where c ∈ {1, 2, . . . , (p− 1)/2}. Suppose that c1 ∈ {1, 2, . . . , pe − 1} and

c1 ≡ c (mod p). (2.22)

Then
Au′(d, pe) = Au(ε1c1d, p

e) ∀d ∈ {0, 1, . . . , pe − 1} (2.23)

for some ε1 ∈ {−1, 1} if λ is odd, while

Au(d, p
e) = Au(c1d, p

e) ∀d ∈ {0, 1, . . . , pe − 1} (2.24)

if λ ≡ 2 (mod 4). Moreover, in the latter case we also have that

Au′(d, pe) = Au(−c1d, p
e) ∀d ∈ {0, 1, . . . , pe − 1}. (2.25)

Theorems 2.5 and 2.6 are proved in Section 4.
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Remark 2.7. In Theorems 2.5 and 2.6, we required that for the LSFK’s (u) = u(a, ε) and
(u′) = u(a2, ε), we have that hu(p) = hu′(p) is odd and

hu(p) ̸= hu(p
2), hu′ ̸= hu′(p2).

We show that these are reasonable assumptions. We first demonstrate that if the prime p is large,
then indeed there exist many parameters a for which u(a, ε) modulo p has a fixed odd restricted
period, where we take p ≡ 1 (mod 4) if ε = 1. Suppose p ≡ 1 (mod 4). Then by Theorem 1.11
(v), there exist ϕ((p+ 1)/2) parameters a modulo p such that for the LSFK u(a, 1)

hu(p) =
p+ 1

2
≡ 1 (mod 2).

Moreover, suppose that p ≡ δ (mod 4), where δ ∈ {−1, 1}. Again, by Theorem 1.11 (v),
there exist ϕ((p+ δ)/2) parameters a modulo p such that for the LSFK u(a,−1),

hu(p) =
p+ δ

2
≡ 1 (mod 2).

It appears that for a given LSFK (u) = u(a, ε), primes p for which hu(p) = hu(p
2) are

exceedingly rare. For example, consider the case in which (u) = u(1, 1) = {Fn}∞n=0, the
Fibonacci sequence, and hu(p) = hu(p

2). Such primes are called Wall–Sun–Sun primes or
Fibonacci–Wieferich primes. An equivalent criterion for p to be a Wall–Sun–Sun prime is that
(see PrimeGrid [10])

p2 | Fp−(5/p).

By McIntosh & Roettger [7], there are no Wall–Sun–Sun primes p for p < 2 · 1014. The
online usergroup PrimeGrid has an ongoing project to search for Wall–Sun–Sun primes. As of
the writing of this paper, it has been found by this project that there are no Wall–Sun–Sun primes
for p < 1.9 · 1017 (see PrimeGrid [10]).

3 Auxiliary results

Before proving our main theorems, we will need the following results.

Theorem 3.1. Let w(a, b) be a p-regular recurrence. Let e be a fixed integer such that 1 ≤ e ≤
hw(p)− 1. Then the ratios wn+e

wn
are distinct modulo p for 0 ≤ n ≤ hw(p)− 1, where we denote

the ratio wn+e

wn
(modp) by ∞ if wn ≡ 0 (mod p).

This is proved in Lemma 2 of Somer [17].

Lemma 3.2. Let p be a fixed prime. Consider the LSFK u(a, b) and the LSSK v(a, b). Suppose
further that in the case of the LSSK v(a, b) that p ∤ D = a2 + 4b. Then u(a, b) and v(a, b) are
both p-regular and have common restricted period h and multiplier M modulo p. Moreover, the
following hold:

(i) uh−n ≡ −Mun/(−b)n (mod p) for 0 ≤ n ≤ h.

(ii) vh−n ≡ Mvn/(−b)n (mod p) for 0 ≤ n ≤ h.
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This is proved in Lemma 5 of Somer [17]. The proof is established by induction and use of
the recursion relation (1.1) defining u(a, b) and v(a, b).

Lemma 3.3. Let p be a fixed prime. Let w(a,−1) be either the LSFK u(a,−1) or the LSSK
v(a,−1), and let h = hw(p), where p ∤ D. Then

wn+r ̸≡ εwn (mod p) (3.1)

for any integers n and r such that 0 ≤ n < n+ r ≤ h/2 or h/2 ≤ n < n+ r ≤ h.

This follows from Lemma 4 of Somer [15] and Lemma 8 of Somer [18].

