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1 Introduction

1.1 A brief review on the development geometric circulant matrix

The circulant and r-circulant matrices have important applications in many fields of mathematics
such as numerical analysis, probability, coding theory. An n-square matrix Cr is called an
r-circulant matrix if it is defined as follows:

Cr =


c0 c1 c2 . . . cn−2 cn−1

rcn−1 c0 c1 . . . cn−3 cn−2

rcn−2 rcn−1 c0 . . . cn−4 cn−3

...
...

... . . . ...
...

rc1 rc2 rc3 . . . rcn−1 c0

 . (1)

This matrix form was first proposed by Davis in [8], then one found it has many spectacular
properties, and it is one of the most important research subject in the field of the computation and
pure mathematics [1,20]. Afterwards, Kızılateş and Tuglu constructed a new geometric circulant
matrix [15]. This matrix representation is characterized as follows:

Cr∗ =


c0 c1 c2 . . . cn−2 cn−1

rcn−1 c0 c1 . . . cn−3 cn−2

r2cn−2 rcn−1 c0 . . . cn−4 cn−3

...
...

... . . . ...
...

rn−1c1 rn−2c2 rn−3c3 . . . rcn−1 c0

 . (2)

In addition, they analyzed the bounds for the spectral norms of geometric circulant matrices
associated with the generalized Fibonacci number and Lucas numbers. It is well-known form
(1) and (2) that Cr and Cr∗ are determined by the coefficient r and the first row elements of the
matrix. When the coefficient satisfies r = 1, we emphasize that this geometric circulant matrix
rotates classically known as circulant matrix.

The r-circulant matrix and geometric circulant matrix with some commonly chosen values
have been hot topic for many researchers in recent years. For example, many scholars have
investigated the spectral norms of circulant matrices and r-circulant matrices involving famous
sequences such as Fibonacci and Lucas sequences. In this sense, we can compile many studies
such as these and others in the literature as follows. In [18], Shen and Cen have given upper and
lower bounds for the spectral norms of r-circulant matrices whose entries are the Fibonacci and
Lucas numbers. In [12], Jiang and Zhou studied spectral norms of even order r-circulant matrices.
In [3], Bahsi computed the spectral norms of circulant and r-circulant matrices involving the
hyperharmonic numbers. In addition to all these, in [4], Bahsi and Solak investigated norms of
circulant and r-circulant matrices associated with the hyper-Fibonacci and hyper-Lucas numbers.
In [9], He et al. present the upper bound estimation of the spectral norm for r-circulant matrices
with Fibonacci and Lucas numbers. Recently, In [15], Kızılateş and Tuğlu have defined geometric
circulant matrices and studied the bounds for the spectral norms of geometric circulant matrices
involving the generalized Fibonacci number and Lucas numbers. Some great contributions for the
spectral norms of r-circulant matrix and geometric circulant matrix can be found in references
[5, 9, 13, 14, 16].
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1.2 A brief review on the development Leonardo numbers

Leonardo numbers are introduced and given some properties by Catarino and Borges in [6]. When
the studies in the existing literature, it is observed that there has been a great interest in the study
of sequences of integers and their applications in various scientific fields. In this sense, there
are many interesting sequences of integers in literature. But, one of the most widely investigated
number sequence is the Fibonacci sequence {Fn}∞n=0 defined by the following recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2,

together with the initial conditions F0 = 0 and F1 = 1.
In this paper, we will reckon with another sequence that has similar properties to the Fibonacci

sequence. It is called Leonardo sequence and denoted with Len that is nth Leonardo numbers.
In [19], Shannon has constructed generalized Leonardo numbers which are considered Asveld’s
extension and Horadam’s generalized sequence. In [21], Vieira et. al. studied the two-dimensional
recurrences relations of Leonardo numbers from its one-dimensional model. In [2], Alp and
Koçer have given matrix representation of Leonardo numbers and obtained new identities of
Leonardo numbers. In [7], the authors have introduced incomplete Leonardo numbers and given
some properties of incomplete Leonardo numbers.

1.3 The motivation for our research

When the studies in the literature are examined, it is observed some well-known number sequences
are generally used in the studies on geometric circulant matrix. From a similar mathematical
point of view, we investigate a geometric circulant matrix such that its elements are a number
sequence different from existing number sequences. More specifically, we take the elements of
the geometric circulant matrix to be the Leonardo number sequence. In fact, considering the
value of the number sequences, it sounds interesting to imagine geometric circulant matrices
whose entries are the Leonardo numbers. Thus, many notable questions naturally arise. In this
respect, we answer basic questions such as Euclidean norm and the bounds for spectral norm in
this study. With the motivation provided by the studies in the literature, we fully believe that this
theoretical contribution made for geometric circulant matrices will enrich the applications.

This paper has been organized as follows. The necessary definitions and results for some
related sequences of numbers, circulant matrices and their norms are presented in Section 2. In
Section 3, the main results obtained for some matrix norms are given. Finally, In Section 4,
numerical examples with coding application are included to support the results we have obtained.

2 Preliminaries

In this section, we remind some preliminary details concerning matrix norms and Leonardo
numbers for readers. In addition, we introduce some related basic notions and results Thus,
we prepare a background for the theory that we will present in the rest of our paper.
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2.1 Some notes on matrix norms

Definition 2.1. [10] Let M = (mij) and N = (nij) be n-square real matrices. Then, the Hadamard
product of these matrices is defined asm11 m12 m13

m21 m22 m23

m31 m32 m33

 ◦

n11 n12 n13

n21 n22 n23

n31 n32 n33

 =

m11n11 m12n12 m13n13

m21n21 m22n22 m23n23

m31n31 m32n32 m33n33

 .

It is obvious that the norm of a matrix is a non-negative real number. There are several
different methods of defining a matrix norm, but they all share the same definite characteristics.
Now, let us remember some well-known matrix norm types.

Definition 2.2. [11] Let A = (aij) be an n-square matrix. Then, the maximum column length
norm, denoted by c1(.), and the maximum row length norm, denoted by r1(.), are respectively
defined as follows:

c1(A) = max
j

√∑
i

|aij|2 , r1(A) = max
i

√∑
j

|aij|2.

Definition 2.3. [11] Let A = (aij) be an n-square matrix. Then, the well-known Frobenius (or
Euclidean) norm of matrix A is defined by

∥A∥E =

(
m∑
i=1

n∑
j=1

|aij|2
) 1

2

.

Definition 2.4. [11] Let A = (aij) be an n-square matrix. Then, the spectral norm of matrix A

is defined by
∥A∥2 = max{

√
λ : λ is an eigenvalue of A∗A},

where A∗ is a conjugate transpose of matrix A.

Lemma 2.1. [11] The following inequalities hold for the Euclidean norm and the spectral norm:

1√
n
∥A∥E ≤ ∥A∥2 ≤ ∥A∥E, (3)

and
∥A∥2 ≤ ∥A∥E ≤

√
n∥A∥2. (4)

Lemma 2.2. [17, 22] Let A,B and C be m× n matrices. In this case, the following inequalities
hold

(i) If A = B ◦ C, then
∥A∥2 ≤ r1(B)c1(C). (5)

(ii) If ∥.∥ is arbitrary norm on n×m matrices, then

∥A ◦B∥ ≤ ∥A∥∥B∥.
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2.2 Some notes on Leonardo numbers

Definition 2.5. [6] Leonardo sequence is defined by the following recurrence relation for n ≥ 2

Len = Len−1 + Len−2 + 1

together with the initial contiditons Le0 = Le1 = 1.

In the following Table 1, we give some values of the Leonardo numbers.

Table 1. Some of the Leonardo numbers.

The value of n 0 1 2 3 4 5 6 7 8 9 10 11 12

Len 1 1 3 5 9 15 25 41 67 109 177 287 465

In this respect, it is well-known that there is an equation between the Leonardo numbers which
is occasionally more appropriate as follows:

Lemma 2.3. [6] For n ≥ 2, the following equality is hold

Len+1 = 2Len − Len−2 (6)

where Len is nth Leonardo number.