Proposition 3.4. Consider the LSFK u(a, b) and the LSSK v(a, b) with discriminant D = a2 −
4b ̸= 0. Let p be a fixed prime and let h = hu(p).

(i) If m | n, then um | un.

(ii) u2n = unvn.

(iii) v2n −Du2
n = 4(−b)n.

(iv) If h is even, then vh/2 ≡ 0 (mod p).

Proof. Parts (i)–(iii) follow from the Binet formulas (1.3). We now establish part (iv). Suppose
that h is even. Then h is the least positive integer n such that un ≡ 0 (mod p). Hence, by part
(ii),

uh = uh/2vh/2 ≡ 0 (mod p),

where uh/2 ̸≡ 0 (mod p). Therefore, vh/2 ≡ 0 (mod p).

Theorem 3.5. Let k be a fixed positive integer. Consider the LSFK u(a, b) and LSSK v(a, b),
where b ̸= 0, with characteristic roots α and β and discriminant D = a2 + 4b ̸= 0. Suppose that
uk(a, b) ̸= 0. Then {

ukn(a, b)

uk(a, b)

}∞

n=0

is a LSFK u(a′, b′) and {vkn(a, b)}∞n=0 is a LSSK v(a′, b′), where u(a′, b′) and v(a′, b′) have
characteristic roots αk and βk, parameters a′ = vk(a, b) and b′ = −(−b)k, and discriminant
D′ = Du2

k(a, b).

Proofs of Theorem 3.5 are given in Lucas [6, pp. 189–190] and Lehmer [5, p. 437].

Lemma 3.6. Let p be a fixed prime and let w(a, b) be a p-regular recurrence. Let M = Mw(p
e),

where e ≥ 1. Then

Aw(d, p
e) = Aw(M

jd, pe) for 1 ≤ j ≤ Ew(p
e)− 1.

This follows from the proof of Lemma 10 of Somer [14] and Lemma 13 of Somer [17].

Lemma 3.7. Let p > 2 be a fixed prime. Consider all the possible discriminants D ≡ a2 − 4

modulo p of recurrences w(a,−1), where 0 ≤ a ≤ p− 1.

(i)
(

a2−4
p

)
= 0 if and only if a ≡ ±2 (mod p).

57



(ii) There exist exactly n = ⌊p
4
⌋ discriminants D ≡ a2−4 modulo p such that

(
D
p

)
= 1, where

either p = 4n+ 1 or p = 4n+ 3.

(iii) There exist exactly p−1
2

− ⌊p
4
⌋ = ⌈p−1

4
⌉ discriminants D ≡ a2 − 4 modulo p such that(

D
p

)
= −1.

Proof. It is immediate that (i) holds. We now consider all the (p − 1)/2 possible discriminants
D ≡ a2 − 4 (mod p) such that

(
D
p

)
= ±1. First suppose that

(
D
p

)
= 1. To find all

a ∈ {0, 1, . . . , p − 1} such that
(

a2−4
p

)
= 1, all one needs to do is determine all solutions to

the congruence
a2 − x2 = (a+ x)(a− x) ≡ 4 (modp),

where we exclude the solutions (a, x) ≡ (2, 0) or (−2, 0) (mod p). There are p − 3 sets of
solutions for a and x generated by

a+ x ≡ k, a− x ≡ 4/k (modp), k ∈ {1, 2, . . . , p− 1} \ {2, p− 2}.

In general, four sets of solutions lead to the same a2 and x2 modulo p for a fixed k:

a+ x ≡ k, a− x ≡ 4/k; a+ x ≡ 4/k, a− x ≡ k;

a+ x ≡ −k, a− x ≡ −4/k; a+ x ≡ −4/k, a− x ≡ −k (modp).

Since k ̸≡ 0 (mod p), we find that k ̸≡ −k (mod p). Clearly, 4/k ̸≡ −4/k (mod p). However,
4/k ≡ k (mod p) if and only if k ≡ ±2 (mod p), which has been excluded. Also, −4/k ≡ k

(mod p) if and only if k ≡ ±
√
−4 (mod p), which can occur if and only if p ≡ 1 (mod 4). One

now finds from these observations that the number of solutions of the congruence x2 ≡ a2 − 4

(mod p), where x2 ̸≡ 0 (mod p), is equal to n = ⌊p
4
⌋ if p is equal to either 4n + 1 or 4n + 3.

Thus, part (ii) holds.
It now follows that the number of discriminants D ≡ a2 − 4 (mod p) for which

(
D
p

)
= −1

is equal to p−1
2

− ⌊p
4
⌋ = ⌈p−1

4
⌉.

Lemma 3.7 is essentially proved in Somer [11, p. 39].

Lemma 3.8. Let ε ∈ {−1, 1} and let p > 3. Let (u) = u(a,−1) be a LSFK with discriminant D
such that (D/p) = ε. Then there exists a LSFK (u′) = u(a1,−1) with discriminant D1 such that(D1

p

)
=

(D
p

)
= ε (3.2)

and
λ′ = λu′(p) = p− ε. (3.3)

Let h′ = hu′(p). Then

h′ =
p− ε

2
. (3.4)

Let (v′) = v(a1,−1). Then
λv′(p) = λ′ and hv′(p) = h′. (3.5)

Moreover, there exists an integer j ∈ {1, 2, . . . , h′ − 1} such that

vj(a1,−1) ≡ a (mod p). (3.6)
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Proof. By Theorem 1.11 (iv), there exists a LSFK (u′) = u(a1,−1) with discriminant D1 such
that (D1/p) = (D/p) = ε and λ′ = λu′(p) = p − ε. Since p − ε is even, it then follows from
Theorem 1.7 (iii) and (iv) that

h′ = hu′(p) =
p− ε

2
.

Let (v′) = v(a1,−1). By Theorem 1.4 (ii), Theorem 1.3, and (3.2)–(3.4), we see that (v′) is
p-regular,

λv′(p) = λ′ = p− ε (3.7)

and
hv′(p) = h′ =

p− ε

2
. (3.8)

We observe from Lemma 3.3 that

vk(a1,−1) ̸≡ ±vℓ(a1,−1) (mod p) (3.9)

for 1 ≤ k < ℓ ≤ ⌊h′/2⌋. By examining the four cases in which ε = ±1 and p ≡ ±1 (mod 4),
we see from (3.8) that

⌊h′/2⌋ = ⌊p/4⌋ (3.10)

if (D/p) = ε = 1 and
⌊h′/2⌋ = ⌈(p− 1)/4⌉ (3.11)

if (D/p) = ε = −1, whether p ≡ 1 (mod 4) or p ≡ −1 (mod 4).
We note by Proposition 3.4 (iii) and Theorem 1.5 (iv) that

v2n(a1,−1)− 4 = D1u
2
n(a1,−1) (3.12)

and
un(a1,−1) ̸≡ 0 (mod p) (3.13)

for 1 ≤ n ≤ ⌊h′/2⌋. Thus, (v2n(a1,−1)− 4

p

)
=

(D1

p

)
=

(D
p

)
= ε (3.14)

for 1 ≤ n ≤ ⌊h′/2⌋. We now see from (3.9)–(3.14) and Lemma 3.7 that the ⌊h′/2⌋ expressions

v2n(a1,−1)− 4, (3.15)

where 1 ≤ n ≤ ⌊h′/2⌋ exhaust all the possible values of c2− 4 modulo p, given that ε =
(

c2−4
p

)
.

Noting that (D
p

)
=

(a2 − 4

p

)
= ε,

we obtain that there exists an integer i, 1 ≤ i ≤ ⌊h′/2⌋, such that

vi(a1,−1) ≡ ε1a (mod p) (3.16)

for some ε1 ∈ {−1, 1}. Since λv′(p) = p− ε is even, we see from Theorem 1.7 (iii) and (iv) that
Mv′(p) ≡ −1 (mod p). Therefore, by Lemma 3.2 (ii),

vh′−i(a1,−1) ≡ −vi(a1,−1) ≡ −ε1a (mod p). (3.17)
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Thus, by (3.14) and (3.15), there exists an integer j, 1 ≤ j ≤ h′ − 1, such that

vj(a1,−1) ≡ a (mod p).

Theorem 3.9. Let p be a fixed prime. Consider the recurrences u(a, b) and v(a, b). Let h = hu(p).
Then v(a, b) is p-equivalent to u(a, b) if and only if h is even.