Considering the above lemma, it can be easily seen that the characteristic equation of recurrence
(6) is λ3 − 2λ2 + 1 = 0. Keeping this in mind, the Binet’s formula of leonardo numbers is
characterized as in the following theorem.

Theorem 2.1. [6] The Binet’s formula of the Leonardo number Len is characterized by

Len =
2αn+1 − 2βn+1 − α + β

α− β
,

where α and β are roots of characteristic equation of recurrence (6).

After considering the motivation presented in Chapter 1.2, a question naturally arises: Is there
a relationship between the fibonacci numbers and the leonardo numbers? In the following lemma,
we give an affirmative answer to this question.

Lemma 2.4. [6] The following equality holds

Len = 2Fn+1 − 1, (7)

where Fn is the n-th Fibonacci number.

Proposition 2.1. [6] For n ≥ 0, the following identity holds
n∑

j=0

Le2k = 4(Fn+1 − 1)(Fn+2 − 1) + (n+ 1),

where Lej is the j-th Leonardo number and Fj is the j-th Fibonacci number.

When the existing literature is examined, it is seen that Leonardo numbers have many
properties, as well as it is well-known that there are many relationships between other famous
number sequences other than Fibonacci numbers. In this sense, we refer the reader to the papers
[5, 6, 14, 19] that provide a nice overview on this topic.
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3 Main results

In this section, we consider the n-square geometric circulant matrix Ler∗ associated with the
Leonardo numbers visualized in (8), at first.Afterwards, we present attractive results for Euclidean
norms, as well as some bounds for the spectral norms of the matrix Ler∗ .

Ler∗ =


Le0 Le1 Le2 . . . Len−2 Len−1

rLen−1 Le0 Le1 . . . Len−3 Len−2

r2Len−2 rLen−1 Le0 . . . Len−4 Len−3

...
...

... . . . ...
...

rn−1Le1 rn−2Le2 rn−3Lee . . . rLen−1 Le0

 . (8)

Theorem 3.1. Let Ler∗ = Circr∗(Le0, Le1, Le2, . . . , Len−1) be an n× n circulant matrix.

(i) If |r| > 1, then

√
4(Fn − 1)(Fn+1 − 1) + n ≤ ∥Ler∗∥2 ≤

√
(1− |r|2n)[4(Fn − 1)(Fn+1 − 1) + n]

1− |r|2
.

(ii) If |r| < 1, then

|r|
√
5

√
−4α(|r|2n − αn)

|r|2 − α
+

−4β(|r|2n − βn)

|r|2 − β
+

−3|r|2n + 3

|r|2 − 1
+

(6− 2
√
5)(|r|2n − β2n)

|r|2 − β2
+

(6 + 2
√
5)(|r|2n − α2n)

|r|2 − α2

≤ ∥Ler∗∥2

and
∥Ler∗∥2 ≤

√
4n(Fn − 1)(Fn+1 − 1) + (n+ 1).

Proof. We have the matrix

Ler∗ =


Le0 Le1 Le2 . . . Len−2 Len−1

rLen−1 Le0 Le1 . . . Len−3 Len−2

r2Len−2 rLen−1 Le0 . . . Len−4 Len−3

...
...

... . . . ...
...

rn−1Le1 rn−2Le2 rn−3Lee . . . rLen−1 Le0

 .

(i) From |r| > 1 and the definition of Euclidean norm, we have

∥Ler∗∥2E =
n∑

i=1

n∑
j=1

|ai,j|2

=
n−1∑
k=0

(n− k)Le2k +
n−1∑
k=1

k|rn−k|2Le2k

≥
n−1∑
k=0

(n− k)Le2k +
n−1∑
k=1

kLe2k

= n
n−1∑
k=0

Le2k

= n[4(Fn − 1)(Fn+1 − 1) + n].
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That is,
1√
n
∥Ler∗∥E ≥

√
4(Fn − 1)(Fn+1 − 1) + n

from (3), we have √
4(Fn − 1)(Fn+1 − 1) + n ≤ ∥Ler∗∥2.