Proof. By Proposition 3.4 (iv), vh/2 ≡ 0 (mod p) when h is even. Then

vh/2 ≡ vh/2+1 · u0 ≡ vh/2+1 · 0 ≡ 0 (mod p) (3.18)

and
vh/2+1 ≡ vh/2+1 · u1 ≡ vh/2+1 · 1 ≡ vh/2+1 (mod p). (3.19)

Since v(a, b) is nontrivial modulo p, it now follows by the recursion relation (1.1) defining both
u(a, b) and v(a, b) that v(a, b) is p-equivalent to u(a, b) when h is even. It is proved in Lemma 6
of Somer [17] that v(a, b) is not p-equivalent to u(a, b) when h is odd.

Theorem 3.10. Let e > 1, ε ∈ {−1, 1}, and p be an odd prime. Consider the p-regular
recurrence w(a, ε). Suppose that hw(p

2) ̸= hw(p). Then the following hold:

(i) λw(p
2) ̸= λw(p).

(ii) hw(p
e) = pe−1hw(p).

(iii) λw(p
e) = pe−1λw(p).

(iv) Ew(p
e) = Ew(p).

Proof. Part (i) follows from the discussion in Carlip & Somer [1, p. 697]. Part (ii) is proved in
Carmichael [2, p. 42] and part (iii) is proved in Ward [21, pp. 619–620]. Part (iv) follows from
parts (ii) and (iii).

Theorem 3.11. Let e > 1, ε ∈ {−1, 1}, and p be an odd prime. Consider the p-regular
recurrence w(a, ε) with discriminant D. Suppose that p ∤ D and hw(p

2) ̸= hw(p). Suppose
further that w(a, ε) is not p-equivalent to v(a, ε) modulo p. Then

Aw(d, p
e) = Aw(d, p) ∀d ∈ {0, 1, . . . , pe − 1}. (3.20)

This follows from Theorem 3.10 (i) of this paper and from Theorems 6.5, 6.8, and 6.9 of
Carlip & Somer [1].

Remark 3.12. Theorem 3.11 was proved in Carroll et al. [4] for the case in which w(a, ε) =

u(a, 1) and hu(p) ≡ 1 (mod 2).
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4 Proofs of the main theorems

Proof of Theorem 2.1. Let λ = λu(p) and λ1 = λu′(p). By hypothesis, (D1/p) = (D2/p) = ε1,
where ε1 ∈ {−1, 1}, and λ = λ1. First suppose that p = 3. We notice that for the LSFK u(a1,−1)

modulo 3, we have D ≡ 0 (mod 3) if a1 ≡ ±1 (mod 3), while (D/3) = 1 if a1 ≡ 0 (mod 3).
Thus, there is only one LSFK u(a1,−1) modulo 3 for which(D

3

)
=

(a21 − 4

3

)
= ±1,

and the theorem holds trivially in this case.
We now assume that p > 3. By Lemma 3.8, there exists a LSFK (u′′) = u(a3,−1) with

discriminant D3 such that (D3

p

)
=

(D1

p

)
=

(D2

p

)
= ε1, (4.1)

λ2 = λu′′(p) = p− ε1, (4.2)

and
h2 = hu′′(p) =

p− ε1
2

. (4.3)

By Theorem 1.7 (viii), λ | λ2. Let

r =
λ2

λ
. (4.4)

Let (v′′) = v(a3,−1). Then by Lemma 3.8,

λv′′(p) = λ2 and hv′′(p) = h2, (4.5)

and there exist unequal integers k, ℓ such that 1 ≤ k, ℓ ≤ h2 − 1 and

vk(a3,−1) ≡ a1, vℓ(a3,−1) ≡ a2 (mod p). (4.6)

Then by Theorem 3.5, we see that

un(a1,−1) ≡ un(vk(a3,−1),−1) =
ukn(a3,−1)

uk(a3,−1)
(mod p), (4.7)

un(a2,−1) ≡ un(vℓ(a3,−1),−1) =
uℓn(a3,−1)

uℓ(a3,−1)
(mod p) (4.8)

for all n ≥ 0. We note that by Theorem 1.5 (iv), uk(a3,−1)uℓ(a3,−1) ̸≡ 0 (mod p). Since
u(a1,−1) and u(a2,−1) both have periods modulo p equal to λ and since u(a3,−1) has a period
modulo p equal to λ2, it follows from (4.4) and from the last equalities in (4.7) and (4.8) that

gcd(k, λ2) = gcd(ℓ, λ2) = r =
λ2

λ1

. (4.9)

It now follows from (4.9) that the sets

{kn}λn=1 and {ℓn}λn=1 (4.10)

contain the same sets of residues modulo λ2.
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It thus follows that

{ukn(a3,−1)}λn=1 and {uℓn(a3,−1)}λn=1 (4.11)

contain the same sets of residues modulo p. Let u′′
k = uk(a3,−1), u′′

ℓ = uℓ(a3,−1),
v′′k = vk(a3,−1), and v′′ℓ = vℓ(a3,−1), Noting that u′′

k and u′′
ℓ are both invertible modulo p, it

follows from (4.7), (4.8), (4.11), and the fact that both (u) = u(a1,−1) and (u′) = u(a2,−1)

have periods modulo p equal to λ that

Au′(d) = Au(u
′′
ℓ (u

′′
k)

−1d) ∀d ∈ {0, 1, . . . , p− 1}. (4.12)

By Proposition 3.4 (iii),
(v′′k)

2 −D3(u
′′
k)

2 = 4 (4.13)

and
(v′′ℓ )

2 −D3(u
′′
ℓ )

2 = 4. (4.14)

Noting that p ∤ D3u
′′
ku

′′
ℓ , we see by (4.6), (4.13), and (4.14) that

D3(u
′′
ℓ )

2

D3(u′′
k)

2
=

(v′′ℓ )
2 − 4

(v′′k)
2 − 4

≡ a22 − 4

a21 − 4
≡ D2

D1

≡ (u′′
ℓ )

2

(u′′
k)

2
(mod p). (4.15)

Thus, by (4.15),

u′′
ℓ (u

′′
k)

−1 ≡ ε

√
D2D

−1
1 (mod p) (4.16)

for some ε ∈ {−1, 1}. Hence, by (4.12) and (4.16), we see that if λ is odd, then

Au′(d) = Au(ε

√
D2D

−1
1 d) ∀d ∈ {0, 1, . . . , p− 1}. (4.17)

Now suppose that λ is even. Then by Theorem 1.7 (iii) and (iv),

Mu(p) ≡ Mu′(p) ≡ −1 (mod p). (4.18)

It now follows from Lemma 3.6 and (4.18) that

Au′(d) = Au(

√
D2D

−1
1 d) = Au(

√
−D2D

−1
1 d) ∀d ∈ {0, 1, . . . , p− 1} (4.19)

when λ is even. The proof is now complete. □

Proof of Theorem 2.2. Let λ = λv(p) and λ1 = λv′(p). By hypothesis, (D1/p) = (D2/p) = ε1,
where ε1 ∈ {−1, 1}, and λ = λ1. First suppose that p = 3. As in the proof of Theorem 2.1, there
is a LSSK v(a1,−1) with discriminant D such that (D/3) = ±1 if and only if a1 ≡ 0 (mod 3).
Thus, the theorem holds trivially in this case.

We now assume that p > 3. By Lemma 3.8, there exists a LSSK (v′′) = v(a3,−1) with
discriminant D3 such that (D3

p

)
=

(D1

p

)
=

(D2

p

)
= ε1, (4.20)

λ2 = λu′′(p) = p− ε1, (4.21)
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and
h2 = hu′′(p) =

p− ε1
2

. (4.22)

We note that by Theorem 1.4 (ii), v(a1,−1), v(a2,−1), and v(a3,−1) are all p-regular. Moreover,
by Theorem 1.7 (viii), λ | λ2. Let

r =
λ2

λ
. (4.23)

By Lemma 3.8, there exist unequal integers k, ℓ such that 1 ≤ k, ℓ ≤ h2 − 1 and

vk(a3,−1) ≡ a1, vℓ(a3,−1) ≡ a2 (mod p). (4.24)

Hence, by (4.24) and Theorem 3.5, we see that

vn(a1,−1) ≡ vn(vk(a3,−1),−1) = vkn(a3,−1) (mod p) (4.25)

and
vn(a2,−1) ≡ vn(vℓ(a3,−1),−1) = vℓn(a3,−1) (mod p) (4.26)

for all n ≥ 0. Since v(a1,−1) and v(a2,−1) both have periods modulo p equal to λ and since
v(a3,−1) has a period modulo p equal to λ2, it follows from the last equalities in (4.25) and (4.26)
and from (4.23) that

gcd(k, λ2) = gcd(ℓ, λ2) = r =
λ2

λ
. (4.27)