On the other hand, let the matrices A and B be defined by

A =


1 1 1 . . . 1 1

r 1 1 . . . 1 1

r2 r 1 . . . 1 1
...

...
... . . . ...

...
rn−1 rn−2 rn−3 . . . r 1

 .

and

B =


Le0 Le1 Le2 . . . Len−2 Len−1

Len−1 Le0 Le1 . . . Len−3 Len−2

Len−2 Len−1 Le0 . . . Len−4 Len−3

...
...

... . . . ...
...

Le1 Le2 Lee . . . Len−1 Le0

 .

That is, Ler∗ = A ◦ B. Then, we obtain

r1(A) = max
1≤i≤n

√√√√ n∑
j=1

|aij|2 =
√
|rn−1|2 + . . .+ |r|2 + 1

=

√
1− |r|2n
1− |r|2

and

c1(B) = max
1≤j≤n

√√√√ n∑
j=1

|bij|2 =

√√√√n−1∑
k=0

Le2k

=
√
4(Fn − 1)(Fn+1 − 1) + n.

Hence, from Lemma 2.2, (5), we have

∥Ler∗∥2 ≤

√
(1− |r|2n)[4(Fn − 1)(Fn+1 − 1) + n]

1− |r|2
.

Thus, we have

√
4(Fn − 1)(Fn+1 − 1) + n ≤ ∥Ler∗∥2 ≤

√
(1− |r|2n)[4(Fn − 1)(Fn+1 − 1) + n]

1− |r|2
.

This completes the proof of (i).
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(ii) From |r| < 1, we have

∥Ler∗∥2E =
n∑

i=1

n∑
j=1

|ai,j|2

=
n−1∑
k=0

(n− k)Le2k +
n−1∑
k=1

k|rn−k|2Le2k

≥
n−1∑
k=0

(n− k)|rn−k|2Le2k +
n−1∑
k=1

k|rn−k|Le2k

= n|r|2n
n−1∑
k=0

(
Lek
|r|k

)2

(Using related Binet’s formula)

= n|r|2n
n−1∑
k=0

(
α(2αk − 1)− β(2βk − 1)

(α− β)|r|k

)2

=
n|r|2n

(α− β)2

n−1∑
k=0

(
α(2αk − 1)− β(2βk − 1)

|r|2k

)2

.

With a simple calculation, we obtain

n−1∑
k=0

(
α(2αk − 1)− β(2βk − 1)

|r|2k

)2

=− 4α
n−1∑
k=0

(
α

|r|2

)k

− 4β
n−1∑
k=0

(
β

|r|2

)k

− 3
n−1∑
k=0

(
1

|r|2

)k

+ (6 + 2
√
5)

n−1∑
k=0

(
α2

|r|2

)k

+ (6− 2
√
5)

n−1∑
k=0

(
β2

|r|2

)k

.

Keeping this in mind, we reach the following equality.
n−1∑
k=0

(
α(2αk − 1)− β(2βk − 1)

|r|2k

)2

=
n|r|2

5

[
−4α(|r|2n − αn)

|r|2 − α
+

−4β(|r|2n − βn)

|r|2 − β
+

−3|r|2n + 3

|r|2 − 1

]

+

[
(6− 2

√
5)(|r|2n − β2n)

|r|2 − β2
+

(6 + 2
√
5)(|r|2n − α2n)

|r|2 − α2

]
.

That is,

1
√
n
∥Ler∗∥E ≥

|r|
√
5

√√√√(−4α(|r|2n − αn)

|r|2 − α
+

−4β(|r|2n − βn)

|r|2 − β
+

−3|r|2n + 3

|r|2 − 1
+

(6− 2
√
5)(|r|2n − β2n)

|r|2 − β2
+

(6 + 2
√
5)(|r|2n − α2n)

|r|2 − α2

)
.

From (3), we have

|r|
√
5

√√√√(−4α(|r|2n − αn)

|r|2 − α
+

−4β(|r|2n − βn)

|r|2 − β
+

−3|r|2n + 3

|r|2 − 1
+

(6− 2
√
5)(|r|2n − β2n)

|r|2 − β2
+

(6 + 2
√
5)(|r|2n − α2n)

|r|2 − α2

)
≤ ∥Ler∗∥2.

On the other hand, let the matrices C and D be defined by

C =


1 1 1 . . . 1 1

r 1 1 . . . 1 1

r2 r 1 . . . 1 1
...

...
... . . . ...

...
rn−1 rn−2 rn−3 . . . r 1

 .
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and

D =


Le0 Le1 Le2 . . . Len−2 Len−1

Len−1 Le0 Le1 . . . Len−3 Len−2

Len−2 Len−1 Le0 . . . Len−4 Len−3

...
...

... . . . ...
...

Le1 Le2 Le3 . . . Len−1 Le0

 .

That is, Ler∗ = C ◦ D. Then, we obtain

r1(C) = max
1≤i≤n

√√√√ n∑
j=1

|aij|2 =
√
n

and

c1(D) = max
1≤j≤n

√√√√ n∑
j=1

|bij|2 =

√√√√n−1∑
i=0

Le2k =
√

4(Fn − 1)(Fn+1 − 1) + n.

Hence, from Lemma 2.2, (5), we have

∥Ler∗∥ ≤
√

n[4(Fn − 1)(Fn+1 − 1) + n].

Thus,

|r|√
5

√
−4α(|r|2n − αn)

|r|2−α
+
−4β(|r|2n−βn)

|r|2−β
+
−3|r|2n+3

|r|2 − 1
+
(6− 2

√
5)(|r|2n−β2n)

|r|2−β2
+
(6 + 2

√
5)(|r|2n−α2n)

|r|2−α2

≤ ∥Ler∗∥2

and
∥Ler∗∥2 ≤

√
n[4(Fn − 1)(Fn+1 − 1) + n].

These also complete the proof of (ii).

4 Numerical examples with a coding application

In this section, we aim to be our paper more comprehensible for the readers, at first. For this
purpose, we add some illustrative numerical examples for the bounds of the spectral norm, as
well as Euclidean norm of geometric circulant matrix whose entries are the Leonardo numbers.

Table 2. Some bounds for the norms of Ler∗ in case of |r| > 1.

n ≥ 2
The lower bound

for ∥Ler∗∥E

The upper bound
for ∥Ler∗∥2

The lower bound
for ∥Ler∗∥2

2 2
√

2(r2 + 1)
√
2

3
√
33

√
11(r4 + r2 + 1)

√
11

4 12
√
36(r6 + r4 + r2 + 1) 6
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Table 3. Some bounds for the norms of Ler∗ in case of |r| < 1.

n ≥ 2
The lower bound

for ∥Ler∗∥E

The upper bound
for ∥Ler∗∥2

The lower bound
for ∥Ler∗∥2

2
√
2r4 + 2r2 2

√
r4 + r2

3
√
3r6 + 3r4 + 27r2

√
33

√
r6 + r4 + 9r2

4 2
√
r8 + r6 + 9r4 + 25r2 12

√
r8 + r6 + 9r4 + 25r2

Table 4. Code 1: MATLAB-R2023a code for the matrix Ler∗ in case of |r| > 1.

1 clc;

2 clear all;

3 n=input("Enter the value of n=");

4 syms x r;

5 Le(1) = x;

6 Le(2) = 1;

7 for i = 3:n

8 Le(i)=subs(Le(i-1) + Le(i-2)+1,Le(1),1);

9 Le(i);

10 end

11 for i=1:n

12 for j=1:n

13 if i==j

14 a(i,j)=subs(Le(1),Le(1),1);

15 elseif i<j

16 a(i,j)=subs(Le(mod(j-i,n)+1),Le(1),1);

17 elseif i>j

18 a(i,j)=subs(rˆ(mod(i-j,n))*Le(mod(j-i,n)+1),Le(1),1);