We see by (4.27) that the sets
{kn}λn=1 and {ℓn}λn=1 (4.28)

contain the same sets of residues modulo λ2. Therefore, it follows that the sets

{vkn(a3,−1)}λn=1 and {vℓn(a3,−1)}λn=1 (4.29)

contain the same sets of residues modulo p. It now follows from (4.25), (4.26), (4.29), and the
fact that both (v) = v(a1,−1) and (v′) = v(a2,−1) have periods modulo p equal to λ that

Av′(d) = Av(d) ∀d ∈ {0, 1, . . . , p− 1}. (4.30)

Now suppose that λ is even. Then by Theorem 1.7 (iii) and (iv),

Mv(p) ≡ Mv′(p) ≡ −1 (mod p). (4.31)

It now follows from Lemma 3.6, (4.30), and (4.31) that when λ is even, we also have that

Av′(d) = Av(−d) ∀d ∈ {0, 1, . . . , p− 1}, (4.32)

as desired. □

Proof of Theorem 2.5. We note that (2.6) and (2.7) follow from the hypothesis given in (2.5)
and from Theorem 1.6 (iv). Moreover, (2.9)–(2.11) follow from the hypothesis given in (2.8),
Theorem 1.6 (iv), and Theorem 3.10. Let d ∈ {0, 1, . . . , pe − 1}. Since h = hu(p) is odd, we see
by Theorem 1.12 that

Au′(d, p) = Au(cd, p), (4.33)
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where c ≡
√
D2D

−1
1 (mod p) and c ∈ {0, 1, . . . , (p− 1)/2}. It now follows from the fact that h

is odd and from Theorem 3.9 that (u) = u(a1, 1) is not p-equivalent to v(a1, 1) and (u′) = u(a2, 1)

is not p-equivalent to v(a2, 1). It then follows from Theorem 3.11 that

Au′(d, pe) = Au′(d, p) (4.34)

and
Au(c1d, p

e) = Au(cd, p), (4.35)

where c1 ∈ {0, 1, . . . , pe − 1} and c1 ≡ c (mod p). Thus, by (4.33)–(4.35),

Au′(d, pe) = Au(c1d, p
e). (4.36)

Let M = Mu(p
e). We now see from Theorem 1.6 (iv), Lemma 3.6, and (2.11) that

ordpeM = 4 (4.37)

and
Au(M

ic1d.p
e) = Au(c1d, p

e) (4.38)

for i ∈ {0, 1, 2, 3}, where ordpeM denotes the multiplicative order of M modulo pe. It now
follows from (4.36)–(4.38) that (2.14) holds, and the theorem follows. □

Proof of Theorem 2.6. We observe that (2.16) follows from the hypothesis given in (2.15) and
from Theorem 1.7 (ii) and (iii). Furthermore, (2.18)–(2.20) follow from the hypothesis given in
(2.17) and from Theorem 3.10. Let d ∈ {0, 1, . . . , pe − 1}. Now we see by Theorem 2.1 that

Au′(d, p) = Au(ε1cd, p) if λ ≡ 1 (mod 2) (4.39)

for some ε1 ∈ {1,−1} and

Au′(d, p) = Au(cd, p) if λ ≡ 2 (mod 4), (4.40)

where c ∈ {0, 1, . . . , (p− 1)/2} and c ≡
√
D2D

−1
1 (mod p). Since h = hu(p) is odd by (2.16),

we find by Theorem 3.9 that u(a1,−1) is not p-equivalent to v(a1,−1) and (u′) = u(a2,−1) is
not p-equivalent to v(a2,−1). It now follows from Theorem 3.11 that

Au′(d, pe) = Au′(d, p), (4.41)

Au(ε1c1d, p
e) = Au(ε1cd, p), (4.42)

and
Au(c1d, p

e) = Au(cd, p), (4.43)

where c1 ∈ {0, 1, . . . , pe − 1} and c1 ≡ c (mod p). Therefore, by (4.39)–(4.43),

Au′(d, pe) = Au(ε1c1d, p
e) if λ ≡ 1 (mod 2) (4.44)

and
Au′(d, pe) = Au(c1d, p

e) if λ ≡ 2 (mod 4). (4.45)
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If λ ≡ 2 (mod 4), let M = Mu(p
e). Then by Theorem 1.7 (iii) and Lemma 3.6,

M ≡ −1 (mod pe) (4.46)

and
Au(−c1d, p

e) = Au(c1d, p
e) if λ ≡ 2 (mod 4). (4.47)

It now follows from (4.45) and (4.47) that (2.25) holds, and the theorem follows. □
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