19 end

20 end

21 end

22 display(a,"Geometric circulant matrix with the Leonardo numbers for n")

23 disp("For |r|>1;")

24 b = subs(simplify(Le(1:n)),Le(1),1);

25 c = simplify(b.ˆ2);

26 sum_Leonardo = cumsum(c);

27 sum_Leonardo_1 = simplify((sum_Leonardo(n))ˆ(1/2));

28 row_norm_1 = 0;

29 for k = 0:n-1

30 row_norm_1 = row_norm_1 + (rˆ2)ˆk;

31 end

32 row_norm = sqrt(row_norm_1)

33 column_norm = sum_Leonardo(n)

34 Euclidean_norm_greather_than = simplify(sqrt(n)*sum_Leonardo_1)

35 Spectral_norm_less_than = simplify(row_norm*column_norm)

36 Spectral_norm_greater_than=simplify(1/(sqrt(n))*Euclidean_norm_greather_than)
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Table 5. Code 2: MATLAB-R2023a code for the matrix Ler∗ in case of |r| < 1.

1 clc;

2 clear all;

3 n=input("Enter the value of n=");

4 syms x r;

5 Le(1) = x;

6 Le(2) = 1;

7 for i = 3:n

8 Le(i)=subs(Le(i-1) + Le(i-2)+1,Le(1),1);

9 Le(i);

10 end

11 for i=1:n

12 for j=1:n

13 if i==j

14 a(i,j)=subs(Le(1),Le(1),1);

15 elseif i<j

16 a(i,j)=subs(Le(mod(j-i,n)+1),Le(1),1);

17 elseif i>j

18 a(i,j)=subs(rˆ(mod(i-j,n))*Le(mod(j-i,n)+1),Le(1),1);

19 end

20 end

21 end

22 display(a,"Geometric circulant matrix with the Leonardo numbers for n")

23 disp("For |r|<1;")

24 d = subs(simplify(Le(1:n)),Le(1),1);

25 e = simplify(d.ˆ2);

26 sum = cumsum(e);

27 for i=1:n

28 e(i)=e(i)/rˆ(2*(i-1));

29 e(i);

30 end

31 sum_Leonardo = cumsum(e);

32 sum_Leonardo_2 = simplify((n*rˆ(2*n)*sum_Leonardo(n))ˆ(1/2));

33 row_norm = sqrt(n)

34 column_norm = simplify(sum(n)ˆ(1/2))

35 Euclidean_norm_greather_than = simplify(sum_Leonardo_2)

36 Spectral_norm_less_than = simplify(row_norm*column_norm)

37 Spectral_norm_greater_than=simplify(1/(sqrt(n))*Euclidean_norm_greather_than)

5 Concluding remarks

In this paper, we take into account Leonardo numbers and we construct a special geometric
circulant matrix Ler∗ whose elements are the Leonardo numbers. Afterwards, we investigate
some linear algebraic properties of these matrices. More specifically, we give some inequalities
for bounds of their spectral and Euclidean norms. Moreover, we give two MATLAB-R2023a
codes for the matrices Ler∗ which is given the norm calculations of this matrix (see, Table 4 and
Table 5). Here, we write a new MATLAB-R2023a code which is not contained in the existing
Matlab libraries. For the value n entered into the code given,
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• Code;

1. writes the matrix Ler∗ .

2. Code 1: For the matrix Ler∗ in case of |r| > 1,

i. computes r1(A) and c1(B).
ii. gives an upper and a lower bounds for ∥Ler∗∥2.

iii. gives a lower bound for ∥Ler∗∥E .

3. Code 2: For the matrix Ler∗ in case of |r| < 1,

i. computes r1(D) and c1(C).
ii. gives an upper and a lower bounds for ∥Ler∗∥2.

iii. gives a lower bound for ∥Ler∗∥E .

We believe that all these can throw light on the researches that can be done about these topics in
the future. In this respect, we expect applications of our results in several branches of mathematics.
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